2.2 Fourier series for functions of period 27



Fundamental questions

e Let f : R — R be a periodic function of period 2. We would like an expansion for f of the form

0
f(x) *EJrZ ancos (nx) + basin(nx)) for x € R,

n=1

where aop, a1, ... and b1, by, ... are constants.
e Recall the two fundamental questions raised in §1.1:

Question 1: If (x) is true, can we find a, and b, in terms of 7
Question 2: With these a, and b,, when is (%) true?

e We address the first question in this section and the second in §2.5.

(%)
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Question 1

e Suppose (x) is true and that we can integrate it term-by-term over a period, so that

/ f(x dx—fao/dx+z /cos nx) dx + by ]sin(nx)dx

- -

e Since, for positive integers n,

/ dx = 2, / cos(nx)dx =0, / sin(nx) dx = 0,

we must have

which determines ag in terms of f.

e Notes:

(1) f is 2m-periodic so could have integrated over any interval of length 27.

(2) The leading term ap/2 in the Fourier series for f is equal to the mean of f over a period.
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e In order to determine the higher-order coefficients we will need the following Lemma.

e Lemma: Let m and n be positive integers. Then we have the orthogonality relations:

™

/cos(mx) cos(nx)dx = 7mn,

-

™

/cos(mx)sin(nx)dx = 0,

-

s

/sin (mx)sin(nx)dx = 7mn,

-

where dmn is Kronecker's delta defined by

0 for m# n,

1 form=n.

5mn =

e Proof: see online notes and a problem sheet.
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e Fixing m € N\ {0}, multiplying (%) by cos (mx) and assuming that the orders of summation and

integration may be interchanged, we obtain

/f cos (mx) *%ao/cos(mx)dx

+Za,,/cos(mx)cos(nx) dx
+ Z bn / cos (mx) sin (nx) dx.

e Using the first two of the orthogonality relations, we deduce that

ks 1 oo
/ f(x) cos (mx)dx = 5° 0+ Z (anm0mn + bn - 0) = wam,

so that

™

am = ;/f(x)cos(mx)dx for me N\ {0}.

-7
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Question: How would you derive a similar integral expression for b,?

Answer: By multiplying (%) by sin (mx), integrating from x = —7 to x = 7 and assuming that
the orders of summation and integration may be interchanged. As shown on a problem sheet, this
gives

™

bm:%/f(x)sin(mx)dx for me N\ {0}.

-

We wrap these formulae into the following definition.

Definition: Let f : R — R be 27-periodic and integrable on [—m, 7]. Then, regardless of whether
or not it converges, the Fourier series for f is defined to be the infinite series given by

% + ; (an cos(nx) + by sin(nx))

for x € R, where the Fourier coefficients of f are the constants a, and b, given by

an = 1 / f(x)cos(nx)dx for ne N,
L
b, = %/ f(x)sin(nx)dx for n € N\{0}.
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Notes

(1) The integrability condition ensures the existence of the Fourier coefficients.
(2) We adopt the short-hand notation

e’}

P 4 Z (an cos(nx) + b sin(nx))

) ~ 3

n=1

to indicate that the Fourier series for f is given by the RHS of this expression regardless of
whether or not it converges.

(3) The factor of 1/2 in the first term of the Fourier series ensures that the formulae for the Fourier
cosine coefficients is the same for all non-negative integers n.

(4) It is readily shown that the Fourier series for f may be written in the equivalent complex form
f(x) ~ Z cne'™,
n=—o0o
where the complex Fourier coefficients ¢, are given by

1
Ch = o | f( Je ~ind4x  for n € Z.

This is an elegant formulation, but the original one is better suited to our PDE applications.

I Covered material for Problem Sheet 2 Question 1 I 36/308




Exawmple |

Fud the Tomer seces of the - perodic function f
Aefined by f(a) = (2] for-mea g

Shukel. - 5 A







Hond, a1 U 200 Jo- W evtm owd mam—200 J— 0 ocdd],

O ,i-o— m:‘b«,h"mlf"SJ
e = §— * b 0 =mt]l M EN.

H(vmt)™
Sine due Foane saler o} S Gvm by
(s -

f(_" -+ 7 Xy CoJ [M))
1 Y
we hove

oo
L Liow Guml) X

H")”gb “0 Z (im £0)T

m=<O




Example 1
B Find the Fourier series for the 2m-periodic function f defined by
f(x)=1|x| for —m<x<m.

B The plot of the graph of f shows that it has a “sawtooth” profile that is piecewise linear and

continuous, with corners at integer multiples of .

™

B Since f(x) is even, f(x)cos(nx) is even and f(x)sin (nx) is odd, giving

a, = 1 f(x)cos(nx)dng/ f(x) cos(nx) dx,
L ™ Jo
1 [" .

b, = = f(x)sin(nx)dx = 0.
™

-
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® For n = 0, direct integration gives

B For n > 1, we use integration by parts by taking u = x and v = sin (nx)/n in the identity

[uv}g:/o (uv)/dx:/0 u'v + w' dx,

which gives

™
™

2 (7 2 X . 1 .
an = ;/0 x cos(nx)dx = . [; sin (nx)]0 —/1~ Esm(nx)dx

0
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B Hence,

T n?

o — g{cos(nx)]7r

0

A e G|
7r n?
0 for n=2m, me N\ {0},
= 4
_7r(2m+ )2 forn=2m+1, meN.
® Thus,
4 S cos ((2m+1)x)
F) ~ 5 =~ mZ:O mi1z
the right-hand side being the Fourier series for f. |
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Notes

(1) The partial sums of the Fourier series for f may be defined for N € N by
N

4 Z cos((2m + 1)x) for x € R.

Su( _T_
w( 2 7 (2m+ 1)

=0

The plots below show that Sy rapidly approaches f with increasing N, suggesting that the Fourier
series converges to f on R, i.e.

lim Sy(x) = f(x) for x € R.
N— oo

(2) If this is true, then we can pick x to evaluate the sum of a series, e.g. x = 0 gives
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Example 2

B Find the Fourier Series for the 27-periodic function f defined by
1 for0 < x <,
f(x) =
-1 for —m<x<0.

B The plot of the graph of f shows that it has a “square wave” profile that is piecewise linear with
jump discontinuities at integer multiples of 7.

—3m —2m -7 0 T 2T 3

B Since f(x) is odd for x/m € R\Z, we have a, = 0 and
1 /7 . 2 [T .
b, == f(x)sin(nx)dx = 7/ f(x)sin(nx) dx.
0

L - T
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B But f(x) =1 for 0 < x <, so

b, = fr/ﬂsin(nx)dx
2=t
o]

m™hn

B Hence, setting n = 2m + 1 to enumerate the non-zero terms, we obtain

F(x) ~ %Z sin ((22,7’,n++11))()7

the right-hand side being the Fourier series for f. |
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Notes

(1) The partial sums of the Fourier series for f may be defined for N € N by

N
4 sin ((2m + 1)x)
Sn(x) = - ,,,EZO om 1 for x € R.

The plots below show that Sy slowly approaches f with increasing N away from the jump
discontinuities at which Sy vanishes, suggesting that
f(x) for x/m € R\Z,
lim Sy(x) =
N=o0 0 for x/m € Z.

(2) The convergence is slower than in Example 1 and there is a persistent overshoot near the
discontinuities of f — this is called Gibb’'s phenomenon, about which more in §2.7.
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2.3 Cosine and sine series



Let f : R — R be 2m-periodic and integrable on [—, 7], so that the Fourier coefficients exist.
In numerous practical applications the relevant function f is even or odd.

It is for this reason we chose to integrate from x = —7 to x = 7, rather than over any other
interval of length 27, since we may then exploit immediately the symmetry of f, as we shall now

describe.

If f is even, then f(x) cos (nx) is even and f(x)sin (nx) is odd, giving

a, = i f(X) Cos(nx) dx = E/ f(X) cos(nx) dx forne N,
T J)_x ™ Jo

b, = 1 f(x)sin(nx)dx =0 for n € N\{0},
T

so that -
ao
f(x) ~ 5+ nz:; an cos(nx),

i.e. f has a Fourier cosine series.
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e If f is odd, then f(x)cos(nx) is odd and f(x)sin (nx) is even, giving
an = 1 f(x)cos(nx)dx =0 for n € N,
T

b, = %/_ﬂ f(x)sin(nx)dx = %/OW f(x)sin(nx)dx for n € N\{0},

so that -
f(x) ~ Z by sin(nx),
n=1
i.e. f has a Fourier sine series.

e Remark: Since the value of an integral is unchanged if the value of its integrand is modified at a
finite number of points, we obtain exactly the same Fourier sine series for f if f is odd on
e.g. R\{km : k € Z}, as in Example 2, rather than on the whole of R.
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2.4 Tips for evaluating the Fourier coefficients



(1) Exploit as early as possible any simplifications afforded by an integrand being even or odd. This
will more or less half the work required.

(2) When integrating by parts it is usually safer to write down the identity

b b
[uv]® :/ (uv) dx :/ ' + u'vdx

and make appropriate choices for u, v, a and b, rather than doing the calculation in your head.

(3) Similarly, when integrating by parts twice it is usually quicker to write down the identity

b b
[uv’ — u/v]: = / (u' —u'v) dx = / w” —u"vdx
a a

and make appropriate choices for u, v, a and b, rather than undertaking two sequential
integration by parts.
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(4) If fis a piecewise exponential or trigonometric function, it is usually quicker to evaluate the
complex integral expression
. 1 /" i
an+ib, = = f(x)e'™ dx.
™ —T
(5) Beware of special cases: do not divide by zero. Such special cases sometimes arise for the same
reasons that m = n is a special case in the orthogonality relations.

(6) Check that a, — 0 and b, — 0 as n — co. This is a direct consequence of the Riemann-Lebesgue
Lemma, which you will prove in Analysis Ill. Later on in this course we will be more precise about

the rate of decay of the Fourier coefficients as n — oo.
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2.5 Convergence of Fourier series



Left- and right-hand limits
e Definition: The RH limit of f at c is f(cy) = ’Ilimo f(c + h) if it exists.
—
h>0

e Definition: The LH limit of f at cis f(c_) = ’Ilimo f(c+ h) if it exists.
—
h<0

¢ Notes:
(1) f(cy) can only exist if £ is defined on (¢, ¢ + €) for some € > 0.

(2) f(c—) can only exist if f is defined on (c — ¢, ¢) for some € > 0.

(3) f(c) need not be defined for f(cy) or f(c_) to exist.

(4) The existence part is important, e.g. if f(x) =sin(1/x) for x # 0, then f(0+) do not exist.

(5) f is continuous at ¢ if and only if f(c_) = f(c) = f(cy).

(6) In Example 2, f is continuous for x/m € R\Z with f(0+) = £1 and f(r+) = F1.
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Piecewise continuity

e Definition: f is piecewise continuous on (a, b) C R if there exists a finite number of points
Xty Xm ERwitha=x1 <x <...<xn=bs.t.

(1) f is defined and continuous on (xk, xx+1) forall k=1,...,m—1;
(2) f(xky) exists for k=1,...,m—1,
(3) f(xk—) exists for k =2,...,m.

¢ Notes:

(1) Note that f need not be defined at its exceptional points xi, ..., Xm.

(2) The functions in Examples 1 and 2 are piecewise continuous on any interval (a, b) C R.

E,: - - 3% « —x

*=a X, X Xy *s=
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Fourier Convergence Theorem

o Let f : R — R be 27-periodic, with f and f’ piecewise continuous on (—

series of f at x converges to the value 1 (f(x;) + f(x_)), i.e.

oo

%(f()q) b)) =

™one]

where the Fourier coefficients a, and b, exist and are given by

™

= 1/f(x)cos(nx)dx for n € N,

™
-

™

b, = %/f(x)sin(nx)dx for n € N\ {0}

-

7). Then the Fourier

Z ancos(nx) + bysin(nx)) for x € R,
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Notes on the hypotheses

(1) If f and f’ are piecewise continuous on (—, ), then there exist x1, ..., xm € R with
—m=x1 <X < ...<Xm = such that
(i) f and f’ are continuous on (xk, xxk+1) for k=1,...,m—1.
(i) f(xk+) and f'(xxy) exist for k =1,...,m—1.
(iii) f(xk_) and f'(xx_) exist for k =2,..., m.
(2) Thus, in any period f, f’ are continuous except possibly at a finite number of points. At each

such point ' need not be defined, and one or both of f and f’ may have a jump discontinuity, as
illustrated for some of the possibilities in the schematic below.

Ze
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Notes on the convergence result

(1) The partial sums of the Fourier series are defined for N € N\{0} by

N
Sn(x) = % + Z (ancos (nx) + bysin (nx)) for x € R.

n=1

The theorem states that the partial sums converge pointwise in the sense that

Nlim Sn(x) = %(f(XJr) + f(Xf)) for x € R.
—> 00

(2) If f has a jump discontinuity at x, so that f(x;) # f(x_), then the Fourier series converges to
(f(x4) + f(x=))/2, i.e. the average of the left- and right-hand limits of f at x.

(3) If f is continuous at x, then f(x_) = f(x) = f(x}) and the Fourier series converges to f(x).
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(4) If we redefined f to be equal to the average of its left- and right-hand limits at each of its jump
discontinuities, then the Fourier series would converge instead to f on R.

(5) If f is defined only on e.g. (—m, 7], then the Fourier Convergence Theorem holds for its
27-periodic extension.

(6) The Fourier Convergence Theorem implies that

(8(x+) + &(x-))

N | =

% + ;an cos(nx) for x€R,

(h(x+) + h(x,))

Z b,sin(nx) for x €R,
n=1

N =

where g(x) = 3 (f(x) + f(—x)) is the even part of f and h(x) = 3 (f(x) — f(—x)) is the odd part
of f.
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Proof wot examinabls

Notes on the proof

(1) Use the integral expressions for the Fourier coefficients and properties of periodic, even and odd
functions to manipulate the partial sums into the form

™

Sw(x) — %(f(x+) L F(x)) = /F(x, ) sin KN + %) t} dt,

0

F(x,t):l(f(x+f)—f(X+)+f(x—t)—f(x,)>( : )

t t 2sin (t/2)

(2) Use the Mean Value Theorem (of Analysis Il) to show that F(x, t) is a piecewise continuous

where

function of t on (0, 7), and hence deduce from the Riemann-Lebesgue Lemma (of Analysis III)
that

/F(X,t)sin [(N—F%) t] dt -0 as N — oo.
0
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Notes on differentiability and integrability

(1) The Fourier series can be integrated termwise under weaker conditions, e.g. if f is 27-periodic
and piecewise continuous on (—, ), then the Fourier Convergence Theorem implies

/f(s) ds:/ laoderZ/ (ancos(ns) + basin(ns)) ds for x € R,
0 0 2 =1 Jo

this function being 2m-periodic if and only if ap = 0.

(2) However, we need stronger conditions to differentiate termwise, e.g. if f is 2m-periodic and

continuous on R with both f' and f” piecewise continuous on (—m, ), then the Fourier
Convergence Theorem implies

N =

(F'(x¢) + F'(x2) :Z(%( (ancos (nx) + bysin (nx)) for x € R.
1

/ <t .}(m-.-i’ et f e R, uabh R ¢
n=0

Cf. Analysis |, Theorem 60

then 4/ (a0 aé’:. %(c.a\") fo- A/ ¢ R, ...
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Examples 1 and 2 revisited
B Recall the 27-periodic function of Example 1 which we defined by setting
f(x)=|x|] for —m<x<m.
B We calculate
1 for 0 < x <,

flix)=¢ -1 for —m < x <0,
undefined for x =0, .

B Since both f and f' are piecewise continuous on (—m,7), with f continuous on R, the Fourier
Convergence Theorem gives

oo

,%Z% f(x) for xeR. (A)
=0

ST

B Since f is piecewise continuous on (—m,7), we can integrate termwise to obtain

izsm ((2m+1)x /f ds for x €R. (B)
ﬂ-mO 2m+1
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B We calculate
0] for0 < x <,

f'(x)=4 0 for —m < x <0,
undefined for x =0, 7.

® Since f is continuous on R and both ' and f” are piecewise continuous on (—m, ), we can
differentiate termwise the Fourier series for f to obtain

1 for0 < x <,
(F(x)+f(x) =38 -1 for —mr<x<0, Q)
0 for x =0, =.

4§:sm (2m + 1)x)

4 _1
2m+1 2

B The function to which this Fourier series converges is equal to the function considered in Example
2 for x/m € R\Z, which deals thereby with the convergence and termwise integration of the
Fourier series of that function; it remains to note that, since that function is not continuous on R,
its Fourier series cannot be differentiated termwise.

Covered material for Problem Sheet 2 Question 2
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