
2.2 Fourier series for functions of period 2⇡
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Fundamental questions

• Let f : R ! R be a periodic function of period 2⇡. We would like an expansion for f of the form

f (x) =
a0

2
+

1X

n=1

�
an cos (nx) + bn sin (nx)

�
for x 2 R, (?)

where a0, a1, . . . and b1, b2, . . . are constants.

• Recall the two fundamental questions raised in §1.1:

Question 1: If (?) is true, can we find an and bn in terms of f ?

Question 2: With these an and bn, when is (?) true?

• We address the first question in this section and the second in §2.5.
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Context

00

• show in Analysis 2 that it flat = I and
"

fan IN a R with Rs 0,
h=O

then f 't a) = II hand"' for IN a R, so by induction an =t"
h !

.

• Qh : How do we isolate a Fair coefficient Can or bn ) ?

• Ans : cannot differentiate out all but one term .

but we can integrate at all but one term !

Hence
,
method is in this sense opposite to that for power series.



Question 1 : ao

IT

f)Ha) da = I do da
- H

- it
2

>
0

IT

+ II 14 d.

- IT
µ no

+16 nx DX )
-IT

assuming k⇒)
Hence

, ⇐ = ¥
'

t '"d"
2 2



Question 1

• Suppose (?) is true and that we can integrate it term-by-term over a period, so that

⇡Z

�⇡

f (x) dx =
1
2
a0

⇡Z

�⇡

dx +
1X

n=1

0

@an

⇡Z

�⇡

cos (nx) dx + bn

⇡Z

�⇡

sin (nx) dx

1

A.

• Since, for positive integers n,
Z ⇡

�⇡

dx = 2⇡,

Z ⇡

�⇡

cos(nx) dx = 0,

Z ⇡

�⇡

sin(nx) dx = 0,

we must have

a0 =
1
⇡

⇡Z

�⇡

f (x) dx ,

which determines a0 in terms of f .

• Notes:

(1) f is 2⇡-periodic so could have integrated over any interval of length 2⇡.

(2) The leading term a0/2 in the Fourier series for f is equal to the mean of f over a period.
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• In order to determine the higher-order coe�cients we will need the following Lemma.

• Lemma: Let m and n be positive integers. Then we have the orthogonality relations:

⇡Z

�⇡

cos (mx) cos (nx) dx = ⇡�mn,

⇡Z

�⇡

cos (mx) sin (nx) dx = 0,

⇡Z

�⇡

sin (mx) sin (nx) dx = ⇡�mn,

where �mn is Kronecker’s delta defined by

�mn =

8
<

:
0 for m 6= n,

1 for m = n.

• Proof: see online notes and a problem sheet.
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Question 1 : am (me INISOI)

H no
H

↳ In)cosmxdx= do fcosmxdx ITS
mn
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00 IT
-
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00
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• Fixing m 2 N \ {0}, multiplying (?) by cos (mx) and assuming that the orders of summation and

integration may be interchanged, we obtain

⇡Z

�⇡

f (x) cos (mx) dx =
1
2
a0

⇡Z

�⇡

cos (mx) dx

+
1X

n=1

an

⇡Z

�⇡

cos (mx) cos (nx) dx

+
1X

n=1

bn

⇡Z

�⇡

cos (mx) sin (nx) dx .

• Using the first two of the orthogonality relations, we deduce that

⇡Z

�⇡

f (x) cos (mx) dx =
1
2
a0 · 0 +

1X

n=1

(an⇡�mn + bn · 0) = ⇡am,

so that

am =
1
⇡

⇡Z

�⇡

f (x) cos (mx) dx for m 2 N \ {0}.
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• Question: How would you derive a similar integral expression for bn?

• Answer: By multiplying (?) by sin (mx), integrating from x = �⇡ to x = ⇡ and assuming that

the orders of summation and integration may be interchanged. As shown on a problem sheet, this

gives

bm =
1
⇡

⇡Z

�⇡

f (x) sin (mx) dx for m 2 N \ {0}.

• We wrap these formulae into the following definition.

• Definition: Let f : R ! R be 2⇡-periodic and integrable on [�⇡,⇡]. Then, regardless of whether

or not it converges, the Fourier series for f is defined to be the infinite series given by

a0

2
+

1X

n=1

�
an cos(nx) + bn sin(nx)

�

for x 2 R, where the Fourier coe�cients of f are the constants an and bn given by

an =
1
⇡

Z ⇡

�⇡

f (x) cos(nx) dx for n 2 N,

bn =
1
⇡

Z ⇡

�⇡

f (x) sin(nx) dx for n 2 N\{0}.
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Notes

(1) The integrability condition ensures the existence of the Fourier coe�cients.

(2) We adopt the short-hand notation

f (x) ⇠ a0

2
+

1X

n=1

�
an cos(nx) + bn sin(nx)

�

to indicate that the Fourier series for f is given by the RHS of this expression regardless of

whether or not it converges.

(3) The factor of 1/2 in the first term of the Fourier series ensures that the formulae for the Fourier

cosine coe�cients is the same for all non-negative integers n.

(4) It is readily shown that the Fourier series for f may be written in the equivalent complex form

f (x) ⇠
1X

n=�1
cne

inx ,

where the complex Fourier coe�cients cn are given by

cn =
1
2⇡

Z ⇡

�⇡

f (x)e�inx dx for n 2 Z.

This is an elegant formulation, but the original one is better suited to our PDE applications.

36/308Covered material for Problem Sheet 2 Question 1



Example I

Find the Fourier series of the 4- periodic function f
defined by fish) = IN for - IT c a E IT .

Sketch : t n

⑧ IT - • 9

I 7 z
- IN - A

0 IT 2h 317

Fourier wets : Hx) is even ⇒ ftxlcoslnx) is even, Halsinlnsi) is odd

⇒ an = ¥ §
"
xcoslnsydol

,
bn = 0

.



a. = If"adx =L 3! = IT
For us

,
I
,
integrate by parts using

[Curl 'da = Luv) if ⇒ a)
"

ur
'

da = Car? - f.
"

uhdid
.

an = ¥ ?
"

X cos In a) old
U vi

= ¥ I sink signal) 'j
- ¥51 tnsinlnxldx

U
'

✓

= 0 + I, I
'"

II )?
= In. Cat - i )



Hence
,
9h is zero for n even and non -zero tr n odd

.

am = {, I ta n = 2in,
me IN 1505

them-If to R=2mtl, ME IN?

Since the Easier series for f is given by
00

¥ + I am cos Cha)
,

h=I

we have
00

flat wtf - If, [
Cookman

m.IO
( Lm +1)

he

L7



Example 1

⌅ Find the Fourier series for the 2⇡-periodic function f defined by

f (x) = |x | for � ⇡ < x  ⇡.

⌅ The plot of the graph of f shows that it has a “sawtooth” profile that is piecewise linear and

continuous, with corners at integer multiples of ⇡.

⌅ Since f (x) is even, f (x) cos (nx) is even and f (x) sin (nx) is odd, giving

an =
1
⇡

Z ⇡

�⇡

f (x) cos(nx) dx =
2
⇡

Z ⇡

0

f (x) cos(nx) dx ,

bn =
1
⇡

Z ⇡

�⇡

f (x) sin(nx) dx = 0.
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⌅ For n = 0, direct integration gives

a0 =
2
⇡

⇡Z

0

x dx =


2
⇡
x
2

2

�⇡

0

= ⇡.

⌅ For n � 1, we use integration by parts by taking u = x and v = sin (nx)/n in the identity

⇥
uv

⇤⇡
0
=

Z ⇡

0

(uv)0 dx =

Z ⇡

0

u
0
v + uv

0 dx ,

which gives

an =
2
⇡

Z ⇡

0

x cos(nx) dx =
2
⇡

0

@
h
x

n
sin (nx)

i⇡
0
�

⇡Z

0

1 · 1
n
sin (nx) dx

1

A .
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⌅ Hence,

an =
2
⇡


cos (nx)

n2

�⇡

0

= � 2
⇡
[1� (�1)n]

n2

=

8
><

>:

0 for n = 2m, m 2 N \ {0},

� 4
⇡(2m + 1)2

for n = 2m + 1, m 2 N.

⌅ Thus,

f (x) ⇠ ⇡
2
� 4

⇡

1X

m=0

cos ((2m + 1)x)
(2m + 1)2

,

the right-hand side being the Fourier series for f . ⌅
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Notes

(1) The partial sums of the Fourier series for f may be defined for N 2 N by

SN(x) =
⇡
2
� 4

⇡

NX

m=0

cos ((2m + 1)x)
(2m + 1)2

for x 2 R.

The plots below show that SN rapidly approaches f with increasing N, suggesting that the Fourier

series converges to f on R, i.e.

lim
N!1

SN(x) = f (x) for x 2 R.

(2) If this is true, then we can pick x to evaluate the sum of a series, e.g. x = 0 gives

0 =
⇡
2
� 4

⇡

1X

m=0

1
(2m + 1)2

=)
1X

m=0

1
(2m + 1)2

=
⇡2

8
.
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Example L

Find the Fourier series for the 2h - periodic fmitiat defined by

flat = { I, to OE2E IT

for - Ncaa 0

tn

Sketch ; a • I • • •

- 317 - 2h - IT 0 IT LIT 317
%

0 0 0
, ,0 0 0 0

Fourier coetfs : f is odd for # EIRIK
⇒ flalcoslnxlisoddettals.in/nnliseventwI,ElR/I
⇒ an = 0 , bn = # of"sinlnNdx



⇒ bn = E. f- ""I" ] ?

=
-¥11 -it - 1)

= { 04 ta n = 2h, mt INKof

HILM +4 for h=2mtl,
me IN

.

00

since the Fourier series fan f is I bnsinlnsy, we
deduce that n⇒

00

f-IN ~ I, I
sin 12mmol

m=o
2Mt'

L7



Example 2

� Find the Fourier Series for the 2π-periodic function f defined by

f (x) =

{
1 for 0 ≤ x ≤ π,

−1 for − π < x < 0.

� The plot of the graph of f shows that it has a “square wave” profile that is piecewise linear with

jump discontinuities at integer multiples of π.

� Since f (x) is odd for x/π ∈ R\Z, we have an = 0 and

bn =
1

π

∫ π

−π
f (x) sin(nx) dx =

2

π

∫ π

0

f (x) sin(nx) dx .
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⌅ But f (x) = 1 for 0 < x < ⇡, so

bn =
2
⇡

⇡Z

0

sin (nx) dx

=


� 2
⇡
cos (nx)

n

�⇡

0

=
2[1� (�1)n]

⇡n
.

⌅ Hence, setting n = 2m + 1 to enumerate the non-zero terms, we obtain

f (x) ⇠ 4
⇡

1X

m=0

sin ((2m + 1)x)
2m + 1

,

the right-hand side being the Fourier series for f . ⌅
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Notes

(1) The partial sums of the Fourier series for f may be defined for N 2 N by

SN(x) =
4
⇡

NX

m=0

sin ((2m + 1)x)
2m + 1

for x 2 R.

The plots below show that SN slowly approaches f with increasing N away from the jump

discontinuities at which SN vanishes, suggesting that

lim
N!1

SN(x) =

8
<

:
f (x) for x/⇡ 2 R\Z,

0 for x/⇡ 2 Z.

(2) The convergence is slower than in Example 1 and there is a persistent overshoot near the

discontinuities of f — this is called Gibb’s phenomenon, about which more in §2.7.
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2.3 Cosine and sine series
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• Let f : R ! R be 2⇡-periodic and integrable on [�⇡,⇡], so that the Fourier coe�cients exist.

• In numerous practical applications the relevant function f is even or odd.

• It is for this reason we chose to integrate from x = �⇡ to x = ⇡, rather than over any other

interval of length 2⇡, since we may then exploit immediately the symmetry of f , as we shall now

describe.

• If f is even, then f (x) cos (nx) is even and f (x) sin (nx) is odd, giving

an =
1
⇡

Z ⇡

�⇡

f (x) cos(nx) dx =
2
⇡

Z ⇡

0

f (x) cos(nx) dx for n 2 N,

bn =
1
⇡

Z ⇡

�⇡

f (x) sin(nx) dx = 0 for n 2 N\{0},

so that

f (x) ⇠ a0

2
+

1X

n=1

an cos(nx),

i.e. f has a Fourier cosine series.
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• If f is odd, then f (x) cos (nx) is odd and f (x) sin (nx) is even, giving

an =
1
⇡

Z ⇡

�⇡

f (x) cos(nx) dx = 0 for n 2 N,

bn =
1
⇡

Z ⇡

�⇡

f (x) sin(nx) dx =
2
⇡

Z ⇡

0

f (x) sin(nx) dx for n 2 N\{0},

so that

f (x) ⇠
1X

n=1

bn sin(nx),

i.e. f has a Fourier sine series.

• Remark: Since the value of an integral is unchanged if the value of its integrand is modified at a

finite number of points, we obtain exactly the same Fourier sine series for f if f is odd on

e.g. R\{k⇡ : k 2 Z}, as in Example 2, rather than on the whole of R.

47/308



2.4 Tips for evaluating the Fourier coe�cients
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(1) Exploit as early as possible any simplifications a↵orded by an integrand being even or odd. This

will more or less half the work required.

(2) When integrating by parts it is usually safer to write down the identity

[uv ]b
a
=

Z
b

a

(uv)0 dx =

Z
b

a

uv
0 + u

0
v dx

and make appropriate choices for u, v , a and b, rather than doing the calculation in your head.

(3) Similarly, when integrating by parts twice it is usually quicker to write down the identity

⇥
uv

0 � u
0
v
⇤
b

a
=

Z
b

a

(uv 0 � u
0
v)0 dx =

Z
b

a

uv
00 � u

00
v dx

and make appropriate choices for u, v , a and b, rather than undertaking two sequential

integration by parts.
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(4) If f is a piecewise exponential or trigonometric function, it is usually quicker to evaluate the

complex integral expression

an + ibn =
1
⇡

Z ⇡

�⇡

f (x)einx dx .

(5) Beware of special cases: do not divide by zero. Such special cases sometimes arise for the same

reasons that m = n is a special case in the orthogonality relations.

(6) Check that an ! 0 and bn ! 0 as n ! 1. This is a direct consequence of the Riemann-Lebesgue

Lemma, which you will prove in Analysis III. Later on in this course we will be more precise about

the rate of decay of the Fourier coe�cients as n ! 1.
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2.5 Convergence of Fourier series
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Left- and right-hand limits

• Definition: The RH limit of f at c is f (c+) = lim
h!0
h>0

f (c + h) if it exists.

• Definition: The LH limit of f at c is f (c�) = lim
h!0
h<0

f (c + h) if it exists.

• Notes:

(1) f (c+) can only exist if f is defined on (c, c + ✏) for some ✏ > 0.

(2) f (c�) can only exist if f is defined on (c � ✏, c) for some ✏ > 0.

(3) f (c) need not be defined for f (c+) or f (c�) to exist.

(4) The existence part is important, e.g. if f (x) = sin(1/x) for x 6= 0, then f (0±) do not exist.

(5) f is continuous at c if and only if f (c�) = f (c) = f (c+).

(6) In Example 2, f is continuous for x/⇡ 2 R\Z with f (0±) = ±1 and f (⇡±) = ⌥1.
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Piecewise continuity

• Definition: f is piecewise continuous on (a, b) ✓ R if there exists a finite number of points

x1, . . . , xm 2 R with a = x1 < x2 < . . . < xm = b s.t.

(1) f is defined and continuous on (xk , xk+1) for all k = 1, . . . ,m � 1;

(2) f (xk+) exists for k = 1, . . . ,m � 1;

(3) f (xk�) exists for k = 2, . . . ,m.

• Notes:

(1) Note that f need not be defined at its exceptional points x1, . . . , xm.

(2) The functions in Examples 1 and 2 are piecewise continuous on any interval (a, b) ⇢ R.
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Fourier Convergence Theorem

• Let f : R ! R be 2⇡-periodic, with f and f
0 piecewise continuous on (�⇡,⇡). Then the Fourier

series of f at x converges to the value 1
2

�
f (x+) + f (x�)

�
, i.e.

1
2

�
f (x+) + f (x�)

�
=

a0

2
+

1X

n=0

�
an cos(nx) + bn sin(nx)

�
for x 2 R,

where the Fourier coe�cients an and bn exist and are given by

an =
1
⇡

⇡Z

�⇡

f (x) cos (nx) dx for n 2 N,

bn =
1
⇡

⇡Z

�⇡

f (x) sin (nx) dx for n 2 N \ {0}
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Notes on the hypotheses

(1) If f and f
0 are piecewise continuous on (�⇡,⇡), then there exist x1, . . . , xm 2 R with

�⇡ = x1 < x2 < . . . < xm = ⇡ such that

(i) f and f
0 are continuous on (xk , xk+1) for k = 1, . . . ,m � 1.

(ii) f (xk+) and f
0(xk+) exist for k = 1, . . . ,m � 1.

(iii) f (xk�) and f
0(xk�) exist for k = 2, . . . ,m.

(2) Thus, in any period f , f 0 are continuous except possibly at a finite number of points. At each

such point f 0 need not be defined, and one or both of f and f
0 may have a jump discontinuity, as

illustrated for some of the possibilities in the schematic below.
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(3) For example, if

f (x) =

8
<

:
x
1/2 for 0  x  ⇡,

0 for � ⇡ < x < 0,

then

f
0(x) =

8
>>>><

>>>>:

1
2
x
�1/2 for 0 < x < ⇡,

0 for � ⇡ < x < 0,

undefined for x = 0,⇡.

Hence, while f is piecewise continuous on (�⇡,⇡), f 0 is not because f
0(0+) does not exist.
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Notes on the convergence result

(1) The partial sums of the Fourier series are defined for N 2 N\{0} by

SN(x) =
a0

2
+

NX

n=1

�
an cos (nx) + bn sin (nx)

�
for x 2 R.

The theorem states that the partial sums converge pointwise in the sense that

lim
N!1

SN(x) =
1
2

�
f (x+) + f (x�)

�
for x 2 R.

(2) If f has a jump discontinuity at x , so that f (x+) 6= f (x�), then the Fourier series converges to�
f (x+) + f (x�)

�
/2, i.e. the average of the left- and right-hand limits of f at x .

(3) If f is continuous at x , then f (x�) = f (x) = f (x+) and the Fourier series converges to f (x).
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(4) If we redefined f to be equal to the average of its left- and right-hand limits at each of its jump

discontinuities, then the Fourier series would converge instead to f on R.

(5) If f is defined only on e.g. (�⇡,⇡], then the Fourier Convergence Theorem holds for its

2⇡-periodic extension.

(6) The Fourier Convergence Theorem implies that

1
2

�
g(x+) + g(x�)

�
=

a0

2
+

1X

n=1

an cos (nx) for x 2 R,

1
2

�
h(x+) + h(x�)

�
=

1X

n=1

bn sin (nx) for x 2 R,

where g(x) = 1
2

�
f (x) + f (�x)

�
is the even part of f and h(x) = 1

2

�
f (x)� f (�x)

�
is the odd part

of f .

56/308



Notes on the proof

(1) Use the integral expressions for the Fourier coe�cients and properties of periodic, even and odd

functions to manipulate the partial sums into the form

SN(x)�
1
2

�
f (x+) + f (x�)

�
=

⇡Z

0

F (x , t) sin

✓
N +

1
2

◆
t

�
dt,

where

F (x , t) =
1
⇡

✓
f (x + t)� f (x+)

t
+

f (x � t)� f (x�)
t

◆✓
t

2 sin (t/2)

◆
.

(2) Use the Mean Value Theorem (of Analysis II) to show that F (x , t) is a piecewise continuous

function of t on (0,⇡), and hence deduce from the Riemann-Lebesgue Lemma (of Analysis III)

that
⇡Z

0

F (x , t) sin

✓
N +

1
2

◆
t

�
dt ! 0 as N ! 1.
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Notes on di↵erentiability and integrability

(1) The Fourier series can be integrated termwise under weaker conditions, e.g. if f is 2⇡-periodic

and piecewise continuous on (�⇡,⇡), then the Fourier Convergence Theorem implies

Z
x

0

f (s) ds =

Z
x

0

1
2
a0 ds +

1X

n=1

Z
x

0

�
an cos(ns) + bn sin(ns)

�
ds for x 2 R,

this function being 2⇡-periodic if and only if a0 = 0.

(2) However, we need stronger conditions to di↵erentiate termwise, e.g. if f is 2⇡-periodic and

continuous on R with both f
0 and f

00 piecewise continuous on (�⇡,⇡), then the Fourier

Convergence Theorem implies

1
2

�
f
0(x+) + f

0(x�)
�
=

1X

n=1

d
dx

�
an cos (nx) + bn sin (nx)

�
for x 2 R.
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Example I revisited

Recall that f is 2h- periodic with f Ia) = IN for - IT on a E IT

Recall that flat n I - hi,
cos Camilla

m=o (Lm + 1)
2



Qn : Can we apply the FLT ?

A" : since t is its an th,He tl- TH, the) exist,
t is piecewise its an 1- IT, HI .

+
'
( x ) = { - I tan 0 < a c ti

fan -IT C I C 0

undefined for 2=0, IT

⇒ t
'
is its an C-Ritu 10,1T)e t

'the),t
'(a)AY0H, t

'IK) exist.
⇒ t

'

is piecewise cts on th, IT1 .

Hence
,
the FCT applies and gives

00

I - ¥ z ↳shirt""
= flat for at IR .

m=0 I 2h C-1) 2



Example. 2 revisited.

Recall that f is 2h - periodic with fix)= {
' ta o ' '' EM
- 1 for - ITC a C 0

.

00

Recall that flat - If I sink
mind

2in t I
°

m=0



Qn : Can we apply the FLT ?

Ahs : f its an ttholulo.IT/etI-ti+I,tIo-),tI0-i),tlh-)eaist
⇒ f piecewise its on 1- IT

, HI,

f
'

IN = {
° for 0<1×1 c IT

undefined fin 2=0, IT

⇒ t
'

its an ttholulo,He t
'

thet
,
Ho-t.tto-I.HR/eaist

⇒ f
'

piecewise its on 1- it
,H .

Hence
,
the FCT applies and gives

¥ II SILLY"" = { t
'" ta

"HEINZ

0 for % EZ



Examples 1 and 2 revisited

⌅ Recall the 2⇡-periodic function of Example 1 which we defined by setting

f (x) = |x | for � ⇡ < x  ⇡.

⌅ We calculate

f
0(x) =

8
><

>:

1 for 0 < x < ⇡,

�1 for � ⇡ < x < 0,

undefined for x = 0, ⇡.

⌅ Since both f and f
0 are piecewise continuous on (�⇡,⇡), with f continuous on R, the Fourier

Convergence Theorem gives

⇡
2
� 4

⇡

1X

m=0

cos ((2m + 1)x)
(2m + 1)2

= f (x) for x 2 R. (A)

⌅ Since f is piecewise continuous on (�⇡,⇡), we can integrate termwise to obtain

4
⇡

1X

m=0

sin ((2m + 1)x)
(2m + 1)3

=

Z
x

0

f (s)� ⇡
2
ds for x 2 R. (B)
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⌅ We calculate

f
00(x) =

8
><

>:

0 for 0 < x < ⇡,

0 for � ⇡ < x < 0,

undefined for x = 0, ⇡.

⌅ Since f is continuous on R and both f
0 and f

00 are piecewise continuous on (�⇡,⇡), we can

di↵erentiate termwise the Fourier series for f to obtain

4
⇡

1X

m=0

sin ((2m + 1)x)
2m + 1

=
1
2

�
f
0(x�) + f

0(x+)
�
=

8
><

>:

1 for 0 < x < ⇡,

�1 for � ⇡ < x < 0,

0 for x = 0, ⇡.

(C)

⌅ The function to which this Fourier series converges is equal to the function considered in Example

2 for x/⇡ 2 R\Z, which deals thereby with the convergence and termwise integration of the

Fourier series of that function; it remains to note that, since that function is not continuous on R,
its Fourier series cannot be di↵erentiated termwise.
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