4 The wave equation



4.1 Derivation of the one-dimensional wave equation



Consider the small transverse vibrations of a homogeneous extensible elastic string stretched
initially along the x-axis at time t = 0 to a length L.

A point at xi at time t = 0 is displaced to r(x,t) = xi + y(x, t)j at time t > 0, where the
transverse displacement y(x, t) is to be determined, as illustrated.
y

r(z,t)
y(z,1)

0| zi L T

Consider the section of the string in the fixed region a < x < a+ h, where a and h are arbitrary
constants (with 0 < a< a+h < L).

The linear momentum of the section of the stringina<x<a+his

a+h

or
p& dX7

a

where p is the constant line density of the string (with [p] = kgm™?).
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e The string offers no resistance to bending (cf. a ruler) in the sense that the string to the right of
the point r(x, t) exerts at that point a tangential force T(x, t)7(x,t) on the string to the left,
where T(x, t) is the tension ([T] = N = kgms™2) and T = r,/ |r.| is the unit tangent vector
pointing in the positive x-direction.

e Note that Newton's third law implies that the string to the left of the point r(x, t) exerts at that
point a tangential force — T (x, t)7(x, t) on the string to the right.

e Assuming the tension is so large that the effects of gravity and air resistance may be neglected,
the forces acting on the ends of the section of string in a < x < a+ h are

(i) the force T(a+ h,t)T(a+ h,t) exerted at RH end at r(a+ h, t) by the string to right of section;
(ii) the force —T(a, t)7(a,t) exerted at LH end at r(a, t) by string to the left of section.

We illustrate the forces and where they act on the section in the schematic below.

TT|z:u+h
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We are now in a position to apply Newton's Second Law, which states that the rate of change of
the linear momentum of the section of string in a < x < a+ h is equal to the net force acting on
it, so that

ath
d or
G| [ rgrax) = T+ htr(a s ho) - T o).

Assuming ry is continuous, Leibniz's Integral Rule with a and a + h constant gives

7  T(athtyr(at ht) - T(a )r(a t)
6t2

h 7
where we divided by h in anticipation of taking the limit h — 0.
To take the limit h — 0,
m apply the Fundamental Theorem of Calculus assuming r¢ is continuous in a neighbourhood of a;
m use the definition of (TT)X assuming it to exist at a.

We obtain thereby the partial differential equation

r 9
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Recalling the definitions of r and T, it follows that
Py. 0 [ Ti+ Ty
Paed T ox (1 +y3)1/2 )
But we are also assuming that the transverse displacement is small in the sense that the slope of

the string is small, i.e. |y | < 1.

Since a Taylor expansion gives
1/2 1
(1+y3) =1+§(yx)2+~~ for |y <1,

to a first approximation, i.e. neglecting quadratic and higher order terms,

82y._ 0 . .
Pt = &(TI + Tysd).

Remark: We call this PDE the linearized version of the nonlinear PDE above.
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e The x- and y-components of the linearized PDE are given by

oT Py 0
5—0» P@—&(T)&)

e The x-component implies that the tension T is spatially uniform, but could vary with time t,
e.g. as when tuning a guitar string.

e We shall take the tension T to be constant, which is the case in many practical applications.

e The y-component then implies that

Py _ Loy
Por = " ax
giving the wave equation
Dy _ 29y
or? ox?’

where the wave speed (for reasons that will become apparent) is given by

T
c=4/—.
p
e The wave equation is a second-order linear PDE.
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4.2 Units and nondimensionalisation



Consider the units of the variables (x, t and y) and parameter (c) in the wave equation.

Since

el =ms 2, [yl =mm2,

it follows that

[Cz] _ [[})/’::]] — m?s2

1 je. c has the units of speed.

so that [c] = ms™
Question: On what timescale does a displacement travel a distance L?

Answer: If we nondimensionalize by scaling x = L&, t = tof, y = Hy(X, ), then the wave
equation becomes

Ho*y  HS 9%y

2 of2  [2 9%%’

the terms balance giving
&y _ %y
a2~ oR?

provided to = L/c, which is therefore the timescale for a displacement to travel a distance L.
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4.3 Normal modes of vibration for a finite string



e Suppose an elastic string is stretched between x = 0 and x = L and the ends held fixed, so that
the small transverse displacement y(x, t) of the string is governed by the wave equation
Py _ 20
w =cC ﬁ for 0<x< L,
with the boundary conditions
y(0,t)=0 y(L,t)=0.

e An experiment with a slinky suggests there exist discrete modes of vibration, as illustrated in the
schematic below.
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To analyse mathematically the possible modes of vibration, we seek nontrivial separable solutions
of the form y = F(x)G(t) for which the wave equation yi: = c’yx gives

F(x)G"(t) = F"(x)G(t).
Separating the variables for FG # 0, we obtain
F”(X) _ G//(t)

Flx)  2G(t)

The LHS of this expression is independent of t, while the RHS is independent of x. Since the LHS
is equal to the RHS, they must both be independent of x and t, and therefore equal to a
constant, —\ € R say.

Hence,
F'"+AF=0 for0<x<L and G" +2’G=0 forallt.

Since G(t) # 0 for some t for y nontrivial, the boundary conditions imply F(0) =0 and F(L) = 0.
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In summary, we have deduced that F(x) and X satisfy the ODE BVP given by
—F"(x) = AF(x) for 0<x<L,
with F(0) = 0 and F(L) = 0.

We solved this problem in §3.4: the nontrivial solutions are given for positive integers n by

F(x) = Bsin (mrTx), A= (n%)z,

where B is an arbitrary constant

Since G” 4+ Ac®>G = 0, the corresponding solution for G(t) is given by

G(t) = Ccos (mrLct) + Dsin (mrLct)’

where C and D are arbitrary constants.

Since T(x,t) = F(x)G(t), we conclude that the nontrivial separable solutions or the normal
modes are given for positive integers n by

Yo(x, t) = sin (?) (an cos (mrLct) + by sin (mTLCt»

where a, and b, are arbitrary constants (with a, = BC and b, = BD) and we have introduced the

subscript n to enumerate the countably infinite set of such solutions.
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Notes

(1) The normal mode y,(x, t) is periodic in t with prime period

or 2L

ntc/L  nc

and frequency or pitch
1 nc

p 2L

(2) The first normal mode y; is called the fundamental mode, with associated fundamental frequency
c/(2L). All of the other modes have a frequency that is an integer multiple of the fundamental
frequency.

(3) The predictions are consistent with the slinky experiment.

(4) The normal modes are an example of a standing wave because y, is equal to a function of x
multiplied by an oscillatory function of time.
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4.4 Initial boundary value problem for a finite string



e Consider the initial boundary value problem for the small transverse displacement y(x, t) of an
elastic string given by the wave equation

Py 20y
ﬁzc 52 for 0<x<L, t>0,
with the Dirichlet boundary conditions
y(0,t) =0, y(L,t)=0 for t>0,
and the two initial conditions
9y
y(x,0) = f(x), E(X’ 0)=g(x) for 0<x<L,

where the initial transverse displacement f(x) and the initial transverse velocity g(x) are given.

e Remark: The total number of boundary (initial) conditions is equal to the number of spatial
(temporal) partial derivatives in the wave equation.

o We will use Fourier's method to find a series solution.
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Step (1): Find all nontrivial separable solutions of the PDE and BCs

e We found above that these are the normal modes given for positive integers n by

0= (72 (oo ("5) i (7))

where a, and b, are arbitrary real constants.

Step (I1): Apply the principle of superposition
e Since the wave equation and boundary conditions are linear and homogeneous, we can

superimpose the normal modes (assuming convergence) to obtain the general series solution

oo

y(x, t)_zyn 1) =Y sin (mrx) (anCOS(mTLCt) +bnsin(n7rLct)).

n=1
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Step (Il1): Use the theory of Fourier series to satisfy the ICs

e The initial conditions can only be satisfied if

iansm( )for0<X<L

:iﬂLc sm( 1 )for0<x<L

n=1

e Hence, a, is the nth Fourier coefficient of the Fourier sine series for f, while nwcb,/L is the nth
Fourier coefficient of the Fourier sine series for g, i.e., for positive integers n,

L L
2 c 2
an Z/ x)sm )dx, b, Z/ x)sm )dx.
0 0
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Example: plucking a guitar string
B If the midpoint of the string is drawn aside a distance h and released from rest, then
2hx/L for0 < x < LJ/2,
Fx) = g(x) =0.
2h(L — x)/L  for L/2 <x <L,

B Since g(x) = 0 we have b, = 0, and integration by parts gives

L/2 L

2 [ 2hx . (nmx 2 [2h(L—x) . /nmx _8h . /nm
a"_L/ Lsm<L)dx+L/ o (°7) dx = e (5

0 L/2

® Since
0 for n=2m, m e N\ {0},

nm
n () =
2 (-1)™ forn=2m+1, meN,

we deduce that a series solution is given by

yixt) = oj (2(,;1):)2 o ((2m—|il)7rx) . ((2m +L1)m>7

so that p = 2L/c is the prime period of the oscillation.

).
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B We plot below snapshots of the series solution truncated to 128 terms over the first half-period,

which illustrates the persistence of corners moving with speed c.
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B The mesh plot below shows the series solution again truncated to 128 terms, but this time over

the first period, with the orientation chosen for a good view.
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Example: hammering a piano string
B Suppose we hit the string with a hammer so that

v for L1 < x <Ly,

f(x)=0, g(x)=
0 otherwise,
where v, L1 and L, are constants.
® We have a, = 0 and
Ly
nmc, 2 ./ NTX _2v nmly nmlo
Tb,,— L/vsm( 1 )dx—nﬂ_ {cos( [ ) cos( L )}
Ly

B |t follows that a series solution is given by

2h = 1 nmlL nml . (nmx\ . /nmct
y(x,t):ﬁ e {cos( L1>—cos( L2>}sm(T)sm( 1 ),

n=1

where h = vL/c and we see that the prime period of the oscillation is again p = 2L/c.
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® We plot below show snapshots of the evolution of the series solution truncated to 128 terms for

Li/L=0.3, Ly/L = 0.5 over the first half-period, which again illustrates the persistence of corners

moving with speed c.
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B The mesh plot below shows the series solution again truncated to 128 terms, but this time over
the first period, with the orientation chosen for a good view.
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Notes
e Both the guitar solution and piano solution contain persistent corners travelling with speed c.

e This means that neither solution can be twice continuously differentiable with respect to x or t,
and hence a so-called classical solution of the wave equation.

e However, if we were to modify the initial data by smoothing off the corners and jump
discontinuities in small neighbourhoods of these irregularities in such a way that the new initial
data is infinitely differentiable, then the new solutions would also be infinitely differentiable, and
hence classical solutions, and they would be “close” in some sense to the original solutions.

e Hence, we do not want to discount the series solutions we have found, but to view them instead
as motivation to weaken the sense in which a function can be a solution of a PDE — the resulting
notion of a weak solution forms the basis for the modern theory of PDEs that can be studied
further on in the course in e.g. B4.3 and B5.2.

e The differences in the makeup of the normal modes for the guitar and piano solutions contribute
to the different timbres of the musical instruments
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4.5 Conservation of energy
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e An elastic string is stretched between x = 0 and x = L along the x-axis to a line density p and a
tension T, so that its small transverse displacement y(x, t) is governed by the wave equation
&y Py
pﬁ:Tw for O<X<L7t>0,

with the Dirichlet boundary conditions
y(0,t) =0, y(L t)=0 for t>0,

and the initial conditions

y(x,0) = f(x), %(X, 0) =g(x) for 0<x<L,

where the initial transverse displacement is f(x) and the initial transverse velocity is g(x).

e Remark: Recall that the point of the string that lies at xi in its so-called reference configuration
is displaced transversely to the point with position vector r(x, t) = xi + y(x, t)j. When we impose
the initial conditions, we must deform the string from its reference configuration along the x-axis
to have transverse displacement y(x,0) = f(x) and we must impart on the string the transverse
velocity given by y:(x,0) = g(x).
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The kinetic energy of the string is given by
L L
1 1
/EP\’r|2 dXZ/EP)’de-
0 0

The elastic potential energy of the string is the product of tension and extension, and therefore

given by
L

L 1
T /|rx\dx—L :T/ <1+yf)2—1dx.
0

0

Since the transverse displacement is small in the sense that |y.| < 1, a Taylor expansion gives

2% 1,
(1+%) —1=5R+.

Hence, to a first approximation (i.e. neglecting cubic and higher order terms), the elastic potential

L
1

/ 5 Tyx2 dx.

0

energy is given by
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e Definition: The energy of the string is defined to be the sum of its kinetic and elastic potential
energies, and given by

L
1
/ Epyt + = Tyx dx.
0

e Proposition: If y(x, t) satisfies the wave equation and the boundary conditions, then the energy
E(t) is constant for t > 0.
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Proof:
B The idea is to show that the derivative of E(t) is equal to zero.

B By Leibniz's Integral Rule,

L
dE 0 1 1
a :/a (5%’)’:2 + 57—}/3) dx = /P}’t)’ttJr Tyxyse dx.
0 0

B Substituting for py: from the wave equation, we deduce that

L L
dE -
dr / Tyeysx + Tyxyxe dx = / (Tyey)x dx = [Tyl iZo.
0 0

B Since each of the boundary conditions may be differentiated with respect to t to give y:(0,t) =0
and y¢(L,t) =0 for t > 0, we deduce that dE/dt = 0. [ ]
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Notes
(1) We have shown that the energy of the elastic string is conserved during its motion, with the
kinetic and elastic potential energy being transferred back and forth as the string oscillates.
(2) The energy of the string is set by the initial conditions to be given by
L
E(t / 280+ 2 T(F/ () dx.
0

(3) The energy of the nth normal mode y,(x, t) is given by

L
(1 [(0Oyn 1 Oyn
En(t)—/ip(at) +§T(6 > dx.
0

Since yn(x, t) satisfies the wave equation and the boundary conditions by construction, it follows
that its energy is conserved during its motion and given by

n27r2pc2 b2 nPrlTa?

En(t) = Ex(0) = =7 aL

where in the last equality we substituted for y,(x,0) and integrated.
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(4) Recalling that

f(x) = iansm( )for0<X<L

:i%c,, (I)for0<x<L

n=1

and assuming convergence, Parseval's Identity for g and f’ imply that

L

1 2 1o o = (nPnPpc’hy  nPTPTa
/Epg(x) —|—§Tf (x) dx—z ( al + L ;
0

n=1

hence,
E(t) = E(0) =Y E,(0) =) En(t),

i.e. the energy of the elastic string is made up of that in its normal modes.
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4.6 Uniqueness Theorem
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Uniqueness Theorem:

e There is at most one solution to the IBVP for y(x, t) given by

82_}/ 282}/

52 = C 52 for 0<x<L, t>0,
with

y(0,t) =0, y(L,t)=0 for t>0,
and

y(x,0) = f(x), %(X,O) =g(x) for 0<x<L,
where f(x) and g(x) are given.
Proof:
B Qur strategy is to show that the difference between any two solutions much vanish.

B We suppose that y(x, t) and y(x, t) are solutions and let

w(x, t) = y(x, t) — y(x, t).
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B By linearity, w(x, t) satisfies the wave equation

P _ a0w

oz~ € ox2

with the boundary conditions

for 0<x<L, t>0,

w(0,t) =0, w(L,t)=0 for t>0,

and the initial conditions

w(x,0) =0, %—V:(X,O):O for 0<x<L.

B Remark: Since w is the small transverse displacement of an elastic string whose initial transverse
displacement and velocity are everywhere zero and whose ends are fixed thereafter, on physical
grounds we expect the string to remain stationary along the x-axis, i.e. w =0 for 0 < x < L and

t > 0, which is what we need to show to prove uniqueness.
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The trick is to analyse the energy E(t) associated with w(x, t), which is given by

L
E(t) :/%pwt2 + %TWX2 dx.
0

Since w satisfies the wave equation and homogeneous Dirichlet boundary conditions, the energy
E(t) is conserved.

But E(0) = 0 by the initial conditions, so

L
/%pwf—F%wadX:O for t>0.
0

We deduce that ws = wx =00on R={(x,y) : 0 < x < L, t >0} (assuming w; and w, are
continuous there).

Since the boundary and initial conditions imply that w = 0 on the boundary of R, we deduce that
w=0ory=YyonR. |
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