2.6 Rate of convergence



Rate of convergence

e The smoother f, i.e. the more continuous derivatives it has, the faster the convergence of the
Fourier series for f.

o If the first jump discontinuity is in the p™ derivative of £, with the convention that p = 0 if there
is a jump discontinuity in f, then in general the slowest decaying a, and b, decay like 1/ as
n — oo.

e More specifically, if the first jump discontinuity is in the p*" derivative of the even part of f, then
in general a, decays like 1/n"*! as n — oo; similarly, if the first jump discontinuity is in the pth
derivative of the odd part of f, then in general b, decays like 1/n"™* as n — oo.

e For example, p=1in (A), p=2in (B) and p =0 in (C) in the previous example.
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This is an extremely useful result

m in practice, e.g. for approximately 1% accuracy we need 100 terms for p = 0, but only 10 terms for
p=1

m for checking calculations, e.g. an erroneous contribution to a Fourier coefficient can be rapidly
identified if it does not decay fast enough.

We can understand the rate of decay as follows.

Suppose f is such that

(i) the first jump discontinuity is in the pth-derivative f(P)(x) with jumps at the exceptional points

x1 < xp < -+ < Xm, where x; > xg = —7 and xm < X1 = 7.
(i) F(PT1(x) is integrable on each of the intervals (xi, xx41) for k =0, 1,..., m, which is often the case
in practice.

Then, repeated integration by parts gives . ...
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for p > 1, though final result holds for p = 0 by skipping over the second and third equalities.
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e While the Riemann-Lebesgue Lemma implies that each of the integrals in the sum tend to zero as
n — oo, the pth-derivative f(")(x) has jump discontinuities at the exceptional points, so in general
each of the boundary contributions in the sum is bounded and does not decay as n — co. Hence,
we recover the claimed rate of decay.

o If the Fourier coefficients decay like 1/n"™ as n — co with p > 1, then the Weierstrass M-test of
Analysis Il may be used to show that the Fourier series for f converges uniformly to f on any
interval (a, b) C R.

e If the Fourier coefficients decay like 1/n as n — oo (so that p = 0), then the partial sums of the
Fourier series for f do not converge uniformly on any interval containing a jump discontinuity.
Remarkably, the form of the non-uniformity is universal for such functions, being characterized by
Gibb's phenomenon, as we shall now describe.
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2.7 Gibb’s phenomenon



e Gibb’s phenomenon is the persistent overshoot near a jump discontinuity that we first encountered
in Example 2. It happens whenever there is a jump discontinuity.

e In the plots below of the partial sums from Example 2, we have zoomed into near the jump
discontinuity at the origin to illustrate the so-called “ringing” nature of the overshoot as the
number of terms in the partial sum is increased.
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e More generally, as the number of terms in the partial sum tends to infinity:

m the width of the overshoot region tends to zero by the Fourier Convergence Theorem;

it may be shown that the total height of the overshoot region approaches ~|f(xy) — f(x_)|, where

™

1 .
y=— / Sdex% 1.18,
X

-

i.e. approximately a 9% overshoot top and bottom.

e The plots above illustrate the approach to this value, which is evidently awful for approximation

purposes.
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e Some geometric insight into the underlying cause of Gibb’'s phenomenon may be gleamed from
the following manipulation of the partial sums of the Fourier series for f, which for positive
integers N are defined by

N
50 Z ancos(nx) + bysin(nx)) for x € R,

where in terms of a dummy variable t, the Fourier coefficients are
1/ 10,
== [ f(t)cos(nt)dt, b,== [ f(t)sin(nt)dt.
™ ™

e Substituting these expressions into the partial sum and interchanging the orders of summation and
integration gives

Sn(x)

[ f(t) (1 + 71r Z cos(nt) cos(nx) + sin(nt) sm(nx)))

n=1

/f(t)<+ Zcos tx))) dt.
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Hence,

Sn(x) = / f(t)Dn(t — x) dt, (A)
where the function Dy : R — R is defined by
1 1«
Dn(t) = o + . ;cos(nt) for t € R. (B)

The integral in (A) is a convolution integral giving the mean of the function f(t) over a period
weighted by the Dirichlet kernel Dy(t — x). Since Dy does not depend on f it encodes the
operation of taking a partial sum of a Fourier series.

It follows from (B) that Dy is an even 2m-periodic function that is infinitely differentiable on R
and has integral over a period equal to unity, i.e.

/W Dn(t)dt =1. Q)

-

69/308



e Using a trigonometric identity we compute

2msin(t/2)Dn(t) = sin(t/2)+Z2cos(nt)sin(t/2)

n=1

N

= sin(t/2)+ > (sin ((n+1/2)t) —sin ((n — 1/2)t))

n=1

= sin ((N+1/2)t),

the last equality following from the fact that the preceding sum is telescoping.

e Hence,
sin((N+1/2)t) gt R\Z.
Du(t) = 2msin(t/2) 27
2,\;—: ! for % € Z.

e We plot below the graph of Dy for N = 4, 8, 16 and 32, illustrating that as N — co the main
contribution of the integrand in (C) comes from the central lobe that lies above the interval
[, 7]/(N +1/2).
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e When x nears a jump discontinuity of f, it is the interaction of this jump and the rapidly
oscillating Dirichlet kernel Dy(t — x) around its dominant central lobe in the convoluton integral

Sw(x) = / F(£)Du(t — x) dt
that results in Gibb's phenomenon or the so-called “ringing of the partial sums,” with the
structure of the central lobe causing the 9% overshoot as N — oo.

e There are ways of mitigating against Gibb's phenomenon, e.g. it is eliminated in the Fejér series
whose Mth-partial sum Fu(x) is equal to the arithmetic mean of the first M partial sums of a
Fourier series, viz.

M
Fu(x) = % S Su(x) for x € R.
N=1

However, they are beyond the scope of this course.
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2.8 Functions of any period
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Suppose now f : R — R is a periodic function of period 2L, where L > 0.
We want to develop the analogous results for the Fourier series for f(x).

Since this will involve a series in the trigonometric functions cos(nmx/L) and sin(nmx/L), where n
is a positive integer, we make the transformation

LX
X =—

™

» flx)=g(X)
which defines a new function g : R — R.

It follows that, for X € R,

g(X+2m)=f (%(xuw)) =f (% +2L) =f (LX> = g(X),

E3
where we used the fact that g(X) = f(LX/x) in the first equality and the fact that f is
2L-periodic in the third equality.

Hence, g is periodic with period 27, and we can therefore use the transformation to derive the
Fourier theory for f from that for g.
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e |n particular, suppose we can write

g(X) ~ % + Z (an cos(nX) + basin(nX))

n=1

so that the Fourier coefficients a, and b, exist.

e Then
1 [7 1/t X nmTx\ 1/t nmx
an—;/_wg(X)cos(nX)dX—;/_Lg(T) cos (T) ZdX_Z/_Lf(X)COS (T) dx,

where we used X = 7x/L in the first equality and g(7wx/L) = f(x) in the second.

e Similarly,

b, = %/W g(X)sin(nX)dX = %/_LLg (LLX) sin (?) %dx = %/_L f(x)sin (nLLX) dx.

-
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e So if we can write
oo

X)Nf+2(a,,cos( )+bnsm(mzx)>7

_ %/_LL f(x) cos (HLLX) dx, b, = %/_LL f(x)sin (HLLX) dx.

e We wrap these formal calculations into the definition of the Fourier series for f.

then

e Definition: Let f : R — R be 2L-periodic and integrable on [—L, L]. Then, regardless of whether
or not it converges, the Fourier series for f is defined to be the infinite series given by

ao > nmx nmwx
3 2 (aneos (7)) + osin (77))
for x € R, where the Fourier coefficients of f are given by
an = / f(x) cos ) dx (neN),

by = %L Fegsin (M) ax (e N\ {o}).
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e Remark: The formulae for the Fourier coefficients may also be derived from the Fourier series for
f by assuming that the orders of summation and integration may be interchanged and using the

orthogonality relations

/L cos (?) cos (nLLX) dx = Lémn,
e

[ eos () sin (7Y ax =0

ZL

/L sin (?) sin (mzx) dx = Lémn,
ZL

where n,m € N'\ {0} and dms is Kronecker's delta.
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Fourier Convergence Theorem

e Let f : R — R be 2L-periodic, with f and f’ piecewise continuous on (—L, L). Then the Fourier
series of f at x converges to the value 1 (f(x;) + f(x_)), i.e.

;(f(x+)+fx_ = +Z (a,,cos( )—|—b Sm(mzx)) for x €R,

where the Fourier coefficients a, and b, exist and are given by

L
an = %LLf(x)cos(nif) dx forneN,

b, = %/_LLf(x)sin(nLLX) dx for n € N\ {0}.

Covered material for Problem Sheet 3 Question 1
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Example 3
® Consider the 2L-periodic function f defined by

x for0<x<L,
(x) =
0 for—L<x<O.

Find the Fourier series for f and the function to which the Fourier series converges.

B The plot of the graph of f shows that it is piecewise linear with corners as x = 2kL for k € Z and
jump discontinuities at x = (2k + 1)L for k € Z.

WAV,

B By the definition of f, the Fourier coefficients are given by

an = i/Lxcos (nLLX) dx, b,=
0

~l=

0/Lxsin (nLLX) dx.
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m A direct integration gives ag = L/2, but for n > 1 it is a bit quicker to evaluate

L
an—i-ibn:%/ X exp(/nzrx) dx
0~ ——
L
L
1 inmx 1 inx
I (L) 72/1i7 (L)d
0~~~
u v 0 u’ v
L
__|1(L 2ex inmx + — exp (inm)
a L\ inm P L in P
L . iL(—1)"*!
272 (( 1) _1)+ nm
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® Hence,

Fx) ~ % N i (7(2m ELl)zﬂz cos ((Zmzl)wx) n L(fnl)r'"+1 n (mzrx)) .

B Since f and f’ are piecewise continuous on (—L, L), the Fourier Convergence Theorem implies
that the Fourier series for f converges to

m f(x) at points of continuity of f, i.e. for x # (2k + 1)L, k € Z;

m to the average of the left- and right-hand limits of f at the jump discontinuities, i.e. to
(F(Ly) + f(L=))/2=(0+L)/2 = L/2 at x = L and hence at x = (2k + 1)L, k € Z by periodicity. B
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Notes:

(1) The slowest decaying Fourier coefficients b, decay as expected like 1/n as n — co because f has
jump discontinuities so that p = 0.
(2) The partial sums of the Fourier series for f may be defined for positive integers N by

Sn(x) = % - i (— o EL1)27T2 cos ((2’" _Ll)”) + L(_n::?)rmﬂ sin (’”ZX)> for x € R.

m=1

We plot below the partial sums for N = 8, 16, 32 and 64, which illustrates that the slow
convergence away from the jump discontinuities of f is hindered by Gibb's phenomenon.

Covered material for Problem Sheet 3 Question 2
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2.9 Half-range series



e In many practical applications we wish to express a given function f : [0, L] — R in terms of either

a Fourier cosine series or a Fourier sine series.

e This may be accomplished by extending f to be even (for only cosine terms) or odd (for only sine
terms) on (—L,0) U (0, L) and then extending to a periodic function of period 2L.

e We wrap these extensions and the corresponding Fourier series into the following definitions.
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e Definition: The even 2L-periodic extension f. : R — R of f : [0, L] — R is defined by

f(x) for0 < x <L,
fe(x) =
f(—x) for —L <x <0,

with fo(x 4 2L) = fe(x) for x € R. The Fourier cosine series for f : [0, L] — R is the Fourier series

for fe, i.e.
ao nmx
f:e ~ = n (7)7
(x) 3 +§a cos (—

where

L
1t 2
a"_Z/ fe(x)cos< Z/f x)cos )dx for n € N.
0

See sketch
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e Definition: The odd 2L-periodic extension fo : R — R of f : [0, L] — R is defined by

f(x) for0 < x <L,
fo(x) =
—f(—x) for —L<x<0,

with fo(x + 2L) = fo(x) for x € R. The Fourier sine series for f : [0, L] — R is the Fourier series

for fo, i.e.
. nmx
fo(x) ~ ; by sin (T),
where
L
/ f>(x) sm %/f x)sm )dx for n € N\{0}.
0

See sketch
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v Odd eakmsion § odd -‘-o.—% ¢ R\?
o Odd extension U odd on R 4t 4(0) = §(1)=0



Notes:

(1) fo(x) is odd for x/L € R\Z and odd (on R) if and only if f(0) = f(L) = 0.
(2) If f is continuous on [0, L] and f’ piecewise continuous on (0, L), then the Fourier Convergence
Theorem implies that

% + i an cos (HLLX) = fo(x) for x € R,
n=1

fo(x) for x/L € R\Z,

2 b, sin (nLLX) =

0 for x/L € R\Z.

See sketch
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Example 4

B Consider the function f : [0, L] — R defined by f(x) = x for 0 < x < L. Find the Fourier cosine
and sine series for f and the functions to which each of them converge on [0, L]. Which truncated
series gives the best approximation to f on [0, L]?

B The even 2L-periodic extension f. is defined by

ie. fo(x) = |x| for —L < x < L, with fo(x 4+ 2L) = fo(x) for x € R.

B The plot of the graph of f. shows that it has a “sawtooth” profile that is piecewise linear and

continuous, with corners at integer multiples of L.

L

Je

fo(x) = {

for0 < x <L,
for —L < x <0,

0
—-3L

—2L

2L

3L
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Since f. is even, we have b, = 0 and

L

I77TX
X COS

0

l‘\l\)

Evaluating this integral as in Example 3 gives the Fourier cosine series

L & 4L (2m + 1Dnx
fe(x) ~ 5 mZ:O om+ 1) cos ( i > .

Since f. is continuous on R and f; is piecewise continuous on (—L, L), the Fourier Convergence

Theorem implies that the Fourier series for f. converges to f. on R.
Hence the Fourier cosine series for f converges to f on [0, L].

The partial sums of the Fourier series for f. may be defined for N € N by

N
2m+ 1)7x
mZ:()(zm+1)27T2 s( [ for x € R.

We plot below the partial sums for N = 2, 4, 8 and 16, which illustrates their rapid convergence
to fe.

88/308



Sa(z)/L

Sg(w)/L

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

S16 (.T)/L

0.8

0.6

0.4

0.2

-2

89/308



B Similarly, the odd 2L-periodic extension f, is defined by
X for0 < x <L,
fo(x) =
—(=x) for —L<x<0,
ie. fo(x) = x for —L < x < L, with fo(x +2L) = f(x) for x € R.

B The plot of the graph of f, shows that it is piecewise linear with jump discontinuities at
x = (2k + 1)L for k € Z.

fo O

—-3L —2L —L 0 L 2L 3L

® Since f, is odd, we have a, = 0 and

b, =

~Iin

/Lxsin (il_x) dx.
0
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Evaluating this integral as in Example 3 gives the Fourier sine series

n=1

Since f, and f; are piecewise continuous on (—L, L), the Fourier Convergence Theorem implies
that the Fourier series for f, converges to

m fo(x) at points of continuity of fo, i.e. for x # (2k + 1)L, k € Z;

m the average of the left- and right-hand limits of f, at its jump discontinuities, i.e. to

(F(Ly) + f(L_))/2=(—L+L)/2 =0 for x = L and hence for x = (2k + 1)L, k € Z by periodicity.

Hence, the Fourier sine series for f converges to f(x) for 0 < x < L, but to 0 for x = L.

The partial sums of the Fourier series for f, may be defined for positive integers N by

N
_ 2L(—1)"+:l ./ NnTX
SN(X) = nE::l T Sin (T) for X € R.

We plot below the partial sums for N = 8, 16, 32 and 64, which illustrates that the slow
convergence away from the jump discontinuities of f is hindered by Gibb's phenomenon.
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B The truncated cosine series gives a better approximation to f on [0, L] than the truncated sine
series because

(1) it converges everywhere on [0, L];
(2) it converges more rapidly;

(3) it does not exhibit Gibb’s phenomenon. |
Remark

e Let f3 denote twice the function in Example 3, so that

L & 4L (2,,,, 1)7x = 2L(—1)™  rmmx
f3(X)N§_Z(2m_1)2ﬂ.2COS< )—!—Z sm( T )

m=1 m=1

e Question: Why is the Fourier series for f3 equal to the sum of the Fourier series for f. and £,?
e Answer: Because f. is the even part of f3 and £, the odd part of f.

e This explains the rate of decay of the Fourier coefficients in Example 3, with p =1 for f. and
p = 0 for fy in the notation of §2.6.

Covered material for Problem Sheet 3 Questions 3 and 4
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