3 The heat equation



3.1 Preliminaries
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e Fundamental Theorem of Calculus: If f(x) is continuous in a neighbourhood of a, then

a+h
%/f(x)dx—>f(a) as h—0.

a

e Leibniz’s Integral Rule: Let F(x,t) and F /3t be continuous in both x and t in some region R
of the (x,t) plane containing the region S = {(x, t) : a(t) < x < b(t), to < t < t1}, where the
functions a(t) and b(t) and their derivatives are continuous for t € [to, t1].

Then

% a(b:) Flot) de= /a(b:) %_(X’ t) dx + b(t)F(b(t), 1) — a(t)F(a(2), 1).

As a result, if a(t) and b(t) are
constants, then

d [ * OF
a/a F(x,t) dx = j 8t(x,t)dx.
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3.2 Derivation of the one-dimensional heat equation



e Consider a rigid isotropic conducting rod (e.g. metal) of constant cross-sectional area A lying

along the x-axis.

e We shall consider conservation of thermal or heat energy in the arbitrary section of the rod in
a < x < a+ h, where a and h are constants, as illustrated below.

e In simplest 1D model we assume that the lateral surfaces of the rod are insulated, so that no
thermal energy can be transported through them and the absolute temperature T may be taken

to be a function of distance x along an axis of the rod and time t.

e This assumption is applicable if the rod is long and thin, like a wire.
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We denote by p the density of the rod and by ¢, the specific heat of the rod, and we assume that
these material parameters are constant.

The specific heat ¢, of a material is the energy required to heat up a kilogram by one degree
kelvin (in SI units, about which more in §3.4), so the thermal energy in the section of the rod in
a<x < a+ his given by

a+h
A/ pce T(x, t) dx.
We now introduce the heat flux g(x, t) in the positive x-direction, which is the rate at which

thermal energy is transported through a cross-section of the rod at station x at time t in the
positive x-direction per unit cross-sectional area per unit time.

By definition, the rate at which thermal energy enters the section through its left-hand
cross-section in the plane x = a is Aq(a, t).

Similarly, the rate at which thermal energy leaves the section through the right-hand cross-section
in the plane x = a+ his Ag(a + h, t).

Hence, with our sign convention on the heat flux, the net rate at which thermal energy enters the
section is

Aq(aa t) - Aq(a + h7 t)'
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e Assuming insulated lateral surfaces and no external heating (e.g. due to microwave heating),
conservation of energy states that the rate of change of the thermal energy in the section is equal
to the net rate at which thermal energy enters the section, so that

a+h

% A / pe, T(x, £)dx | = Aq(a, t) — Aq(a + h, t),

a

(1) (2) (3)
where we have labeled the three terms in order to summarize their physical significance as follows:

(1) is the time rate of change of thermal energy in the section in a < x < a+ h;
(2) is the rate at which thermal energy enters the section through x = a;

(3) is the rate at which thermal energy leaves the section through x = a + h.

e \We note this integral conservation law is also true for h < 0 with appropriate reinterpretation of
the terms.
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e Assuming T; is continuous, Leibniz's Integral Rule with a and a + h constant gives

a+h

L / Tulx, ) dx + 9@ tz_ @t _

a

where we have also rearranged into a form that will enable us to take the limit h — 0.

e To take the limit h — 0,

m apply the Fundamental Theorem of Calculus assuming T; is continuous in a neighbourhood of a;

m use the definition of gx assuming it to exist at a.
e \We obtain thereby the partial differential equation
pPCv T: + qx = O,

which relates the time rate of change of the temperature and the spatial rate of change of the
heat flux.
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e To make further progress we must decide how the heat flux g depends on the temperature T.

e This is called a constitutive relation and cannot be deduced, relying instead on some assumptions
about the physical properties of the material under consideration.

e An example of a simple constitutive relation is Hooke's law for the extension of a spring — we
note that

m a “thought-experiment” suggests this law is reasonable;
m it could be confirmed experimentally;

m it will almost certainly fail under “extreme” conditions.

e To close our model for heat conduction we will adopt Fourier’s Law, which is the constitutive law
given by
qg=—kTx,
where k is the thermal conductivity of the rod, which is another material parameter that we take
to be constant.
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The minus sign in Fourier's law means that thermal energy flows down the temperature gradient,
i.e. from high to low temperatures.

Physical experiments confirm that Fourier's law is an excellent approximation in many practical
applications.

We note that a good conductor of heat (such as silver) will have a higher thermal conductivity
than a poor conductor of heat (such as glass).

Substituting Fourier's law g = —kT, into the PDE pc, T; + gx = 0 representing conservation of
thermal energy, we arrive at the heat equation

or _ oT
ot~ T ox?’
where the thermal diffusivity
k
=

The heat equation is a second-order linear partial differential equation.
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3.3 Initial boundary value problems



There are numerous applications of the heat equation ranging from the diffusive transport of
chemical species to the pricing of financial derivatives, the latter being governed by a backward
heat equation called the Black-Scholes equation.

In this course we focus on the modelling of the evolution of the temperature T(x,t) in a metal
rod of finite length L lying along the x-axis in the region 0 < x < L.

Suppose the metal is at room temperature Ty =~ 300 K when some large ice blocks at their melting
temperature T* ~ 273 K are held instantaneously against each end of the rod at time t = 0.

We encode this setup into a mathematical model, as follows:

m the temperature T(x, t) satisfies the heat equation inside the rod, so that
oT PT
g
ot Ox?
m the effect of the ice blocks on the rod are modelled through the boundary conditions

TO,t)=T* T(Lt)=T*" fort>0;

for 0<x<L, t>0;

m the initial state of the temperature in the rod is fed into the initial condition

T(x,0) =Ty for0<x< L.
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Notes

(1) The heat equation, boundary conditions and initial condition forms an initial boundary value
problem (IBVP) for the temperature T(x, t).

(2) The boundary conditions are called Dirichlet boundary conditions because they prescribe the value
of the dependent variable T. They are homogeneous if T* = 0 and inhomogeneous otherwise.

(3) While the boundary and initial conditions were motivated on physical grounds, they can only make
mathematical sense if the IBVP is well-posed in the sense that it has a unique solution that varies
continuously with the boundary and initial data (i.e. with T* and Tp) in some suitable sense. We
we shall return to the issue of well-posedness in §7.

(4) The total number of boundary conditions is equal to the number of spatial partial derivatives in
the heat equation, which is the same count as for a typical ODE BVP. The total number of initial
conditions is equal to the number of temporal derivatives in the heat equation, which is the same
count as for a typical ODE IVP. These counts are typical for PDE IBVPs.

102/308



Definition: The outward normal derivative of T on the boundary is equal to the directional
derivative in the direction of the outward pointing unit normal, i.e. —i - VT = —T, on x =0 and
1-VT=T,onx=1L.

Other common boundary conditions are:

m inhomogeneous Neumann boundary conditions which prescribe the outward normal derivative of the
dependent variable on the boundary (here proportional to the heat flux g = —kT, by Fourier’s law),
e.g.

9T 0y =o(e), 2Ll ey = w(e) fore>o,
ox Ox

where the functions ¢(t) and 1 (t) are given.
m inhomogeneous Robin boundary conditions which prescribe a linear combination of the outward
normal derivative and temperature at the boundary, e.g.
2L +a()TO.) = (), G (L) +BOTI.T) = () fort >0,
where the functions a(t), ¢(t), B(t) and ¥(t) are given.
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3.4 Units and nondimensionalisation



e Notation: We denote the dimension of the quantity p by [p] in either fundamental units
(M, L, T,®© etc) or Sl units (kg, m, s, K etc).

e We will work with the latter and recall that kelvin K is the SI unit of temperature, the newton N
is the Sl derived unit of force (1N = 1kgms™2), while the joule J is the Sl derived unit of energy
(1J=1Nm).

e Both sides of an equation modelling a physical process must have the same dimensions, e.g. in the
integral conservation law,

at+h
A / pa, T(x,t)dx | | =[Aqg(a,t)] = [Ag(a+ h, t)] = Js ',

a

d
dt

while in the heat equation,
[Te] = [kT] = Ks™.

e We can exploit this fact to determine the dimensions of parameters and to check that solutions
are dimensionally correct.
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e For example, using Fourier's Law we find that

(K] = [q] _Jm’zs’1

T [T\] T Km

and using the heat equation we find that

o] = 2 =

the one-dimensional heat equation.

N [Txx] B Km72 -

e We summarize below the dimensions of the variables and parameters involved in the derivation of

-1 -1 _-1
=JK "m s,

Symbol | Quantity Sl units
X Axial distance m
t Time s
T Absolute temperature K
q Heat flux in positive x-direction | Jm™2s™!
A Cross-sectional area m?
p Rod density kgm™3
cv Rod specific heat Jkg tK™!
k Rod thermal conductivity JKImls7!
K Rod thermal diffusivity m2s~!
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e Nondimensionalisation: The method of scaling variables with typical values to derive
dimensionless equations. These usually contain dimensionless parameters that characterise the
relative importance of the physical mechanisms in the model.

e We illustrate the method with an example.

106/308
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Example: nondimensionalisation of an IBVP

® Consider the IBVP for the temperature T(x, t) in a metal rod of length L given by the heat
equation

oT T

bt "ok

with the inhomogeneous Dirichlet boundary conditions

for 0<x<L, t>0,

T(,t)=Ty, T(L,t)=T:1 for t>0,
and the initial condition
T(x,0) = Tg% (1 - %) for 0<x< L,
where Tg, T1 snd T are prescribed constant temperatures.
B Remark: There are five dimensional parameters, namely «, L, Ty, T1 and T».
® We can nondimensionalise by scaling

X = L;(\7 t= T/t\, T(X, t) - T2 ?(5(\7?)7

where L, 7 and T are a typical lengthscale, timescale and temperature, respectively, so that the
quantities X, ¥ and T are dimensionless.
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B By the chain rule,

OT _ L 0Tdt _ToT 0T _  oTdx _ To0T
ot — *otrdt 7 ot Ox ‘0xdx L 0%’
® Hence, the dimensional problem for the dimensional temperature T(x, t) implies that the
corresponding dimensionless problem for the dimensionless temperature T(?f) is given by

oT T
=D
ot ox?

with the boundary conditions

for 0<X<1, t>0,

~

T(0,f)=ao, T(l,t)=a1 for £>0,

and the initial condition
T(x,0=x(1-x) for 0<x<1,

where the three dimensionless parameters D, ap and a1 are defined by

KT E T
=%

D=5 -
L27 ao T27

(€51
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B We can further reduce the number of dimensionless parameters to two by choosing the timescale
7 so that D =1, i.e. by choosing
T=1%/k,

which is the timescale for conductive transport of heat over a distance L because it balances both
terms in the heat equation.

m With this choice of timescale, we note that if T(X,: o, 1) is a solution of the IBVP for T, then
a solution of the IBVP for T is given by

T _g(x . To
.  \I'RTT)
i.e. T/T> must be a function of x/L and xt/L?.

B This means that we can compare heat problems on different scales. For example, two IBVPs that
are identical except for L and x will exhibit the same behaviour on the same timescale if and only
if L?/k is the same in each problem. |
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3.5 Heat conduction in a finite rod



e Consider the initial boundary value problem for the temperature T(x,t) in a metal rod of length L

given by the heat equation
or _ oT
ot ox?

with the homogeneous Dirichlet boundary conditions

for 0<x<UL, t>0,

T(0,t)=0, T(Lt)=0 for t>0,

and the initial condition
T(x,0)=f(x) for 0<x<L,

where the initial temperature profile f(x) is given.

e We will construct a solution using Fourier's method, which consists of three steps.
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e Fourier’'s method:

(I) Use the method of separation of variables to find the countably infinite set of nontrivial separable
solutions satisfying the heat equation and boundary conditions, each containing an arbitrary constant.

(1) Use the principle of superposition — that the sum of any number of solutions of a linear
homogeneous problem is also a solution (assuming convergence) — to form the general series solution
that is the infinite sum of the separable solutions.

(1) Use the theory of Fourier series to determine the constants in the general series solution for which it
satisfies the initial condition.
¢ Notes:

(1) Both the partial differential equation and and the boundary conditions are linear and homogeneous,
so if T1 and T, satisfy them, then so does a3 T1 + a2 T for all a1, ap € R.

(2) To verify that the resulting infinite series is actually a solution of the heat equation, we need it to
converge sufficiently rapidly that T; and T, can be computed by termwise differentiation.
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Step (1) Find all nontrivial separable solutions of the PDE and BCs

e We begin by seeking a nontrivial separable solution of the form T = F(x)G(t) for which the heat
equation T = kT« gives
F(x)G'(t) = sF"(x)G(t),

with a prime ’ denoting here and hereafter the derivative with respect to the argument.
e Separating the variables by assuming F(x)G(t) # 0 therefore gives
F'(x) _ G'(t)

F(x)  kG(t)

e The LHS of this expression is independent of t, while the RHS is independent of x. Since the LHS
is equal to the RHS, they must both be independent of x and t, and therefore equal to a
constant, —\ € R say.

e Hence,
F'+AF=0 for0<x<L and G' = —-XkG fort>0.
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The boundary condition at x = 0 implies that F(0)G(t) = 0 for t > 0. Since we're seeking
solutions T that are nontrivial (i.e. not identically equal to zero), there must exist a time t > 0
such that G(t) # 0, and hence we must impose on F(x) the boundary condition F(0) = 0.
Similarly, the boundary condition at x = L implies that F(L) = 0.

In summary, we have deduced that F(x) satisfies the BVP given by the ODE
—F"(x) = AF(x) for 0<x<L,

with the boundary conditions

where \ € R.
Now we need to find all A € R such that the BVP for F(x) has a nontrivial solution.

Since the general solution of the ODE is different for (i) A < 0, (ii) A = 0 and (iii) A > 0, there
are three cases to consider.
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e Case (i): A = —w? (w > 0 wlog)

m If F" —w?F =0, then F(x) = Acosh(wx) + Bsinh(wx), where A, B € R.

m The boundary conditions then require A =0, Bsinh(wL) =0, so that F = 0.
e Case (ii): A=0

m If F/ =0, then F(x) = A+ Bx, where A,B € R.

m The boundary conditions then require A =0, BL =0, so that F = 0.

e Case (iii): A = w? (w > 0 wlog)

m If F” + w?F = 0, then F(x) = Acos(wx) + Bsin(wx), where A, B € R.
m The boundary conditions then require A =0, Bsin(wL) = 0.

m Since B # 0 for nontrivial F, we must have sinwl =0, i.e. wL = nx for some n € N\ {0}.
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e Hence, the nontrivial solutions of the BVP for F(x) are given for positive integers n by

nr?

L2’

F(x) = Bsin (”iLX) A=

where B is an arbitrary constant.
e Since G(t) satisfies the ordinary differential equation G’ = —AxG, we deduce that
G(t) = Cexp(—Akt),
where C € R.

e Since T(x,t) = F(x)G(t), we conclude that the nontrivial separable solutions of the heat
equation that satisfy the boundary conditions are given by

2 2
Ta(x,t) = by sin (nLLX) exp (— n 7;;“),

where n is a positive integer, b, is a constant (equal to BC above) and we have introduced the

subscript n on T, and b, to enumerate the countably infinite set of such solutions.

115/308



Step (I1) Apply the principle of superposition

e Since the heat equation and boundary conditions are linear and homogeneous, a formal
application of the principle of superposition implies that the general series solution is given by

T(x,t) = i To(x,t) = i b, sin (HLLX> exp (7 n27zz/<¢t).
n=1 n=1
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Step (111) Use the theory of Fourier series to satisfy the IC

e The initial condition can only be satisfied by the general series solution if
> nmwx
F(x) = T(x,0) = Y bysin (1) for 0 L,
(x) (x,0) 2 sin 1 or <x<

so that we need to find the Fourier sine series for f on [0, L].

e The theory of Fourier series implies that the Fourier coefficients b, are given by

l\\l\)

/Lf sm )dx for ne N\ {0}.
0

e Hence, we have derived a solution in the form of an infinite trigonometric series.
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Notes:

e The ODE BVP for F(x) and X is an eigenvalue problem in which the unknown parameter X is
called an eigenvalue and the corresponding non-trivial solution F(x) an eigenfunction.

e The Fourier series expansions for f and T are therefore called eigenfunction expansions.

e That there are a discrete countably infinite set of eigenvalues and corresponding eigenfunctions is
a property of the BVP that is explained by Sturm-Liouville theory of e.g. part A DEs 2.

e The integral expressions for the Fourier coefficients may be derived by assuming that the orders of
summation and integration may be interchanged and using the orthogonality relations

/L sin (?) sin (HLLX) dx = édm,, for m, n € N\ {0}.
0
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Since T,(x,t) decays exponentially as n — oo for t > 0, comparison methods from Analysis ||
may be used to show that if the Fourier coefficients b, are merely bounded for all n, then the
general series solution has partial derivatives of all orders for t > 0 that may be computed by
term-by-term differentiation.

It follows from the Fourier convergence theorem that if f and f’ are piecewise continuous on
(0, L), then the infinite series solution is indeed a solution of the IBVP. Thus, Fourier's method
can accommodate even jump discontinuities in the initial temperature profile, the heat equation
acting to instantaneously “smooth” them out.

If the initial temperature profile has a jump discontinuity, then the truncated series solution for
T(x, t) will exhibit Gibb's phenomenon at t = 0, and hence at sufficiently small times t < L?/x
by continuity.

In principle this deficiency can be avoided at some fixed t > 0 by keeping enough terms. In
contrast, the exponential decay of T,(x,t) with n*xt/L® means that the solution will be well
approximated by the leading-term Ti(x, t) at sufficiently large large times t > L?/.

119/308



Example: the smoothing effect of the heat equation
® Consider the IBVP in which the initial temperature profile given by

T* for [ < x < Lz,
f(x) =

0 otherwise,

where T, L; and L, are constants, so that the Fourier coefficients are given by

L

2
2 . . [/ NTX _ 2T* nmly nmlo
b, = L/T sm( 1 )dx— o (cos( 1 ) cos( 1 )) for n € N\{0}.

Ly

B We plot below snapshots of the partial sums of the truncated series solution (red lines) with 32,
64, 128 and 256 terms at times t given by st/L*> = 107°, 107*, 1073, 102 and 107" for
L,/L=0.2, L,/L=0.4.

B The jump conditions in the initial temperature profile at L; /L = 0.2 and L>/L = 0.4 are indicated
by vertical black lines.
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As the number of terms increases we see that Gibb’s phenomenon is suppressed more rapidly.

Any profile that is oscillatory or not positive for 0 < x < L, t > 0 is a poor approximation of the
solution, so we see that only the plot with 256 terms is acceptable for the times chosen.

The final snap shot in each case is close to Ti(x, t) (dashed line) for which 72xt/L? = 72 /10.

The early time behaviour is captured much more effectively by the asymptotic solution

T* L ( (s — x)2)
T(x,t) "~ — exp | —— | ds,
() Varkt /Ll P 4kt

which is valid as t — 0+.

The asymptotic solution does not exhibit Gibb's phenomenon and tends to the initial profile as
t — O+ except at the jump discontinuities where it tends to T*/2.

The asymptotic solution is the superposition of fundamental solutions of the heat equation and
may be derived systematically using the method of matched asymptotic expansions — see part A
Differential Equations 2 and Integral Transforms. |

122/308



