
4 The wave equation
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4.1 Derivation of the one-dimensional wave equation
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• Consider the small transverse vibrations of a homogeneous extensible elastic string stretched

initially along the x-axis at time t = 0 to a length L.

• A point at x i at time t = 0 is displaced to r(x , t) = x i + y(x , t)j at time t > 0, where the

transverse displacement y(x , t) is to be determined, as illustrated.

• Consider the section of the string in the fixed region a  x  a+ h, where a and h are arbitrary

constants (with 0 < a < a+ h < L).

• The linear momentum of the section of the string in a  x  a+ h is

a+hZ

a

⇢
@r
@t

dx ,

where ⇢ is the constant line density of the string (with [⇢] = kgm�1).
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• The string o↵ers no resistance to bending (cf. a ruler) in the sense that the string to the right of

the point r(x , t) exerts at that point a tangential force T (x , t)⌧ (x , t) on the string to the left,

where T (x , t) is the tension ([T ] = N = kgm s�2) and ⌧ = r x/ |r x | is the unit tangent vector

pointing in the positive x-direction.

• Note that Newton’s third law implies that the string to the left of the point r(x , t) exerts at that
point a tangential force �T (x , t)⌧ (x , t) on the string to the right.

• Assuming the tension is so large that the e↵ects of gravity and air resistance may be neglected,
the forces acting on the ends of the section of string in a  x  a+ h are

(i) the force T (a+ h, t)⌧ (a+ h, t) exerted at RH end at r(a+ h, t) by the string to right of section;
(ii) the force �T (a, t)⌧ (a, t) exerted at LH end at r(a, t) by string to the left of section.

We illustrate the forces and where they act on the section in the schematic below.
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• We are now in a position to apply Newton’s Second Law, which states that the rate of change of

the linear momentum of the section of string in a  x  a+ h is equal to the net force acting on

it, so that

d
dt

0

@
a+hZ

a

⇢
@r
@t

dx

1

A = T (a+ h, t)⌧ (a+ h, t)� T (a, t)⌧ (a, t).

• Assuming r tt is continuous, Leibniz’s Integral Rule with a and a+ h constant gives

1
h

a+hZ

a

⇢
@2r
@t2

dx =
T (a+ h, t)⌧ (a+ h, t)� T (a, t)⌧ (a, t)

h
,

where we divided by h in anticipation of taking the limit h ! 0.

• To take the limit h ! 0,

apply the Fundamental Theorem of Calculus assuming r tt is continuous in a neighbourhood of a;

use the definition of
�
T⌧

�
x
assuming it to exist at a.

• We obtain thereby the partial di↵erential equation

⇢
@2r
@t2

=
@
@x

�
T⌧
�
.

156/308



• Recalling the definitions of r and ⌧ , it follows that

⇢
@2

y

@t2
j = @

@x

 
T i + Tyx j
(1 + y 2

x )
1/2

!
.

• But we are also assuming that the transverse displacement is small in the sense that the slope of

the string is small, i.e. |yx | ⌧ 1.

• Since a Taylor expansion gives

⇣
1 + y

2
x

⌘1/2
= 1 +

1
2
(yx)

2 + · · · for |yx | ⌧ 1,

to a first approximation, i.e. neglecting quadratic and higher order terms,

⇢
@2

y

@t2
j = @

@x

�
T i + Tyx j

�
.

• Remark: We call this PDE the linearized version of the nonlinear PDE above.
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• The x- and y -components of the linearized PDE are given by

@T
@x

= 0, ⇢
@2

y

@t2
=

@
@x

�
Tyx

�
.

• The x-component implies that the tension T is spatially uniform, but could vary with time t,

e.g. as when tuning a guitar string.

• We shall take the tension T to be constant, which is the case in many practical applications.

• The y -component then implies that

⇢
@2

y

@t2
= T

@2
y

@x2
,

giving the wave equation

@2
y

@t2
= c

2 @
2
y

@x2
,

where the wave speed (for reasons that will become apparent) is given by

c =

s
T

⇢
.

• The wave equation is a second-order linear PDE.
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4.2 Units and nondimensionalisation
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• Consider the units of the variables (x , t and y) and parameter (c) in the wave equation.

• Since

[ytt ] = m s�2, [yxx ] = mm�2,

it follows that h
c
2
i
=

[ytt ]
[yxx ]

= m2 s�2,

so that [c] = m s�1, i.e. c has the units of speed.

• Question: On what timescale does a displacement travel a distance L?

• Answer: If we nondimensionalize by scaling x = Lx̂ , t = t0t̂, y = Hŷ(x̂ , t̂ ), then the wave

equation becomes
H

t20

@2
ŷ

@ t̂2
=

Hc
2

L2

@2
ŷ

@x̂2
;

the terms balance giving
@2

ŷ

@ t̂2
=

@2
ŷ

@x̂2

provided t0 = L/c, which is therefore the timescale for a displacement to travel a distance L.
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4.3 Normal modes of vibration for a finite string

159/308



• Suppose an elastic string is stretched between x = 0 and x = L and the ends held fixed, so that

the small transverse displacement y(x , t) of the string is governed by the wave equation

@2
y

@t2
= c

2 @
2
y

@x2
for 0 < x < L,

with the boundary conditions

y(0, t) = 0 y(L, t) = 0.

• An experiment with a slinky suggests there exist discrete modes of vibration, as illustrated in the

schematic below.
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Suppose ylast ) : ① Ytt = c
'

ya, for oc a al

② ylo, t ) = 0
, yl ↳ f) = 0!

Let T = Flat HH to ⇒ Hall"lH=iF"HUH⇒ F
= Iffy

LHsind.teRHsind.si ⇒ LHS = RHsind.net
,
i. e. = -TE1R say .

Hence
,

F
"

t IF = 0 for o ca c L, L
''t tell = 0 for all f.

Bls ② ⇒ Flo) = 0
, FC4 = 0 because his nontrivial .

But we solved before this eigenvalue problem for F and 7 !



The nontrivial solutions are given for positive integers n by

Flat = 0 sin In )
,
I = (F)

2

,

where BE1R.

Then l " t In If = 0 ⇒ UH = last'It) taintIt), where ↳ OE1R

Combo ⇒ normal modes are given for n E INISOI by

ynlx.tt = sin (
"I) (and"It ) + basin ("It)),

where an = 8L and bn = 00 are real constants
.



• To analyse mathematically the possible modes of vibration, we seek nontrivial separable solutions

of the form y = F (x)G(t) for which the wave equation ytt = c
2
yxx gives

F (x)G 00(t) = c
2
F

00(x)G(t).

• Separating the variables for FG 6= 0, we obtain

F
00(x)
F (x)

=
G

00(t)
c2G(t)

.

• The LHS of this expression is independent of t, while the RHS is independent of x . Since the LHS

is equal to the RHS, they must both be independent of x and t, and therefore equal to a

constant, �� 2 R say.

• Hence,

F
00 + �F = 0 for 0 < x < L and G

00 + �c2G = 0 for all t.

• Since G(t) 6= 0 for some t for y nontrivial, the boundary conditions imply F (0) = 0 and F (L) = 0.
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• In summary, we have deduced that F (x) and � satisfy the ODE BVP given by

�F
00(x) = �F (x) for 0 < x < L,

with F (0) = 0 and F (L) = 0.

• We solved this problem in §3.4: the nontrivial solutions are given for positive integers n by

F (x) = B sin
⇣
n⇡x
L

⌘
, � =

⇣
n⇡
L

⌘2
,

where B is an arbitrary constant

• Since G
00 + �c2G = 0, the corresponding solution for G(t) is given by

G(t) = C cos
⇣
n⇡ct
L

⌘
+ D sin

⇣
n⇡ct
L

⌘
,

where C and D are arbitrary constants.

• Since T (x , t) = F (x)G(t), we conclude that the nontrivial separable solutions or the normal

modes are given for positive integers n by

yn(x , t) = sin
⇣
n⇡x
L

⌘⇣
an cos

⇣
n⇡ct
L

⌘
+ bn sin

⇣
n⇡ct
L

⌘⌘

where an and bn are arbitrary constants (with an = BC and bn = BD) and we have introduced the

subscript n to enumerate the countably infinite set of such solutions.

162/308



Notes

(1) The normal mode yn(x , t) is periodic in t with prime period

p =
2⇡

n⇡c/L
=

2L
nc

and frequency or pitch
1
p
=

nc

2L
.

(2) The first normal mode y1 is called the fundamental mode, with associated fundamental frequency

c/(2L). All of the other modes have a frequency that is an integer multiple of the fundamental

frequency.

(3) The predictions are consistent with the slinky experiment.

(4) The normal modes are an example of a standing wave because yn is equal to a function of x

multiplied by an oscillatory function of time.
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4.4 Initial boundary value problem for a finite string
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• Consider the initial boundary value problem for the small transverse displacement y(x , t) of an

elastic string given by the wave equation

@2
y

@t2
= c

2 @
2
y

@x2
for 0 < x < L, t > 0,

with the Dirichlet boundary conditions

y(0, t) = 0, y(L, t) = 0 for t > 0,

and the two initial conditions

y(x , 0) = f (x),
@y
@t

(x , 0) = g(x) for 0 < x < L,

where the initial transverse displacement f (x) and the initial transverse velocity g(x) are given.

• Remark: The total number of boundary (initial) conditions is equal to the number of spatial

(temporal) partial derivatives in the wave equation.

• We will use Fourier’s method to find a series solution.
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Step (I): Find all nontrivial separable solutions of the PDE and BCs

• We found above that these are the normal modes given for positive integers n by

yn(x , t) = sin
⇣
n⇡x
L

⌘⇣
an cos

⇣
n⇡ct
L

⌘
+ bn sin

⇣
n⇡ct
L

⌘⌘
,

where an and bn are arbitrary real constants.

Step (II): Apply the principle of superposition

• Since the wave equation and boundary conditions are linear and homogeneous, we can

superimpose the normal modes (assuming convergence) to obtain the general series solution

y(x , t) =
1X

n=1

yn(x , t) =
1X

n=1

sin
⇣
n⇡x
L

⌘⇣
an cos

⇣
n⇡ct
L

⌘
+ bn sin

⇣
n⇡ct
L

⌘⌘
.
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Step (III): Use the theory of Fourier series to satisfy the ICs

• The initial conditions can only be satisfied if

f (x) =
1X

n=1

an sin
⇣
n⇡x
L

⌘
for 0 < x < L,

g(x) =
1X

n=1

n⇡c
L

bn sin
⇣
n⇡x
L

⌘
for 0 < x < L.

• Hence, an is the nth Fourier coe�cient of the Fourier sine series for f , while n⇡cbn/L is the nth

Fourier coe�cient of the Fourier sine series for g , i.e., for positive integers n,

an =
2
L

LZ

0

f (x) sin
⇣
n⇡x
L

⌘
dx ,

n⇡c
L

bn =
2
L

LZ

0

g(x) sin
⇣
n⇡x
L

⌘
dx .
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Example: plucking a guitar string

⌅ If the midpoint of the string is drawn aside a distance h and released from rest, then

f (x) =

8
<

:
2hx/L for 0  x  L/2,

2h(L� x)/L for L/2  x  L,
g(x) = 0.

⌅ Since g(x) = 0 we have bn = 0, and integration by parts gives

an =
2
L

L/2Z

0

2hx
L

sin
⇣
n⇡x
L

⌘
dx +

2
L

LZ

L/2

2h(L� x)
L

sin
⇣
n⇡x
L

⌘
dx =

8h
n2⇡2

sin
⇣
n⇡
2

⌘
.

⌅ Since

sin
⇣
n⇡
2

⌘
=

8
<

:
0 for n = 2m, m 2 N \ {0},

(�1)m for n = 2m + 1, m 2 N,

we deduce that a series solution is given by

y(x , t) =
8h
⇡2

1X

m=0

(�1)m

(2m + 1)2
sin

✓
(2m + 1)⇡x

L

◆
cos

✓
(2m + 1)⇡ct

L

◆
,

so that p = 2L/c is the prime period of the oscillation.
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⌅ We plot below snapshots of the series solution truncated to 128 terms over the first half-period,

which illustrates the persistence of corners moving with speed c.

⌅

168/308



⌅ The mesh plot below shows the series solution again truncated to 128 terms, but this time over

the first period, with the orientation chosen for a good view.
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Example: hammering a piano string

⌅ Suppose we hit the string with a hammer so that

f (x) = 0, g(x) =

8
<

:
v for L1  x  L2,

0 otherwise,

where v , L1 and L2 are constants.

⌅ We have an = 0 and

n⇡c
L

bn =
2
L

L2Z

L1

v sin
⇣
n⇡x
L

⌘
dx =

2v
n⇡


cos

✓
n⇡L1

L

◆
� cos

✓
n⇡L2

L

◆�
.

⌅ It follows that a series solution is given by

y(x , t) =
2h
⇡2

1X

n=1

1
n2


cos

✓
n⇡L1

L

◆
� cos

✓
n⇡L2

L

◆�
sin
⇣
n⇡x
L

⌘
sin
⇣
n⇡ct
L

⌘
,

where h = vL/c and we see that the prime period of the oscillation is again p = 2L/c.

170/308



⌅ We plot below show snapshots of the evolution of the series solution truncated to 128 terms for

L1/L = 0.3, L2/L = 0.5 over the first half-period, which again illustrates the persistence of corners

moving with speed c.
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<latexit sha1_base64="D3OdJfJk63m03SVHj2prSLMNlnA=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKe6G4AMUAl48RjAPSZYwO5lNhszMLjO9QljyFV48KOLVz/Hm3zhJ9qCJBQ1FVTfdXUEsuAHX/XZyK6tr6xv5zcLW9s7uXnH/oGmiRFPWoJGIdDsghgmuWAM4CNaONSMyEKwVjG6nfuuJacMj9QDjmPmSDBQPOSVgpUfAN7gSn3nnvWLJLbsz4GXiZaSEMtR7xa9uP6KJZAqoIMZ0PDcGPyUaOBVsUugmhsWEjsiAdSxVRDLjp7ODJ/jEKn0cRtqWAjxTf0+kRBozloHtlASGZtGbiv95nQTCSz/lKk6AKTpfFCYCQ4Sn3+M+14yCGFtCqOb2VkyHRBMKNqOCDcFbfHmZNCtlr1q+uq+WatdZHHl0hI7RKfLQBaqhO1RHDUSRRM/oFb052nlx3p2PeWvOyWYO0R84nz+pWI8D</latexit>

t = 3p/16

<latexit sha1_base64="Dk4EHeUNGl1XneMyKgZdIzWNTks=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKe5q8AEKAS8eI5iHJEuYncwmQ2Zml5lZISz5Ci8eFPHq53jzb5wke9DEgoaiqpvuriDmTBvX/XZyS8srq2v59cLG5tb2TnF3r6GjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLyd+M0nqjSL5IMZxdQXuC9ZyAg2Vno06AadxSfeebdYcsvuFGiReBkpQYZat/jV6UUkEVQawrHWbc+NjZ9iZRjhdFzoJJrGmAxxn7YtlVhQ7afTg8foyCo9FEbKljRoqv6eSLHQeiQC2ymwGeh5byL+57UTE176KZNxYqgks0VhwpGJ0OR71GOKEsNHlmCimL0VkQFWmBibUcGG4M2/vEgap2WvUr66r5Sq11kceTiAQzgGDy6gCndQgzoQEPAMr/DmKOfFeXc+Zq05J5vZhz9wPn8AquCPBA==</latexit>

t = 4p/16

<latexit sha1_base64="cC9rnCOIwxYi8CR391gJkL1BcMs=">AAAB8HicbVDJSgNBEK2JW4xb1KOXxiB4ijMSXEAh4MVjBLNIMoSeTk/SpHtm6K4RwpCv8OJBEa9+jjf/xs5y0OiDgsd7VVTVCxIpDLrul5NbWl5ZXcuvFzY2t7Z3irt7DROnmvE6i2WsWwE1XIqI11Gg5K1Ec6oCyZvB8GbiNx+5NiKO7nGUcF/RfiRCwSha6QHJNakkJ95Zt1hyy+4U5C/x5qQEc9S6xc9OL2ap4hEySY1pe26CfkY1Cib5uNBJDU8oG9I+b1saUcWNn00PHpMjq/RIGGtbEZKp+nMio8qYkQpsp6I4MIveRPzPa6cYXviZiJIUecRmi8JUEozJ5HvSE5ozlCNLKNPC3krYgGrK0GZUsCF4iy//JY3TslcpX95VStWreRx5OIBDOAYPzqEKt1CDOjBQ8AQv8Opo59l5c95nrTlnPrMPv+B8fAOsaI8F</latexit>

t = 5p/16

<latexit sha1_base64="ZlGI/Rw1rYsv94lgfBrNbAGWjY4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKe5KfIFCwIvHCOYhyRJmJ7PJkJnZZWZWCEu+wosHRbz6Od78GyfJHjSxoKGo6qa7K4g508Z1v53c0vLK6lp+vbCxubW9U9zda+goUYTWScQj1QqwppxJWjfMcNqKFcUi4LQZDG8nfvOJKs0i+WBGMfUF7ksWMoKNlR4NukFn8Yl33i2W3LI7BVokXkZKkKHWLX51ehFJBJWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LJRZU++n04DE6skoPhZGyJQ2aqr8nUiy0HonAdgpsBnrem4j/ee3EhJd+ymScGCrJbFGYcGQiNPke9ZiixPCRJZgoZm9FZIAVJsZmVLAhePMvL5LGadmrlK/uK6XqdRZHHg7gEI7Bgwuowh3UoA4EBDzDK7w5ynlx3p2PWWvOyWb24Q+czx+t8I8G</latexit>

t = 6p/16

<latexit sha1_base64="CLO+LrWS4fHzxmwj3/814Sm7QHI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqe5KqQoKBS8eK9gPaZeSTbNtaJJdklmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhALbsB1v53cyura+kZ+s7C1vbO7V9w/aJoo0ZQ1aCQi3Q6IYYIr1gAOgrVjzYgMBGsFo9up33pi2vBIPcA4Zr4kA8VDTglY6RHwDa7GZ161Vyy5ZXcGvEy8jJRQhnqv+NXtRzSRTAEVxJiO58bgp0QDp4JNCt3EsJjQERmwjqWKSGb8dHbwBJ9YpY/DSNtSgGfq74mUSGPGMrCdksDQLHpT8T+vk0B46adcxQkwReeLwkRgiPD0e9znmlEQY0sI1dzeiumQaELBZlSwIXiLLy+T5nnZq5Sv7iul2nUWRx4doWN0ijx0gWroDtVRA1Ek0TN6RW+Odl6cd+dj3ppzsplD9AfO5w+veI8H</latexit>

t = 7p/16

<latexit sha1_base64="NBhW6CyLa1QSagpaCMAKrv6N99w=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU92VYhUUCl48VrAf0i4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGN1O/dYTVZpF8sGMY+oLPJAsZAQbKz0adIOq8Zl30SuW3LI7A1omXkZKkKHeK351+xFJBJWGcKx1x3Nj46dYGUY4nRS6iaYxJiM8oB1LJRZU++ns4Ak6sUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhJd+ymScGCrJfFGYcGQiNP0e9ZmixPCxJZgoZm9FZIgVJsZmVLAheIsvL5PmedmrlK/uK6XadRZHHo7gGE7BgyrU4A7q0AACAp7hFd4c5bw4787HvDXnZDOH8AfO5w+xAI8I</latexit>

t = 8p/16

<latexit sha1_base64="SbM3xtpIHKl16hjoDBJm5EBtT7Q=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqe5K0QoKBS8eK9gPaZeSTbNtaJJdklmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhALbsB1v53cyura+kZ+s7C1vbO7V9w/aJoo0ZQ1aCQi3Q6IYYIr1gAOgrVjzYgMBGsFo9up33pi2vBIPcA4Zr4kA8VDTglY6RHwDa7GZ95Fr1hyy+4MeJl4GSmhDPVe8avbj2gimQIqiDEdz43BT4kGTgWbFLqJYTGhIzJgHUsVkcz46ezgCT6xSh+HkbalAM/U3xMpkcaMZWA7JYGhWfSm4n9eJ4Gw6qdcxQkwReeLwkRgiPD0e9znmlEQY0sI1dzeiumQaELBZlSwIXiLLy+T5nnZq5Sv7iul2nUWRx4doWN0ijx0iWroDtVRA1Ek0TN6RW+Odl6cd+dj3ppzsplD9AfO5w+yiI8J</latexit>
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⌅ The mesh plot below shows the series solution again truncated to 128 terms, but this time over

the first period, with the orientation chosen for a good view.

t/p

<latexit sha1_base64="QH9XOfXsAWQjVkSUtjQ949pvLZU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02koN6KXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++5FrI2L1gJOE+xEdKhEKRtFK93iW9MsVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOq16tenVXq9Sv8ziKcATHcAoeXEAdbqEBTWAwhCd4gVdHOs/Om/O+aC04+cwh/ILz8Q0gBI23</latexit>

x/L

<latexit sha1_base64="0NVldua9g9yyoCG8QLqnihE/g7o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe8koHZBGwuLiOYDkiPsbTbJkr29Y3dODEd+go2FIrb+Ijv/jZvkCo0+GHi8N8PMvCCWwqDrfjm5peWV1bX8emFjc2t7p7i71zBRohmvs0hGuhVQw6VQvI4CJW/FmtMwkLwZjK6mfvOBayMidY/jmPshHSjRF4yile4eT266xZJbdmcgf4mXkRJkqHWLn51exJKQK2SSGtP23Bj9lGoUTPJJoZMYHlM2ogPetlTRkBs/nZ06IUdW6ZF+pG0pJDP150RKQ2PGYWA7Q4pDs+hNxf+8doL9cz8VKk6QKzZf1E8kwYhM/yY9oTlDObaEMi3srYQNqaYMbToFG4K3+PJf0jgte5XyxW2lVL3M4sjDARzCMXhwBlW4hhrUgcEAnuAFXh3pPDtvzvu8NedkM/vwC87HN+99jZc=</latexit>

y

h

<latexit sha1_base64="sj1IjkWA1ZehEgkem0ypPhAAkrA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4r2A9IQ9lsN+3SzW7YnQgh5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YSK4Adf9dipr6xubW9Xt2s7u3v5B/fCoa1SqKetQJZTuh8QwwSXrAAfB+olmJA4F64XTu5nfe2LacCUfIUtYEJOx5BGnBKzkDyJNaJ4V+aQY1htu050DrxKvJA1Uoj2sfw1GiqYxk0AFMcb33ASCnGjgVLCiNkgNSwidkjHzLZUkZibI5ycX+MwqIxwpbUsCnqu/J3ISG5PFoe2MCUzMsjcT//P8FKLrIOcySYFJulgUpQKDwrP/8YhrRkFklhCqub0V0wmxKYBNqWZD8JZfXiXdi6Z32bx5uGy0bss4qugEnaJz5KEr1EL3qI06iCKFntErenPAeXHenY9Fa8UpZ47RHzifP/1ukb0=</latexit>
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Notes

• Both the guitar solution and piano solution contain persistent corners travelling with speed c.

• This means that neither solution can be twice continuously di↵erentiable with respect to x or t,

and hence a so-called classical solution of the wave equation.

• However, if we were to modify the initial data by smoothing o↵ the corners and jump

discontinuities in small neighbourhoods of these irregularities in such a way that the new initial

data is infinitely di↵erentiable, then the new solutions would also be infinitely di↵erentiable, and

hence classical solutions, and they would be “close” in some sense to the original solutions.

• Hence, we do not want to discount the series solutions we have found, but to view them instead

as motivation to weaken the sense in which a function can be a solution of a PDE — the resulting

notion of a weak solution forms the basis for the modern theory of PDEs that can be studied

further on in the course in e.g. B4.3 and B5.2.

• The di↵erences in the makeup of the normal modes for the guitar and piano solutions contribute

to the di↵erent timbres of the musical instruments
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4.5 Conservation of energy
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• An elastic string is stretched to a length L, line density p and tensionT along
the x - axis and its ends held fixed at a = 0 and a =L .

"
Tipo

• This is the so-called reference configuration before the string is
deformed to have its initial transverse displacement that and imparted
with its initial transverse velocity glob at time t = 0.

Reference configuration : • on

+ In p t t
t pphtInitial configuration 4=9 : . .

^ In A
Current configurationHoot. . t

k
k t

• Measure elastic potential energy of string relative to resonance configuration .



• IBVP for yla, t) : ① P4H. = T you for oc a a L, t so,

② ylo.tl = 0, YIL, t) = 0 for too,
③ yl 401 = flat, If 1401 = 941 for Ocd CL .

• HE string = { tplrttdx = of
"

I pyt
'

da ( since I = + yI)

• Elastic PE string = T ( I lit bail "'da - L) = TO51HY;)
'"
- Ida

.

tension extension

• Transverse displacement small ⇒ I Hysi)
" '
= I + kyoith.at

.
as 1yd cat

⇒ Elastic PE = of Ty,
'
da to a first approx.

Definition : Energy of string Elt) = It f
't ITya

'DX
'

KE PE



Proposition : If yla.tt satisfies① e②, then the energy E1H is constant
.

Proof : DEA = { If I tpyfx I Ty;) da ( by LIN with lout.)

= }
"

ptftytt + TK9N. DX

=/ Tyfy# + Ty, you, da ( by①)

=} ITyt 4×1 " DX
a=L

= ITYtha ]x=o

=
0 ( by ②)

a



• Recall Fourier 's method ⇒

Y=IIbn , yn = sin In )(ancosfnIY-ibns.in/hIt ))
where

II. an In ) = t'"

II "IhsinI" ) = yea , } two each
so that

an = If 'µxIsinl"I" )d×
"I bn = If 'gHsin( "I' )dX



• Energy E1H =of Ephie kTyI da conserved
, and therefore

set by the Ics : Elt ) = Elo) = It pgl a)
'

t k Tf 'ta)
'
DX ⑨

• since
yn satisfies ① e④, its energy EN1H : =ofEpyn,# ITyn,Ida

is conserved
,
and hence

EN1H = EN14 = It n
,
dad't k Ty
,
kid'dx= #("Ibn)'t HIT

④
• Qn : How is the energy in the string related to the energies in the normal modes ?

t.tn : Relate E1H and EN1H via Pantera 's identity as follows .



{ Epglol'da = EP1 1FI "Yousif "1) gla) da
= Ep I.

,

"

I buy
'

glassint ) da la;I¥⇒,
= Ip (Y bn ) ( n bn .E) 16g dote on)

= II. I out . ④

similarly
,
IETthatda = Ii II In an)'④

⑥-④ ⇒ E1H = II En LH , i.e. the energy in the string is equal
to the sumof the energies in thenormal mods !

No : These are set at t = 0 !

N8 : please watch
"Waves e Resonance

"

by Jon Chapman - MIYoutube .



• An elastic string is stretched between x = 0 and x = L along the x-axis to a line density ⇢ and a

tension T , so that its small transverse displacement y(x , t) is governed by the wave equation

⇢
@2

y

@t2
= T

@2
y

@x2
for 0 < x < L, t > 0,

with the Dirichlet boundary conditions

y(0, t) = 0, y(L, t) = 0 for t > 0,

and the initial conditions

y(x , 0) = f (x),
@y
@t

(x , 0) = g(x) for 0 < x < L,

where the initial transverse displacement is f (x) and the initial transverse velocity is g(x).

• Remark: Recall that the point of the string that lies at x i in its so-called reference configuration

is displaced transversely to the point with position vector r(x , t) = x i+ y(x , t)j. When we impose

the initial conditions, we must deform the string from its reference configuration along the x-axis

to have transverse displacement y(x , 0) = f (x) and we must impart on the string the transverse

velocity given by yt(x , 0) = g(x).
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• The kinetic energy of the string is given by

LZ

0

1
2
⇢ |r t |2 dx =

LZ

0

1
2
⇢y 2

t dx .

• The elastic potential energy of the string is the product of tension and extension, and therefore

given by

T

0

@
LZ

0

|r x | dx � L

1

A = T

LZ

0

⇣
1 + y

2
x

⌘ 1
2 � 1 dx .

• Since the transverse displacement is small in the sense that |yx | ⌧ 1, a Taylor expansion gives

⇣
1 + y

2
x

⌘ 1
2 � 1 =

1
2
y
2
x + · · · .

• Hence, to a first approximation (i.e. neglecting cubic and higher order terms), the elastic potential

energy is given by
LZ

0

1
2
Ty

2
x dx .
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• Definition: The energy of the string is defined to be the sum of its kinetic and elastic potential

energies, and given by

E(t) =

LZ

0

1
2
⇢y 2

t +
1
2
Ty

2
x dx .

• Proposition: If y(x , t) satisfies the wave equation and the boundary conditions, then the energy

E(t) is constant for t > 0.
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Proof:

⌅ The idea is to show that the derivative of E(t) is equal to zero.

⌅ By Leibniz’s Integral Rule,

dE
dt

=

LZ

0

@
@t

✓
1
2
⇢y 2

t +
1
2
Ty

2
x

◆
dx =

LZ

0

⇢ytytt + Tyxyxt dx .

⌅ Substituting for ⇢ytt from the wave equation, we deduce that

dE
dt

=

LZ

0

Tytyxx + Tyxyxt dx =

LZ

0

(Tytyx)x dx = [Tytyx ]
x=L

x=0 .

⌅ Since each of the boundary conditions may be di↵erentiated with respect to t to give yt(0, t) = 0

and yt(L, t) = 0 for t > 0, we deduce that dE/dt = 0. ⌅
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Notes

(1) We have shown that the energy of the elastic string is conserved during its motion, with the

kinetic and elastic potential energy being transferred back and forth as the string oscillates.

(2) The energy of the string is set by the initial conditions to be given by

E(t) = E(0) =

LZ

0

1
2
⇢(g(x))2 +

1
2
T (f 0(x))2 dx .

(3) The energy of the nth normal mode yn(x , t) is given by

En(t) =

LZ

0

1
2
⇢

✓
@yn
@t

◆2

+
1
2
T

✓
@yn
@x

◆2

dx .

Since yn(x , t) satisfies the wave equation and the boundary conditions by construction, it follows

that its energy is conserved during its motion and given by

En(t) = En(0) =
n
2⇡2⇢c2b2

n

4L
+

n
2⇡2

Ta
2
n

4L
,

where in the last equality we substituted for yn(x , 0) and integrated.
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(4) Recalling that

f (x) =
1X

n=1

an sin
⇣
n⇡x
L

⌘
for 0 < x < L,

g(x) =
1X

n=1

n⇡c
L

bn sin
⇣
n⇡x
L

⌘
for 0 < x < L

and assuming convergence, Parseval’s Identity for g and f
0 imply that

LZ

0

1
2
⇢g(x)2 +

1
2
Tf

0(x)2 dx =
1X

n=1

✓
n
2⇡2⇢c2b2

n

4L
+

n
2⇡2

Ta
2
n

4L

◆
;

hence,

E(t) = E(0) =
1X

n=1

En(0) =
1X

n=1

En(t),

i.e. the energy of the elastic string is made up of that in its normal modes.
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4.6 Uniqueness Theorem
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Uniqueness Theorem

There is at most one solution to the IOVP for ylx.tl given by
① Ytf = c

'
You for Ocd CL, to 0,

② Y10, t ) = 0
, Y1 4TI = 0 fat so,

③ YL40) = flat, ytla,o) = glad for 0C a 4 .

Proof : let w=y - j be the difference between two solutions y and 5.

by linearity, w satisfies the IOVP
① wtf = I was, for oc all, t > 0,
④ who, H = 0, ull, tt = 0 for t > 0,

③ who
, ol = 0

, wt Ld, 01 = 0 for 0 a × a L .



N8 : Expect w = 0 ton of aEL,
t20 on physical grounds .

Let E1H = oftpwt '+ ITwa 'dx be energy associated with w .

④ e④ ⇒ E1H = EL0) for tzo by the Proposition of §4.5

③ ⇒ EL01 = 0

Hence
, of

"

I put't ITwsidx = E1H = Elo) = 0 pm t 70.

Hence
, wx = we =

0 on R= { Htt : OE2E 4TZ03 ( assuming we and wa
are cts there)

Since w=o on boundary of R by④ and④
,
w = 0 an R (assuming w d's there).



Uniqueness Theorem:

• There is at most one solution to the IBVP for y(x , t) given by

@2
y

@t2
= c

2 @
2
y

@x2
for 0 < x < L, t > 0,

with

y(0, t) = 0, y(L, t) = 0 for t > 0,

and

y(x , 0) = f (x),
@y
@t

(x , 0) = g(x) for 0 < x < L,

where f (x) and g(x) are given.

Proof:

⌅ Our strategy is to show that the di↵erence between any two solutions much vanish.

⌅ We suppose that y(x , t) and ey(x , t) are solutions and let

w(x , t) = y(x , t)� ey(x , t).
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⌅ By linearity, w(x , t) satisfies the wave equation

@2
w

@t2
= c

2 @
2
w

@x2
for 0 < x < L, t > 0,

with the boundary conditions

w(0, t) = 0, w(L, t) = 0 for t > 0,

and the initial conditions

w(x , 0) = 0,
@w
@t

(x , 0) = 0 for 0 < x < L.

⌅ Remark: Since w is the small transverse displacement of an elastic string whose initial transverse

displacement and velocity are everywhere zero and whose ends are fixed thereafter, on physical

grounds we expect the string to remain stationary along the x-axis, i.e. w = 0 for 0  x  L and

t � 0, which is what we need to show to prove uniqueness.
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⌅ The trick is to analyse the energy E(t) associated with w(x , t), which is given by

E(t) =

LZ

0

1
2
⇢w 2

t +
1
2
Tw

2
x dx .

⌅ Since w satisfies the wave equation and homogeneous Dirichlet boundary conditions, the energy

E(t) is conserved.

⌅ But E(0) = 0 by the initial conditions, so

LZ

0

1
2
⇢w 2

t +
1
2
Tw

2
x dx = 0 for t � 0.

⌅ We deduce that wt = wx = 0 on R = {(x , y) : 0  x  L, t � 0} (assuming wt and wx are

continuous there).

⌅ Since the boundary and initial conditions imply that w = 0 on the boundary of R, we deduce that

w = 0 or y = ey on R. ⌅
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