3.6 Uniqueness Theorem



e In the last section we considered the IBVP for the temperature T(x, t) given by the heat equation

oT _ o°T
E:K/ﬁ for 0<X<L7t>0, @

with the homogeneous Dirichlet boundary conditions

T(0,t)=0, T(Lt)=0 for t>0, <2:>

T(x,0)=1f(x) for 0<x<L, @

where the initial temperature profile f(x) is given.

and the initial condition

e We used Fourier's method to construct an infinite series solution, but is it the only solution?

e Uniqueness Theorem: The IBVP has at most one solution.
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Proof:

® Qur strategy is to show that the difference between any two solutions much vanish.
m Thus, we suppose that T(x, t) and T(x, t) are solutions and let W(x, t) = T(x,t) — T(x, t)

®m By linearity, the IBVP for T(x,t) and T(x, t) imply that W(x, t) satisfies the heat equation
%—g—i—mﬂ—nﬁ—fcyw for 0<x<L, t>0

ot ot ot  0x? ox2 7 Ox? ’ ’

with the boundary conditions

W(0,t) = T(0,t) — T(0,t) =0,

W(L,t)=T(Lt)— T(L,t)=0 for t>0,
and the initial condition

W(x,0) = T(x,0) — T(x,0) = f(x) — f(x) =0 for 0<x< L.
B The trick is to analyse the integral /(t) defined by

L
() = %/W(x, £)? dx.

B Evidently /(t) > 0 for t > 0 and /(0) = 0 by the initial condition
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® But, for t > 0,

L
d/ ow .
Fri / WW dx (by Liebniz Integral Rule)
0
[ Rw
:/Wn o2 dx (by the heat equation)
0
L
= {m ] / lj\(/c’)W (by integration by parts)
0
[ (oW
= 7/{/ (a—) dx (by the boundary conditions)
X
0
<0

which means that /(t) cannot increase, so that /(t) < /(0) =0 for t > 0.

® Since /(t) > 0 and /(t) <0 for t > 0, we deduce that /(t) = 0 for t > 0, and hence that
W(x,t) =0 for 0 < x < L, t > 0 (assuming continuity of W there). [ ]
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Notes

(1) Since W is the temperature in a metal rod whose initial temperature is everywhere zero and
whose ends are held at zero temperature thereafter, on physical grounds we expect the rod to
remain at zero temperature, i.e. W =0 for 0 < x < L and t > 0, which is precisely what we
showed to prove uniqueness.

(2) The proof works for any boundary conditions for which it is possible to show that

x=L
%]

<0.
Ox 0

x=0

Examples include inhomogeneous Dirichlet and Neumann boundary conditions.
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3.7 Inhomogeneous Dirichlet boundary conditions
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e Consider the initial boundary value problem for the temperature T(x, t) given by the heat equation
or _ T
ot~ ox?

with the inhomogeneous Dirichlet boundary conditions

for 0<x< L, t>0,

T(0,t)=To, T(L,t)=T: for t>0,

and the initial condition
T(x,0) =f(x) for 0<x<L,

where To and T; are prescribed constant temperatures, not both zero, and the initial temperature
profile f(x) is given.

e Lets try to apply Fourier's method.
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In step (1) we need to find the nontrivial separable solutions T(x, t) = F(x)G(t) of the heat
equation and boundary conditions.

But the latter would require
F(0)G(t)=To, F(L)G(t)=T1 for t>0,
forcing G to be constant.

It follows that the only nontrivial separable solution satisfying the boundary conditions is the
time-independent or steady-state solution (about which more shortly).

Since this cannot satisfy the initial condition, Fourier's method fails because the boundary
conditions are not homogeneous.

However, we can transform the problem into one amenable to Fourier's method, as follows.
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e On physical grounds, we conjecture that T(x,t) — S(x) as t — oo, where S(x) is the
aforementioned steady-state solution of the heat equation and boundary conditions, which satisfies

d’s
0::‘43@ for O<X<L7

with 5(0) = Tp and S(L) = Ti.

e Thus, 5(x) has the linear temperature profile given by

X X
St ="To(1-7) + T (7)-
e Remark: In steady state thermal energy is conducted along the rod with constant heat flux

_ 6T7k(To—T1)
9= k(?x_ L ’

so that heat flows steadily in the positive x-direction for To > T;.
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e We now observe that if we let
T(x,t) = S(x) + U(x, t),

then by linearity the IBVP for T(x, t) implies that U(x, t) satisfies the IBVP given by the heat
equation
ou U
ot~ "o
with the homogeneous Dirichlet boundary conditions

for 0<x<L, t>0,

U(,t)=0, U(Lt)=0 for t>0,

and the initial condition
U(x,0) = f(x) = S(x) for 0<x<L.
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e The IBVP for U(x, t) is amenable to Fourier's method.

e We solved it in §3.4 to find the solution given by

— . [ NTX Kt
U(x,t) = ; bn sin (T) (7 B ),
where
L L
2 ./ nmx 2 ./ nmx 2 n
Z/ S() sin (") dx = Z/f(x)sm( ) dx— 2 (To — (-1)'Ta).
0 0

e Since U(x,t) — 0 as t — oo, we can verify our conjecture that T(x,t) — S(x) as t — oo.

e Remark: The parameters T and T; in the boundary conditions for T(x, t) ended up in the initial
condition for U(x,t) — hence the method is sometimes called ‘the method of shifting the data.’
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Example: infinite speed of propagation
® Consider the IBVP with f(x) =0, To = T" and T1 =2T".

B We plot below snapshots of the partial sums of the truncated series solution with 128 terms for
kt/L? = 0 (black line) and kt/L*> =107%, 1072 1072, 1071, 1 (red lines).

B The profiles illustrate the manner in which heat conduction rapidly drives the temperature toward

the linear steady-state temperature profile.

B Since the temperature is zero for 0 < x < L at t = 0, but everywhere positive for t > 0, the effect
of the boundary conditions is felt everywhere instantaneously — the heat equation propagates
information with infinite speed.
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T(x,t)/T*

t increasing
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3.8 Homogeneous Neumann boundary conditions



e Consider the IBVP for the temperature T(x,t) given by the heat equation

oT T
E:HW for 0<X<L7t>0,
with the homogeneous Neumann boundary conditions
T T
4 (0,t) =0, 9 —(L,t)=0 for t>0,

Ox Ox

and the initial condition
T(x,0)=1f(x) for 0<x<L.

e Remark: The ends of the rod are thermally insulated because g = —k9T /Ox = 0 there.

e Fourier's method is applied on problem sheet 5 to show that the solution is given by

[e'S] 2 2
a nmx n“m Kt
T(x,t) = EO 4 E an cos (T) exp <f B ),
n=1

where the constants a, are the Fourier coefficients of the Fourier cosine series for f given by

L
/f x) cos )dx.
0

l\\l\.)
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Notes

(1) The constant separable and steady-state solution T = ap/2 comes from the case in which the
separation constant is zero.

(2) The Uniqueness Theorem in §3.6 may be adapted to show the IBVP has at most one solution.
(3) Integrating the heat equation from x = 0 to x = L and applying the boundary conditions gives

d [* aT "
dt/o pc. T(x,t)dx = {kg] =0.

x=0
This equation represents global conservation of energy: the thermal energy stored in the rod is
constant because all of its surfaces are insulated. Integrating and applying the initial condition
gives

L L
/ pe. T(x,t)dx = / paf(x)dx fort > 0.
0 0
(4) The exponentially decaying modes in the solution for T imply that the temperature

ao 1 L

— == f(x)dx ast— o

=1/ f ,

i.e. the temperature tends to the mean of the initial temperature profile. This is because the rod

is insulated so that heat conduction acts to drive the temperature toward the steady-state solution
in which T is spatially uniform.

T(x,t) —
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Example: trapped heat
® Consider the IBVP in which the initial temperature profile is given by
f(x) = T" exp (cos(mx/L)) cos (sin(mx/L)) for 0 < x < L,
where T™ is a positive constant.
B Recalling from §1.1 that

exp(cos ) cos(sin ) = cos nf

n=0

for 0 R,
n!

we deduce that ag =2T" and a, = T"/n! for n > 1, giving the solution

2,2

Ny nmwx Kkt
T(x,t)=T Jrzﬁcos (T) exp (f B )
n=1 :

B We plot below snapshots of the partial sums of the truncated series solution with 6 terms for
kt/L? =0 (black line) and xt/L? = 1073, 1072, 107, 1 (red lines), illustrating the rapid
evolution toward the spatially uniform steady-state in which T = T~.

B Since the thermal energy of the rod is conserved, the area under each curve is the same.
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3.9 Inhomogeneous heat equation and boundary conditions



e Consider the IBVP for the temperature T(x,t) in a rod of length L given by the inhomogeneous

heat equation

oT T

a:kW+Q(X,t) for 0<X<L,t>0,
with the inhomogeneous Neumann boundary conditions

pe

—kT(0,t) = qu(t), —kT«(L,t)=—qr(t) for t>0,

and the initial condition
T(x,0)=f(x) for 0<x<L,

where Q(x, t) is the rate of volumetric heating, q.(t) is the heat flux into the left-hand end, gr(t)
is the heat flux into the right-hand end and f(x) is the initial temperature profile, each of these
functions being prescribed.
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e Notes:

(1) The Uniqueness Theorem in §3.6 may be adapted to show that the initial boundary value problem has
at most one solution.

(2) Integrating the heat equation across the rod and applying the boundary conditions, we find that
d L L
P / pev T(x, t)dx = qu(t) + qr(t) + / Q(x, t)dx,
0 0

which represents global conservation of energy: the thermal energy stored in the rod increases or
decreases at the net rate at which thermal energy is supplied to the rod by the heat flux through its
ends and by volumetric heating.

e In general Fourier's method cannot be used to solve the IBVP for T(x, t) because the heat
equation and boundary conditions are inhomogeneous, i.e. Q(x, t), g.(t) and gr(t) are non-zero.
We now describe a generalization of Fourier's method that works.
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e We deal first with the boundary conditions: if we let T(x, t) = S(x, t) + U(x, t), where

0.0 = a0 g 2kLL) +an(t)

say, is chosen to satisfy the boundary conditions.
e By linearity the IBVP for T(x, t) implies that the IBVP for U(x, t) is given by
Lou_ otu
"ot Ox?

with the homogeneous Neumann boundary conditions

—|—Q(x t) for 0<x<L, t>0,

U«(0,t) =0, Uc(L,t)=0 for t>0,
and the initial condition
U(x,0) =f(x) for 0<x<L,
where the functions

~ 2 ~
Qe t) = QU )+ k02— pe, 02 Fx) = () ~ 5(x,0)

are known in terms of Q(x, t), q.(t), gr(t) and f(x).
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Thus, the boundary conditions have been rendered homogeneous by ‘shifting the data’ in the
sense that both g.(t) and gr(t) have moved from the boundary conditions for T(x, t) into the
heat equation and initial conditions for U(x, t).

If @ =0, then we can solve the IBVP for U(x, t) using Fourier's method as in §3.8 to obtain

2 2 L_
(x,t) =2 +Za,,cos( )e p(_';);r/l_k:>, an = %/0 f(X)COs(mrTX> dx,

where the Fourier coefficients a, have been chosen to satisfy the initial condition.

The series solution for U(x, t) suggests that if é(x7 t) is not identically zero, then we should seek
a solution for U(x, t) in the form of the Fourier cosine series

U(x,t) = U02(t) + i Un(t) cos (?)

in which the Fourier coefficients

Un(t) = %/OL U(x, t) cos (?) dx

are to be determined.
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e Question: How do we derive an equation for U,(t)?
e Answer: Inspired by the proof of the uniqueness theorem in §3.6, we proceed as follows

e We differentiate Un(t) with respect to t to obtain

L L
du, 2 ou nmx U nmx
ST Z/pCVE“’S(T)dX_ L/ <kﬁ+ Q) os (7 x.
0 0

where we used Leibniz's Integral Rule in the first equality and the heat equation in the second.

e Integrating by parts using the identity

L L
/ w” —u"vdx = / (w' —u'v) dx = [ —u'V]
0 0

with u = U and v = cos(nmx/L) gives

/L U (— nngz cos (HLLX)> — Uy cos (HLLX) dx = [U (_nTw) sin
0

by the boundary conditions, so that

L L
nmx n’r? 2 nmx n°m
/ UXX COos (T) dx = — L2 Z / U cos (T) dx = —TU,,
0 0

o~

~IN
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e We deduce that U,(t) is governed by the ODE

du, N kn7?
dt L2

pCy U, = Q,,(t) for t>0,

where the coefficients of the Fourier cosine series for é(x, t) are defined by

L L
2 = nmwx 2 ) oS nmwx
=1 / Q(x, t) cos (T) dx = Z/ (Q(X7 t) + kﬁ — pc\,a) cos (T) dx.
0 0

e The initial condition for U(x, t) implies that the initial condition for U,(t) is given by

- %/OL £(x) cos (?) dx = %/OL (f(x) — 5(x,0)) cos (?) dx.

e Using an integrating factor, we find that the solution for U,(t) may be written in the form

Un(t) = (pcv/ Qn(s) “"sds+U(0)) rnt

where k, = n*m%k/L? in terms of the thermal diffusivity x = k/(pc, ).
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e In summary, we have been able to solve analytically the IBVP for T(x,t): the solution is given by

T(x,t) = S(x,t) + G(®) + i Un(t) cos (”LLX) )

2
where
_ (x - L) x*
S(x,t) = QL(t)T + qR(t)ﬂ’
1 [t~
Un t = h and + Un 0 71{,,t7
(t) (pcv/o Qn(s)e™ ds ( ))e
with k, = n*nk/1?, k = k/(pc,) and
L
0 2 »*s S nmx
Qu(t) = Z/ (Q(x, t) + k@ — pcvﬁ) cos (T) dx,
0
2 t nmx
Us(0) = Z/o (f(x) — S(x,0)) cos <T) dx.

144/308



Notes

(1) If Q(x,t) =0, then @,(t) = 0 and we recover the solution for U,(t) obtained by Fourier's method.
(2) The ODE for Up(t) is equivalent to the expression representing global conservation of energy.

(3) The derivation of the ODE for U,(t) may also be accomplished by multiplying the heat equation
by cos(nmx/L) and integrating from x = 0 to x = L to obtain

t ou U nmx
/0 (pcva - kﬁ — Q(x, t)) cos (T) dx = 0;

the ODE then follows upon applying Leibniz's integral rule to the U; term and integrating by parts
the U term.

(4) Question: What are the advantages of expanding U as a Fourier cosine series rather than T7?

Answer: Expanding T as a Fourier cosine series is equivalent to expanding S as a Fourier cosine
series, which cannot improve the accuracy of the approximate solution that would be obtained by
truncation. In general the method of shifting the data (to render homogeneous the boundary
conditions) results in a solution that converges more rapidly, especially if Gibb’s phenomenon can
be avoided by doing so.
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3.9 Inhomogeneous heat equation and boundary conditions



Example: sinusoidal forcing

® Consider the IBVP in which
q(t) = ¢ sin(wt), qr(t) =0, Q(x,t)=0, f(x)=0,

where ¢* and w are positive constants, as if the left-hand end of the rod were radiated sinusoidally.

® We obtain, .
i sin(ws) — cos(ws) for n =0,
Qn(s) = 2wl
wlq
_ >
a3 cos(ws) forn>1,
with U,(0) = 0 for n > 0.
B Hence, the solution for U,(t) gives
2k T* T .
F(l — cos(wt)) — 3 sin(wt) for n =0,
Un(t) =
2wT™

(o) (lin cos(wt) + wsin(wt) — Kn exp(—/-c,,t)) forn>1,

where we defined the temperature T* = Lg™ /k.
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B [t follows that the solution may be written in the form

T(x,t) = Too(x, t) + V(x, ),
where
Teo(x, 1) T sin(wt)% + IZ;7L-2* (1 — cos(wt)) — 7; sin(wt)
+ Z n27r22(o,: T+ 5 (mn cos(wt) + wsin(wt)) cos (nLLX)
and

V(x,t) = — i % exp(—kKnt) cos (ﬂ) .

— (k7 + w?) L

B Since V(x,t) decays exponentially with ¢, the solution settles down rapidly to a periodic solution
Too(x, t) with frequency w.
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Since V/(x, t) satisfies the homogeneous versions of the heat equation and boundary conditions,
the long-time solution T (x, t) satisfies the same heat equation, but the inhomogeneous
boundary conditions.

We now show that these properties of the long-time solution can be used to construct it directly.
The trick is to seek a complex-valued separable solution ei“’tF(x) with frequency w.
Substituting this ansatz into the homogeneous heat equation, we find that

wF' =iwF for0< x < L.

Seeking an exponential solution F(x) = e gives the auxiliary equation A\? = iw/k, so that

_ W im/4 _ w .
)x-:l:,//ie :|:1/2H(1—|—1)7

F(X) _ Aev(1+i)x/L+ Befu(l#»i)x/L’

giving the general solution

where A and B are arbitrary complex constants and v = L\/w/2k is a dimensionless parameter.
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B \We now observe that if we impose on F the boundary conditions —kF’(0) = ¢* and F'(L) =0,
then
To(x,t) = Im(emF(x))

satisfies both the homogeneous heat equation and sinusoidally-forced boundary conditions because
taking the imaginary part commutes with partial differentiation.

B The resulting solution for F(x) may then be written in the form

T* cosh (v(1+i)(1 — x/L))

PO = Ty sinh (v 1)
so that ( )
B T* cosh (v(141)(1 = x/L)) o
To(x, 1) =Im ( V(1 +i)sinh (V1 +1)) > '
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B Question: How are the solutions Too(x,t) and T,(x,t) related?

® Answer: Having found a particular solution T,(x, t) satisfying the homogeneous heat equation
and sinusoidally-forced boundary conditions, we see that we could also solve the IBVP for T(x, t)
by setting
T(x,t) = Tp(x,t) + W(x, t),

since then W(x, t) satisfies

ow *w
,ocvﬁ—kax2 for 0<x<L, t>0,
with
Wi(0,t) =0, Wi(L,t)=0 for t>0,
and

W(x,0) = —Tp(x,0) for 0<x <L,

i.e. the boundary conditions are rendered homogeneous by the ansatz for W(x, t) while retaining
the homogeneity of the heat equation, in contrast to the ansatz for U(x, t) which results in
homogeneous boundary conditions but at the expense of a forced heat equation.
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B The IBVP for W(x, t) may be solved using Fourier's method as in §3.8, giving the solution

Wi f)—*+2cncos( )exp (7:,2:/7(;)7 Cn:*%/OL To(x,0) cos (?) dx,

so that

®

wl?

1 [t
W(x,t) — ? = _Z/o To(x,0)dx = as t — oo.

B We can now invoke uniqueness of the IBVP for T(x, t) to deduce that
Too(x,t) + V(x,t) = Tp(x, t) + W(x,t) for0<x<L, t>0.

But V(x,t) — 0 and W(x,t) — kT*/wl? as t — oo, which can only be the case if

*

Too(x,t) = Tp(x,t) + for0<x<L, t>0 @)

wl?

because both T (x,t) and T,(x, t) are periodic in t with frequency w.
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Remark: This argument saves us from the unwieldy algebraic manipulations that would otherwise
be required to establish the relationship (), e.g. by showing that the Fourier cosine coefficients of
each side are identical at say t = 0.

The plots below show a period of oscillation of T,(x,t) for » = 0.1, 1, 10 and 100.

The plots illustrate that the heat flux imposed at x = 0 generates a temperature profile that is
almost spatially uniform for small v, but penetrates only partially and inside a thin boundary layer
of thickness of order L/v for large v.

This is in accordance with the physical interpretation of v = L/\/2k/w as the ratio of the length
of the rod L to the typical distance thermal energy conducts in a period of oscillation (since there
is a balance in the heat equation when x and t are scaled with \/k/w and 1/w, respectively).

That the shape of the profiles for v = 10 and v = 100 are almost identical is because the response
in the thin boundary layer is as if the rod were semi-infinite.
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