
3.6 Uniqueness Theorem
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• In the last section we considered the IBVP for the temperature T (x , t) given by the heat equation

@T
@t

= 
@2

T

@x2
for 0 < x < L, t > 0,

with the homogeneous Dirichlet boundary conditions

T (0, t) = 0, T (L, t) = 0 for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L,

where the initial temperature profile f (x) is given.

• We used Fourier’s method to construct an infinite series solution, but is it the only solution?

• Uniqueness Theorem: The IBVP has at most one solution.
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Proof

• Let W = T- I be the difference between two srhtions Tand I, say .

• Linearity of ① -④ ⇒ W satisfies the IOVP given by . . .

Wf = IT- I), = Tt - It = KT××- KI# = K1T-5ID = kwxx for Ocd CL, tso ④

WL4H = T10, H - I 10,51=0-0=0
,
W14EI =TL4H-7HH = 0-0=0 far too④

W1D, 01 = TL40) -71401 = flat - Hal = 0 for Ocd at ④

• Trick : Analyse the integral I1H = } WL4H
'

da for t 70.



• Evidently I1H 70 fat 70, and Ito) = 0 .

• Now show III. I cannot increase
,
as follows .

df = of# IIW') da ( by LIR with Lconst.)

= of Wwf DX
= of wkwxxdx lby④)

h ✓ I

= ( WK4Y; - wsirwndx 1 by I8D
h ✓ v

' ✓

= 0 - n ftw, 'dx lby④)
I 0 for t so



• Hence , III. I E I 10,1 = 0 fort so .

• but I1H 7 0 tat yo ( by construction), so I (f) = 0 for aht 20.

• This means of
'

WL4H
"
dx = 0 pm t s, 0.

• Hence W ↳ t) = 0 for OE2 EL
,
t70 (assuming W

is its there )
.

L7

NO : Proof works for linear 84 tawhich can show Lkwwif E 0
,

e.g. inhomogeneous Neumann e Robin Us .



Proof:

� Our strategy is to show that the difference between any two solutions much vanish.

� Thus, we suppose that T (x , t) and T̃ (x , t) are solutions and let W (x , t) = T (x , t)− T̃ (x , t).

� By linearity, the IBVP for T (x , t) and T̃ (x , t) imply that W (x , t) satisfies the heat equation

∂W

∂t
=
∂T

∂t
− ∂T̃

∂t
= κ

∂2T

∂x2
− κ∂

2T̃

∂x2
= κ

∂2W

∂x2
for 0 < x < L, t > 0,

with the boundary conditions

W (0, t) = T (0, t)− T̃ (0, t) = 0, W (L, t) = T (L, t)− T̃ (L, t) = 0 for t > 0,

and the initial condition

W (x , 0) = T (x , 0)− T̃ (x , 0) = f (x)− f (x) = 0 for 0 < x < L.

� The trick is to analyse the integral I (t) defined by

I (t) =
1

2

L∫
0

W (x , t)2 dx .

� Evidently I (t) ≥ 0 for t ≥ 0 and I (0) = 0 by the initial condition.
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⌅ But, for t > 0,

dI
dt

=

LZ

0

W
@W
@t

dx (by Liebniz Integral Rule)

=

LZ

0

W
@2

W

@x2
dx (by the heat equation)

=


W

@W
@x

�
x=L

x=0

� 

LZ

0

@W
@x

@W
@x

dx (by integration by parts)

= �

LZ

0

✓
@W
@x

◆2

dx (by the boundary conditions)

 0

which means that I (t) cannot increase, so that I (t)  I (0) = 0 for t � 0.

⌅ Since I (t) � 0 and I (t)  0 for t � 0, we deduce that I (t) = 0 for t � 0, and hence that

W (x , t) = 0 for 0  x  L, t � 0 (assuming continuity of W there). ⌅
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Notes

(1) Since W is the temperature in a metal rod whose initial temperature is everywhere zero and

whose ends are held at zero temperature thereafter, on physical grounds we expect the rod to

remain at zero temperature, i.e. W = 0 for 0  x  L and t � 0, which is precisely what we

showed to prove uniqueness.

(2) The proof works for any boundary conditions for which it is possible to show that


W

@W
@x

�
x=L

x=0

 0.

Examples include inhomogeneous Dirichlet and Neumann boundary conditions.
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3.7 Inhomogeneous Dirichlet boundary conditions
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• Suppose Tld, t ) : ① Tt = is Tax for 0cal a L, t so,
② TL9H = To

, TCL , f) = T, for t so,
③ TL40) = flat for 0 call

where To
,
T
, 70 and flat is given .

• Lets try Fourier's method : let T = Fta ) Hf ) #0 .

• ② ⇒ Flo) Htt = To ,
FILI Ht ) = T, fat so

⇒ Htt = constant = I wloy
⇒ T = Flat

,
i.e. ind. of time !

• Then ①,② ⇒ F
' ' loll = 0 for 0cal CL, with FL01 = To

,
FL01 =T

,

⇒ T = Flat = To(E) + Till -¥ ) It)



N8 : Hl is a steady- state a time independent srhtian of ① -②
in which the heat thx q = - r doff = Eto -T,) > 0 ift To IT

,

Cannot satisfy It ③ in general , so Fourier's method has failed -
this is because the 84 ② are inhomogeneous .

On physical grounds , we conjecture that

Tlx, t ) → SIN : = To#) t T, ( I- %) as t → 00

Suggests we seek a solution of① -⑦ of form THAI = shalt UC4H
,

where Haiti is TOO .



① ⇒ 1 stuff = K(5th)×× ⇒ Uf= kU×× for 0cal a L, t so ①

② ⇒ No, t ) = TL4H - 5101 = To - To = °

"↳ tl = TC4H - J14 = T, - →= 0 } ta t> 0 ④

③ ⇒ Ula, o) = TC4H - Xxl = flat - SIX) for Ocd CL .

③

The IBVP① -③ for Ula,t ) is amenable to Fourier 's method because the
84 are homogeneous .

$3's ⇒ H4H =I,hsintI")expfNtIYt) , bn=EµtkHsinfdx
This is the ' method of shifting the data !



• Consider the initial boundary value problem for the temperature T (x , t) given by the heat equation

@T
@t

= 
@2

T

@x2
for 0 < x < L, t > 0,

with the inhomogeneous Dirichlet boundary conditions

T (0, t) = T0, T (L, t) = T1 for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L,

where T0 and T1 are prescribed constant temperatures, not both zero, and the initial temperature

profile f (x) is given.

• Lets try to apply Fourier’s method.
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• In step (I) we need to find the nontrivial separable solutions T (x , t) = F (x)G(t) of the heat

equation and boundary conditions.

• But the latter would require

F (0)G(t) = T0, F (L)G(t) = T1 for t > 0,

forcing G to be constant.

• It follows that the only nontrivial separable solution satisfying the boundary conditions is the

time-independent or steady-state solution (about which more shortly).

• Since this cannot satisfy the initial condition, Fourier’s method fails because the boundary

conditions are not homogeneous.

• However, we can transform the problem into one amenable to Fourier’s method, as follows.
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• On physical grounds, we conjecture that T (x , t) ! S(x) as t ! 1, where S(x) is the

aforementioned steady-state solution of the heat equation and boundary conditions, which satisfies

0 = 
d2
S

dx2
for 0 < x < L,

with S(0) = T0 and S(L) = T1.

• Thus, S(x) has the linear temperature profile given by

S(x) = T0

⇣
1� x

L

⌘
+ T1

⇣
x

L

⌘
.

• Remark: In steady state thermal energy is conducted along the rod with constant heat flux

q = �k
@T
@x

=
k(T0 � T1)

L
,

so that heat flows steadily in the positive x-direction for T0 > T1.
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• We now observe that if we let

T (x , t) = S(x) + U(x , t),

then by linearity the IBVP for T (x , t) implies that U(x , t) satisfies the IBVP given by the heat

equation
@U
@t

= 
@2

U

@x2
for 0 < x < L, t > 0,

with the homogeneous Dirichlet boundary conditions

U(0, t) = 0, U(L, t) = 0 for t > 0,

and the initial condition

U(x , 0) = f (x)� S(x) for 0 < x < L.
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• The IBVP for U(x , t) is amenable to Fourier’s method.

• We solved it in §3.4 to find the solution given by

U(x , t) =
1X

n=1

bn sin
⇣
n⇡x
L

⌘
exp

✓
�n

2⇡2t
L2

◆
,

where

bn =
2
L

LZ

0

�
f (x)� S(x)

�
sin

⇣
n⇡x
L

⌘
dx =

2
L

LZ

0

f (x) sin
⇣
n⇡x
L

⌘
dx � 2

n⇡
(T0 � (�1)nT1).

• Since U(x , t) ! 0 as t ! 1, we can verify our conjecture that T (x , t) ! S(x) as t ! 1.

• Remark: The parameters T0 and T1 in the boundary conditions for T (x , t) ended up in the initial

condition for U(x , t) — hence the method is sometimes called ‘the method of shifting the data.’
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Example: infinite speed of propagation

⌅ Consider the IBVP with f (x) = 0, T0 = T
⇤ and T1 = 2T ⇤.

⌅ We plot below snapshots of the partial sums of the truncated series solution with 128 terms for

t/L2 = 0 (black line) and t/L2 = 10�4, 10�3, 10�2, 10�1, 1 (red lines).

⌅ The profiles illustrate the manner in which heat conduction rapidly drives the temperature toward

the linear steady-state temperature profile.

⌅ Since the temperature is zero for 0 < x < L at t = 0, but everywhere positive for t > 0, the e↵ect

of the boundary conditions is felt everywhere instantaneously — the heat equation propagates

information with infinite speed.
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3.8 Homogeneous Neumann boundary conditions
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• Consider the IBVP for the temperature T (x , t) given by the heat equation

@T
@t

= 
@2

T

@x2
for 0 < x < L, t > 0,

with the homogeneous Neumann boundary conditions

@T
@x

(0, t) = 0,
@T
@x

(L, t) = 0 for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L.

• Remark: The ends of the rod are thermally insulated because q = �k@T/@x = 0 there.

• Fourier’s method is applied on problem sheet 5 to show that the solution is given by

T (x , t) =
a0

2
+

1X

n=1

an cos
⇣
n⇡x
L

⌘
exp

✓
�n

2⇡2t
L2

◆
,

where the constants an are the Fourier coe�cients of the Fourier cosine series for f given by

an =
2
L

LZ

0

f (x) cos
⇣
n⇡x
L

⌘
dx .
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Notes

(1) The constant separable and steady-state solution T = a0/2 comes from the case in which the

separation constant is zero.

(2) The Uniqueness Theorem in §3.6 may be adapted to show the IBVP has at most one solution.

(3) Integrating the heat equation from x = 0 to x = L and applying the boundary conditions gives

d
dt

Z
L

0

⇢cvT (x , t) dx =


k
@T
@x

�
x=L

x=0

= 0.

This equation represents global conservation of energy: the thermal energy stored in the rod is

constant because all of its surfaces are insulated. Integrating and applying the initial condition

gives Z
L

0

⇢cvT (x , t) dx =

Z
L

0

⇢cv f (x) dx for t > 0.

(4) The exponentially decaying modes in the solution for T imply that the temperature

T (x , t) ! a0

2
=

1
L

Z
L

0

f (x) dx as t ! 1,

i.e. the temperature tends to the mean of the initial temperature profile. This is because the rod

is insulated so that heat conduction acts to drive the temperature toward the steady-state solution

in which T is spatially uniform.
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#cvtfdx = of "kT×× DX

⇒ Eat ftp.Tdx = ( kTiff = 0

⇒ ftp.T/x,tIdx=IpcrTlx,oIdx--oflpcufINdxtat20.



Example: trapped heat

⌅ Consider the IBVP in which the initial temperature profile is given by

f (x) = T
⇤ exp

�
cos(⇡x/L)

�
cos

�
sin(⇡x/L)

�
for 0 < x < L,

where T
⇤ is a positive constant.

⌅ Recalling from §1.1 that

exp(cos ✓) cos(sin ✓) =
1X

n=0

cos n✓
n!

for ✓ 2 R,

we deduce that a0 = 2T ⇤ and an = T
⇤/n! for n � 1, giving the solution

T (x , t) = T
⇤ +

1X

n=1

T
⇤

n!
cos

⇣
n⇡x
L

⌘
exp

✓
�n

2⇡2t
L2

◆
.

⌅ We plot below snapshots of the partial sums of the truncated series solution with 6 terms for

t/L2 = 0 (black line) and t/L2 = 10�3, 10�2, 10�1, 1 (red lines), illustrating the rapid

evolution toward the spatially uniform steady-state in which T = T
⇤.

⌅ Since the thermal energy of the rod is conserved, the area under each curve is the same.
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3.9 Inhomogeneous heat equation and boundary conditions

137/308



• Consider the IBVP for the temperature T (x , t) in a rod of length L given by the inhomogeneous

heat equation

⇢cv
@T
@t

= k
@2

T

@x2
+ Q(x , t) for 0 < x < L, t > 0,

with the inhomogeneous Neumann boundary conditions

�kTx(0, t) = qL(t), �kTx(L, t) = �qR(t) for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L,

where Q(x , t) is the rate of volumetric heating, qL(t) is the heat flux into the left-hand end, qR(t)

is the heat flux into the right-hand end and f (x) is the initial temperature profile, each of these

functions being prescribed.
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• Notes:

(1) The Uniqueness Theorem in §3.6 may be adapted to show that the initial boundary value problem has
at most one solution.

(2) Integrating the heat equation across the rod and applying the boundary conditions, we find that

d

dt

Z
L

0
⇢cvT (x , t) dx = qL(t) + qR(t) +

Z
L

0
Q(x , t) dx ,

which represents global conservation of energy: the thermal energy stored in the rod increases or
decreases at the net rate at which thermal energy is supplied to the rod by the heat flux through its
ends and by volumetric heating.

• In general Fourier’s method cannot be used to solve the IBVP for T (x , t) because the heat

equation and boundary conditions are inhomogeneous, i.e. Q(x , t), qL(t) and qR(t) are non-zero.

We now describe a generalization of Fourier’s method that works.
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• First step is to transform to an IBVP in which the 84 are homogeneous .

• Let Tla
,f) = six,He UL4H, where S is some th that

satisfies the Us
.

• we can take e. g. slx.tt =
WH
'II

"

t 9h41 ILL .

• Second step is to find IOVP governing UK,t I .

• putt = RTs" t Q ⇒ pcvlsxhlf = Nsx 4)xx t Q

⇒ pcvhf = RU×× 1- OT1X,f) where ocacl, tso

where
Else

, f) = 41kt ) - past4th RsxxHt)
is known in terms of Q, on andoff .



• - KTxlo.tt = gilt ) ⇒ - K1S-14419ft = -qH)

⇒ - RSHH-khalo.tt = It)

⇒ - RUxlo.tl = 0 for too.

• - KT21 4TI = -qrlt) ⇒ - KU, 14ft = o ta too .

• Tt -401=1-1×1 ⇒ SHH -1440) = Ha)

⇒ UL40) = flat for Oca el
,

where Ilsy = flat- SL40) is known
in terms of t , ok and qr .



Hence
,
Ula
,
t) satisfies the IBVP

① pcvuf = Khan + IC4H for oc a al, too

② Halo, t ) = 0
,
no, 14ft = 0 far too

③ Uld, ol = It d) for Ocd at

where I and I are known ( interns of 4,4, ok and f) .

Now we need some inspiration to solve for U4H !

This is the third and final step .



N8 : If I I0
,
then Fourier's Method ⇒

ula.tt = I +II fan e-
""""")cosf) , an-_I§ITxkost)dx

This suggests the trick : if I 1=0, then seek a solution for
UL4H by expanding it as a Fourier cosine series of theformula

, H =
""I + II unit) cost "¥) ,

✓here
until = I {Wait) ios ( ""1) da .

⇒ 0 : ④ ② satisfied automatically ( assuming suff . rapid convergence).



4h : How do we determine Un LH ?

AI : Inspired by the proof of the uniqueness theorem , consider %I.

per day = per# If "UHHcosthtt ) de
= I §

'

p cu Ut cos 1h11) da ( by LIR
L const.)

= I }
'

truant E) cosf Idol 1 by ①)

= he }{Uxxiosfhthfldxt In Ct)
where ointtt = I }

'

Etat) cos I"I)dX



IBP twice using the identity

{uv" - u "vd× = of
'

Luv '- win ) 'dx= fun ' - uh ][
Let u=U and r= cos I"¥ )

,
then

>
0 by④

jut"cost ))- umwstfldx-futIsi.FI/)-UxcostIIDo
Hence

, I} 'umcw(II ) da = -II I } 'll cost"I)da= -II. Un .
Combo ⇒ pcvdhm.tt N th Un = In LH th t so

It③ UH44 > IN travel ⇒ hnlol = I f¥NaHhIdol



• We deal first with the boundary conditions: if we let T (x , t) = S(x , t) + U(x , t), where

S(x , t) = qL(t)
(x � L)2

2kL
+ qR(t)

x
2

2kL
,

say, is chosen to satisfy the boundary conditions.

• By linearity the IBVP for T (x , t) implies that the IBVP for U(x , t) is given by

⇢cv
@U
@t

= k
@2

U

@x2
+ eQ(x , t) for 0 < x < L, t > 0,

with the homogeneous Neumann boundary conditions

Ux(0, t) = 0, Ux(L, t) = 0 for t > 0,

and the initial condition

U(x , 0) = ef (x) for 0 < x < L,

where the functions

eQ(x , t) = Q(x , t) + k
@2

S

@x2
� ⇢cv

@S
@t

, ef (x) = f (x)� S(x , 0)

are known in terms of Q(x , t), qL(t), qR(t) and f (x).
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• Thus, the boundary conditions have been rendered homogeneous by ‘shifting the data’ in the

sense that both qL(t) and qR(t) have moved from the boundary conditions for T (x , t) into the

heat equation and initial conditions for U(x , t).

• If eQ ⌘ 0, then we can solve the IBVP for U(x , t) using Fourier’s method as in §3.8 to obtain

U(x , t) =
a0

2
+

1X

n=1

an cos
⇣
n⇡x
L

⌘
exp

✓
�n

2⇡2
kt

⇢cvL2

◆
, an =

2
L

Z
L

0

ef (x) cos
⇣
n⇡x
L

⌘
dx ,

where the Fourier coe�cients an have been chosen to satisfy the initial condition.

• The series solution for U(x , t) suggests that if eQ(x , t) is not identically zero, then we should seek

a solution for U(x , t) in the form of the Fourier cosine series

U(x , t) =
U0(t)
2

+
1X

n=1

Un(t) cos
⇣
n⇡x
L

⌘

in which the Fourier coe�cients

Un(t) =
2
L

Z
L

0

U(x , t) cos
⇣
n⇡x
L

⌘
dx

are to be determined.
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• Question: How do we derive an equation for Un(t)?

• Answer: Inspired by the proof of the uniqueness theorem in §3.6, we proceed as follows

• We di↵erentiate Un(t) with respect to t to obtain

⇢cv
dUn

dt
=

2
L

LZ

0

⇢cv
@U
@t

cos
⇣
n⇡x
L

⌘
dx =

2
L

LZ

0

✓
k
@2

U

@x2
+ eQ

◆
cos

⇣
n⇡x
L

⌘
dx ,

where we used Leibniz’s Integral Rule in the first equality and the heat equation in the second.

• Integrating by parts using the identity
Z

L

0

uv
00 � u

00
v dx =

Z
L

0

(uv 0 � u
0
v)0 dx =

⇥
uv

0 � u
0
v
⇤
L

0

with u = U and v = cos(n⇡x/L) gives

LZ

0

U

✓
�n

2⇡2

L2
cos

⇣
n⇡x
L

⌘◆
� Uxx cos

⇣
n⇡x
L

⌘
dx =

h
U

⇣
�n⇡

L

⌘
sin

⇣
n⇡x
L

⌘
� Ux cos

⇣
n⇡x
L

⌘i
L

0
= 0

by the boundary conditions, so that

2
L

LZ

0

Uxx cos
⇣
n⇡x
L

⌘
dx = �n

2⇡2

L2

2
L

LZ

0

U cos
⇣
n⇡x
L

⌘
dx = �n

2⇡2

L2
Un.

142/308



• We deduce that Un(t) is governed by the ODE

⇢cv
dUn

dt
+

kn
2⇡2

L2
Un = eQn(t) for t > 0,

where the coe�cients of the Fourier cosine series for eQ(x , t) are defined by

eQn(t) =
2
L

LZ

0

eQ(x , t) cos
⇣
n⇡x
L

⌘
dx =

2
L

LZ

0

✓
Q(x , t) + k

@2
S

@x2
� ⇢cv

@S
@t

◆
cos

⇣
n⇡x
L

⌘
dx .

• The initial condition for U(x , t) implies that the initial condition for Un(t) is given by

Un(0) =
2
L

Z
L

0

ef (x) cos
⇣
n⇡x
L

⌘
dx =

2
L

Z
L

0

�
f (x)� S(x , 0)

�
cos

⇣
n⇡x
L

⌘
dx .

• Using an integrating factor, we find that the solution for Un(t) may be written in the form

Un(t) =

✓
1
⇢cv

Z
t

0

eQn(s)e
ns ds + Un(0)

◆
e�nt ,

where n = n
2⇡2/L2 in terms of the thermal di↵usivity  = k/(⇢cv ).
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• In summary, we have been able to solve analytically the IBVP for T (x , t): the solution is given by

T (x , t) = S(x , t) +
U0(t)
2

+
1X

n=1

Un(t) cos
⇣
n⇡x
L

⌘
,

where

S(x , t) = qL(t)
(x � L)2

2kL
+ qR(t)

x
2

2kL
,

Un(t) =

✓
1
⇢cv

Z
t

0

eQn(s)e
ns ds + Un(0)

◆
e�nt ,

with n = n
2⇡2/L2,  = k/(⇢cv ) and

eQn(t) =
2
L

LZ

0

✓
Q(x , t) + k

@2
S

@x2
� ⇢cv

@S
@t

◆
cos

⇣
n⇡x
L

⌘
dx ,

Un(0) =
2
L

Z
L

0

�
f (x)� S(x , 0)

�
cos

⇣
n⇡x
L

⌘
dx .
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Notes

(1) If eQ(x , t) = 0, then eQn(t) = 0 and we recover the solution for Un(t) obtained by Fourier’s method.

(2) The ODE for U0(t) is equivalent to the expression representing global conservation of energy.

(3) The derivation of the ODE for Un(t) may also be accomplished by multiplying the heat equation

by cos(n⇡x/L) and integrating from x = 0 to x = L to obtain

Z
L

0

✓
⇢cv

@U
@t

� k
@2

U

@x2
� eQ(x , t)

◆
cos

⇣
n⇡x
L

⌘
dx = 0;

the ODE then follows upon applying Leibniz’s integral rule to the Ut term and integrating by parts

the Uxx term.

(4) Question: What are the advantages of expanding U as a Fourier cosine series rather than T?

Answer: Expanding T as a Fourier cosine series is equivalent to expanding S as a Fourier cosine

series, which cannot improve the accuracy of the approximate solution that would be obtained by

truncation. In general the method of shifting the data (to render homogeneous the boundary

conditions) results in a solution that converges more rapidly, especially if Gibb’s phenomenon can

be avoided by doing so.
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3.9 Inhomogeneous heat equation and boundary conditions
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Example: sinusoidal forcing

⌅ Consider the IBVP in which

qL(t) = q
⇤ sin(!t), qR(t) = 0, Q(x , t) = 0, f (x) = 0,

where q
⇤ and ! are positive constants, as if the left-hand end of the rod were radiated sinusoidally.

⌅ We obtain,

eQn(s) =

8
>><

>>:

2q⇤

L
sin(!s)� !Lq⇤

3
cos(!s) for n = 0,

�2!Lq⇤

n2⇡2
cos(!s) for n � 1,

with Un(0) = 0 for n � 0.

⌅ Hence, the solution for Un(t) gives

Un(t) =

8
>>><

>>>:

2T ⇤

!L2

�
1� cos(!t)

�
� T

⇤

3
sin(!t) for n = 0,

2!T ⇤

n2⇡2(2
n + !2)

⇣
n cos(!t) + ! sin(!t)� n exp(�nt)

⌘
for n � 1,

where we defined the temperature T
⇤ = Lq

⇤/k.
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⌅ It follows that the solution may be written in the form

T (x , t) = T1(x , t) + V (x , t),

where

T1(x , t) = T
⇤ sin(!t)

(x � L)2

2L2
+

T ⇤

!L2

�
1� cos(!t)

�
� T

⇤

6
sin(!t)

+
1X

n=1

2!T ⇤

n2⇡2(2
n + !2)

⇣
n cos(!t) + ! sin(!t)

⌘
cos

⇣
n⇡x
L

⌘

and

V (x , t) = �
1X

n=1

2n!T
⇤

n2⇡2(2
n + !2)

exp(�nt) cos
⇣
n⇡x
L

⌘
.

⌅ Since V (x , t) decays exponentially with t, the solution settles down rapidly to a periodic solution

T1(x , t) with frequency !.
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An alternative route to the periodic solution

Suppose Tplx,H is a periodic solution with frequency w of

① IT = K III ta o each
,

② - KII lo.tt = q *sin lwtl, 7¥14 H = 0 .
Trick : seek a solution Tp = Im (eiwt Flat) , with - k FY01= q*

and F '14=0 .

NO : since taking the imaginary pat commutes with partial differentiation,
the 04 ② hold e. we can in fact work with Tp = eiwt FL1Y,
and take the imaginary part at the end .



① ⇒ iweiwtftxl = rseiwtfiysy

⇒ F
"
= if F for o←x at

F- = e" ⇒ I = In
⇒ a = t.EE"'4=±E→lki)

⇒ F = AEUUTIKK + Be-UCHDNL CAPE 41

where U = LEE
.

'F'14=0 ⇒ Flat = Ccoshfultii )p¥)) (Cee)



-hHoI=q*⇒ - klulkiksinhfuliii)fff=q*
Hence
,

Tp = Im ( T*CoshfHitilP1) eiwtHHilsinhfulixil.SI
where 1-* = Lq* ,

K
'



⌅ Since V (x , t) satisfies the homogeneous versions of the heat equation and boundary conditions,

the long-time solution T1(x , t) satisfies the same heat equation, but the inhomogeneous

boundary conditions.

⌅ We now show that these properties of the long-time solution can be used to construct it directly.

⌅ The trick is to seek a complex-valued separable solution ei!t
F (x) with frequency !.

⌅ Substituting this ansatz into the homogeneous heat equation, we find that

F
00
= i!F for 0 < x < L.

⌅ Seeking an exponential solution F (x) = e�x gives the auxiliary equation �2 = i!/, so that

� = ±
r

!

ei⇡/4 = ±

r
!
2

(1 + i),

giving the general solution

F (x) = Ae⌫(1+i)x/L + Be�⌫(1+i)x/L,

where A and B are arbitrary complex constants and ⌫ = L
p

!/2 is a dimensionless parameter.
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⌅ We now observe that if we impose on F the boundary conditions �kF
0(0) = q

⇤ and F
0(L) = 0,

then

Tp(x , t) = Im
�
ei!t

F (x)
�

satisfies both the homogeneous heat equation and sinusoidally-forced boundary conditions because

taking the imaginary part commutes with partial di↵erentiation.

⌅ The resulting solution for F (x) may then be written in the form

F (x) =
T

⇤ cosh
�
⌫(1 + i)(1� x/L)

�

⌫(1 + i) sinh
�
⌫(1 + i)

� ,

so that

Tp(x , t) = Im

 
T

⇤ cosh
�
⌫(1 + i)(1� x/L)

�

⌫(1 + i) sinh
�
⌫(1 + i)

� ei!t

!
.
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⌅ Question: How are the solutions T1(x , t) and Tp(x , t) related?

⌅ Answer: Having found a particular solution Tp(x , t) satisfying the homogeneous heat equation

and sinusoidally-forced boundary conditions, we see that we could also solve the IBVP for T (x , t)

by setting

T (x , t) = Tp(x , t) +W (x , t),

since then W (x , t) satisfies

⇢cv
@W
@t

= k
@2

W

@x2
for 0 < x < L, t > 0,

with

Wx(0, t) = 0, Wx(L, t) = 0 for t > 0,

and

W (x , 0) = �Tp(x , 0) for 0 < x < L,

i.e. the boundary conditions are rendered homogeneous by the ansatz for W (x , t) while retaining

the homogeneity of the heat equation, in contrast to the ansatz for U(x , t) which results in

homogeneous boundary conditions but at the expense of a forced heat equation.
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⌅ The IBVP for W (x , t) may be solved using Fourier’s method as in §3.8, giving the solution

W (x , t) =
c0

2
+

1X

n=1

cn cos
⇣
n⇡x
L

⌘
exp

✓
�n

2⇡2
kt

⇢cvL2

◆
, cn = � 2

L

Z
L

0

Tp(x , 0) cos
⇣
n⇡x
L

⌘
dx ,

so that

W (x , t) ! c0

2
= � 1

L

Z
L

0

Tp(x , 0) dx =
T ⇤

!L2
as t ! 1.

⌅ We can now invoke uniqueness of the IBVP for T (x , t) to deduce that

T1(x , t) + V (x , t) = Tp(x , t) +W (x , t) for 0  x  L, t � 0.

But V (x , t) ! 0 and W (x , t) ! T ⇤/!L2 as t ! 1, which can only be the case if

T1(x , t) = Tp(x , t) +
T ⇤

!L2
for 0  x  L, t � 0 (†)

because both T1(x , t) and Tp(x , t) are periodic in t with frequency !.
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⌅ Remark: This argument saves us from the unwieldy algebraic manipulations that would otherwise

be required to establish the relationship (†), e.g. by showing that the Fourier cosine coe�cients of

each side are identical at say t = 0.

⌅ The plots below show a period of oscillation of Tp(x , t) for ⌫ = 0.1, 1, 10 and 100.

⌅ The plots illustrate that the heat flux imposed at x = 0 generates a temperature profile that is

almost spatially uniform for small ⌫, but penetrates only partially and inside a thin boundary layer

of thickness of order L/⌫ for large ⌫.

⌅ This is in accordance with the physical interpretation of ⌫ = L/
p

2/! as the ratio of the length

of the rod L to the typical distance thermal energy conducts in a period of oscillation (since there

is a balance in the heat equation when x and t are scaled with
p

/! and 1/!, respectively).

⌅ That the shape of the profiles for ⌫ = 10 and ⌫ = 100 are almost identical is because the response

in the thin boundary layer is as if the rod were semi-infinite.
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