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1 Introduction
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1.1 Fourier series
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Fourier’s claim

• Fourier (1807): “every” real-valued function defined on a finite interval can be expanded as an

infinite series of elementary trigonometric functions — cosines and sines.

• Equivalent claim: given a function f : R→ R that is periodic with period 2π, there exist

constants a0, a1, . . . and b1, b2, . . . s.t. f may be expanded

f (x) =
a0

2
+
∞∑
n=1

(
an cos(nx) + bn sin (nx)

)
for x ∈ R. (?)

• The infinite trigonometric series in (?) is the Fourier series for f .

• Fourier’s claim raises two fundamental questions:

Question 1: If (?) is true, can we find an and bn in terms of f ?

Question 2: With these an and bn, when is (?) true?
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Consequences: a mathematical revolution

• The need for rigorous mathematical analysis to address these questions led to a surprisingly large

proportion of material covered in prelims, part A and beyond.

• The implications of Fourier’s claim for practical applications were no less powerful or far-ranging

and continue to be exploited today in numerous fields.

• In this course we introduce fundamental results for pointwise convergence of Fourier series.

• We then follow in Fourier’s footsteps by using them to construct solutions to fundamental

problems involving the three most ubiquitous PDEs in mathematics, science and engineering: the

heat equation, the wave equation and Laplace’s equation.

• We begin with a motivational example illustrating the existence of a convergent Fourier series.
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Example: existence of a convergent Fourier series

• Recall from Analysis I:

exp(z) =
∞∑
n=0

zn

n!
for z ∈ C.

• If z = exp(iθ) = cos θ + i sin θ, where θ ∈ R, then

Re
(

exp(z)
)

= Re
(

exp(cos θ) exp(i sin θ)
)

= exp(cos θ) cos(sin θ),

and

Re
(
zn
)

= Re
(

exp(inθ)
)

= cos nθ.

• Hence, taking the real part of the power series for exp(z) gives

exp(cos θ) cos(sin θ) =
∞∑
n=0

cos nθ

n!
for θ ∈ R.

• This is an example of a Fourier cosine series. �

3/308



• Question: How would you generate a convergent Fourier sine series?

• Answer: Taking instead the imaginary part we obtain

exp(cos θ) sin(sin θ) =
∞∑
n=1

sin nθ

n!
for θ ∈ R.

• Remark: The method is of limited applicability for two reasons:

(1) it can only generate the Fourier series of an infinitely differentiable real-valued function;

(2) how should the complex-valued function be chosen to obtain the Fourier series that converges to a

given real-valued function?

• At the heart of this course is a much simpler and more powerful method pioneered by Fourier that

allows a much wider class of functions to be represented as convergent Fourier series.
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1.2 Ordinary differential equations
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• Here we revise essential background concerning ordinary differential equations.

• Definition: An ordinary differential equation (ODE) is an equation involving a function of one

variable and at least one of its derivatives, i.e. an ODE for the function y(x) may be written in

the form

G

(
x , y(x),

dy

dx
, . . . ,

dny

dxn

)
= 0 (†)

for some function G and some positive integer n.

• Definition: The function y is called the dependent variable and x the independent variable.

• Definition: The order of an ODE is the order of the highest order derivative that it contains,

e.g. the order of (†) is n.

• Definition: An ODE is linear if the dependent variable and its derivatives appear in terms with

degree at most one. An equation that is not linear is nonlinear.
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• Definition: The most general nth-order linear ODE for y(x) takes the form

Ly(x) = f (x),

where f (x) is a given forcing function and L is the linear differential operator defined by

Ly(x) = an(x)
dny

dxn
+ · · ·+ a1(x)

dy

dx
+ a0(x)y(x)

for some coefficients a0(x), a1(x), . . . , an(x) with an(x) 6= 0.

• Definition: The ODE Ly(x) = f is called homogeneous if the right-hand side f is identically zero

and if not then it is called inhomogeneous.

• Remark: Since differentiation is distributive, the differential operator L is linear in the sense that

L
[
α1y1(x) + α2y2(x)

]
= α1Ly1(x) + α2Ly2(x)

for any constants α1, α2 ∈ R and any (suitably differentiable) functions y1(x), y2(x).

• Definition: A consequence of the linearity of L is the Principle of Superposition that the linear

combination of two or more solutions is also a solution for a linear homogeneous ODE — but not

for a linear inhomogeneous ODE nor a nonlinear ODE.

6/308



• In Introductory Calculus you studied methods to find the general solution of first- and

second-order linear ODEs, e.g.

the integrating factor method for first-order linear inhomogeneous ODEs;

reduction of order for second-order linear homogeneous ODEs;

methods for second-order linear inhomogeneous ODEs with constant coefficients.

• Linearity of L played a key role: the general solution of L(y) = f is the superposition of the n

linearly independent solutions of the homogeneous problem, together with any solution of the

inhomogeneous problem.

• Exploitation of linearity will play a similar fundamental role in the methods we shall use to solve

the heat equation, the wave equation and Laplace’s equation.
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• You applied your toolbox of ODE methods to solve

initial value problems (IVPs) in which an nth-order ODE is supplemented by n initial conditions at

some point x0;

boundary value problems (BVPs) in which an nth-order ODE is supplemented by a total of n

boundary conditions at two distinct points between which the ODE pertains.

• In general the method was to determine the general solution of the ODE and then to try to

choose the n arbitrary constants that it contains to satisfy the n initial or boundary conditions.

• This does not work in general because a solution may not exist or if a solution exists it may not be

unique.
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Example: non-existence for an ODE BVP

� Consider the boundary value problem for y(x) given by

d2y

dx2
+ y = 0 for 0 < x < 2π,

with y(0) = 1 and y(2π) = 0.

� The ODE has general solution

y(x) = A cos x + B sin x ,

where A and B are arbitrary constants.

� The boundary conditions then require

A = 1 and A = 0,

so that the constants A and B cannot be chosen to satisfy them.

� Hence, there is no solution. �
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Example: non-uniqueness for an ODE BVP

� Consider the boundary value problem for y(x) given by

d2y

dx2
+ y = 0 for 0 < x < 2π,

with y(0) = 0 and y(2π) = 0.

� Again the ODE has general solution

y(x) = A cos x + B sin x ,

where A and B are arbitrary constants.

� But now the boundary conditions require

A = 0 and A = 0,

so that B is left undetermined.

� Hence, the solution is not unique. �
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• Questions of existence and uniqueness of ordinary differential equations will be a central theme in

e.g. part A Differential Equations 1.

• Question: Why discuss here the issues of existence and uniqueness?

• Answer: Because we face precisely the same issues when solving a partial differential equation, so

we should keep them in mind.
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1.3 Partial differential equations
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• We now introduce partial differential equations building on the terminology outlined in §1.2.

• Definition: A partial differential equation (PDE) is an equation for an unknown function of two or

more independent variables that involves at least one partial derivative of that function. The

unknown function is called the dependent variable.

• Definition: The order of a PDE is the order of the highest order partial derivative that it contains.

• Definition: A PDE is linear if the dependent variable and its partial derivatives appear in terms

with degree at most one. An equation that is not linear is nonlinear.

• In this course we focus on the case in which there are two independent variables: (x , y) or (x , t),

where in applications x and y often represent spatial variables and t often represents time.
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Example: general and linear first-order PDEs

� A first-order PDE for u(x , y) may be written in the form

G(x , y , u, ux , uy ) = 0

for some function G , where here and hereafter we use subscripts as shorthand for partial

derivatives, i.e. ux = ∂u/∂x etc.

� The most general first-order linear PDE for u(x , y) is an equation of the form

a1ux + a2uy + a3u = f ,

where a1, a2, a3 and f are given functions of (x , y). The PDE is homogeneous if f = 0 and

inhomogeneous otherwise. �
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Example: general and linear second-order PDEs

� A second-order PDE for u(x , y) may be written in the form

H(x , y , u, ux , uy , uxx , uxy , uyy ) = 0

for some function H.

� The most general second-order linear PDE for u(x , y) is an equation of the form

a1uxx + a2uxy + a3uyy + a4ux + a5uy + a6u = f ,

where a1, a2, . . . , a6 and f are given functions of (x , y). The PDE is homogeneous if f = 0 and

inhomogeneous otherwise. �
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Example: some important PDEs

� There are many important PDEs, e.g.

transport equation for u(x , t): ut + xtux = 0;

inviscid Burger’s equation for u(x , t): ut + uux = 0;

heat equation for u(x , t): ut = κuxx ;

Fisher’s equation for u(x , t): ut = κuxx + ru(1− u);

viscous Burger’s equation for u(x , t): ut + uux = νuxx ;

porous medium equation for u(x , t): ut = (umux)x ;

thin-film equation for u(x , t): ut + (umuxxx)x = 0;

wave equation for u(x , t): utt = c2uxx ;

plate equation for u(x , t): utt + α2uxxxx = 0;

Eikonal equation for u(x , y): u2
x + u2

y = 1;

Laplace’s equation for u(x , y): uxx + uyy = 0;

Poisson’s equation for u(x , y): uxx + uyy = f (x , y).

� Exercise: What is the order of each PDE? Which are linear/nonlinear? �
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Example: some more important PDEs

� There are many more important PDEs studied throughout the mathematics course using a range

of mathematical techniques, e.g.

Euler’s equations for inviscid fluid flow (A10);

Schrodinger’s equation for the wave function in quantum mechanics (A11);

Euler-Lagrange equations in the calculus of variations (ASO);

Navier-Stokes equations for viscous fluid flow (B5.3);

Turing’s reaction-diffusion equations for pattern formation (B5.5);

Maxwell’s equations of electromagnetism (B7.2);

Black-Scholes’ equation for derivative pricing (B8.3).

� Many of these PDEs may be written concisely using the vector differential operators, which are

introduced in Multivariable Calculus. �
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The mathematical modelling process

• The PDEs in the last two examples encode a model of a physical or real-world process and arise as

part of the mathematical modelling process:

(1) Start from a physical or real-world problem.

(2) Use physical or non-physical principles to translate it into mathematics — this involves developing

appropriate mathematical technology.

(3) Use empirical laws to derive a soluble mathematical model.

(4) Solve the mathematical model — again this involves developing mathematical techniques.

(5) Use mathematical results to make predictions about the real system — usually these can only be

sensible if there exists a unique solution to the underling mathematical problem.

• In this course we will illustrate the mathematical modelling process by

deriving from physical principles the heat equation, the wave equation and Laplace’s equation;

using Fourier series methods to construct and analyse solutions to physical problems involving them.
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• The physical problems we shall consider will often take the form of

initial boundary value problems (IBVPs) for the heat and wave equations in which suitable boundary

conditions and initial conditions will need to be prescribed;

boundary value problems (BVPs) for Laplace’s equation in which a suitable boundary condition will

need to be prescribed.

• In each physical problem we will:

establish existence by constructing explicitly a solution;

prove uniqueness by showing that the difference between any two solutions much vanish.

• We will demonstrate thereby that we have correctly specified the number and form of boundary

and/or initial conditions.

• The course will finish with a brief introduction to the notion of well-posedness of a PDE problem.

• We wrap up the Introduction with an example of an IBVP for the heat equation that illustrates the

connection to Fourier series and the practical need to answer the fundamental questions in §1.1.

18/308



Example: IBVP for the heat equation

� In a suitably scaled mathematical model for heat conduction along a thin metal wire, the

temperature T (x , t) satisfies the heat equation

∂T

∂t
=
∂2T

∂x2
for 0 < x < π, t > 0,

with the boundary conditions

T (0, t) = 0, T (π, t) = 0 for t > 0,

and the initial condition

T (x , 0) = exp(cos x) sin (sin x) for 0 < x < π,

where x measures distance along the centreline of the wire and t measures time.

� We delay a description of the modelling assumptions underlying the mathematical model that is

encoded in this IBVP.
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� We can verify by substitution that the series solution

T (x , t) =
N∑

n=1

bn exp(−n2t) sin(nx)

satisfies the heat equation and boundary conditions for b1, . . . , bn ∈ R and positive integers N.

� Question: how should we pick N and the constants bn?

� Answer: Recalling from §1.1 that

exp(cos θ) sin(sin θ) =
∞∑
n=1

sin nθ

n!
for θ ∈ R,

we see that the series solution satisfies the initial condition if bn = 1/n! and N =∞.

� Hence, a solution of the IBVP would appear to be

T (x , t) =
∞∑
n=1

1

n!
exp(−n2t) sin (nx).
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� LHS: initial profile (black line); snap shots of series solution truncated to 5 terms for

t = 0.2, 0.4, . . . , 2 (red lines); and leading term of series solution, sin(x) exp(−t), for

t = 1, 1.2, . . . , 2 (dashed lines).

� RHS: the series solution truncated to 5 terms oriented to give a good view.

� Question: But what about other initial conditions? �
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Notes

(1) Can check directly that the infinite series solution satisfies the boundary and initial conditions.

(2) Comparison methods from Analysis II may be used to show that for t > 0 all of the partial

derivatives of the infinite series solution exist and may be computed by term-by-term

differentiation, so that the infinite series is indeed a solution of the IBVP.

(3) This means that truncating it after a sufficiently large number of terms will result in a good

approximation to the solution.

(4) In this course our focus will be on the formal derivation — via Fourier series methods — of

infinite series solutions, rather than on addressing the delicate issues concerning their convergence.
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2 Fourier series
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2.1 Periodic, even and odd functions
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Periodic functions

• The building blocks that form the partial sums of a Fourier series are cosines and sines.

• Not only are cosines and sines infinitely differentiable on R, their graphs have important periodicity

and symmetry properties: cos is an even periodic function, while sin is an odd periodic function.

• We therefore start with a refresher of what it means for a function to have these properties.

• Definition: The function f : R→ R is a periodic function if there exists p > 0 such that

f (x + p) = f (x) for all x ∈ R.

In this case p is a period for f and f is called p–periodic. A period is not unique, but if there

exists a smallest such p it is called the prime period.
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Notes

(1) If f (x) = c for x ∈ R, where c is a real constant, then f is a p-periodic function for each p > 0,

so does not have a prime period.

(2) Examples of periodic functions are cos x , sin x with prime period 2π and cos(πx/L), sin(πx/L)

with prime period 2L for each L > 0. Examples of non-periodic functions are x and x2.

(3) As illustrated in the figure below the graph of a p-periodic function f repeats every p along the

x-axis because it is invariant to the translation (x , y) 7→ (x + p, y).
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Periodic extensions

• If a function is defined on a half-open interval of length p > 0, i.e. on (α, α + p] or [α, α + p) for

some α ∈ R, then we can extend it to a unique periodic function by demanding it to be periodic

with period p.

• Formally, we define as follows the periodic extension of such a function.

• Definition: The periodic extension of the function f : (α, α + p]→ R is the function F : R→ R
defined by

F (x) = f
(
x −m(x)p

)
for x ∈ R,

where, for each x ∈ R, m(x) is the unique integer such that x −m(x)p ∈ (α, α + p].
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Properties of periodic functions

• The following properties follow from the definition of a periodic function and you may find it

instructive to interpret them geometrically.

• If f and g are p–periodic, then:

(1) f , g are np–periodic for all n ∈ N \ {0};

(2) αf + βg are p–periodic for all α, β ∈ R;

(3) fg is p–periodic;

(4) f (λx) is p/λ–periodic for all λ > 0;

(5)
p∫
0

f (x)dx =
α+p∫
α

f (x) dx for all α ∈ R.

• Remark: The prime period can change or cease to exist when multiplying or summing periodic

functions. For example, cos x and sin x have prime period 2π, while cos2 x and sin2 x have prime

period π and cos2 x + sin2 x = 1 has no prime period.
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Even and odd functions

• Definition: The function g : R→ R is even if

g(x) = g(−x) for all x ∈ R.

• Definition: The function h : R→ R is odd if

h(x) = −h(−x) for all x ∈ R.

Notes:

(1) Examples of even functions are xn for positive even integers n (hence the name even function) and

cos(λx) for λ ∈ R. Examples of odd functions are xn for positive odd integers n (hence the name

odd function) and sin(λx) for λ ∈ R.
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(2) The graph of an even function g is symmetric about the y -axis because it is invariant under the

transformation (x , y) 7→ (−x , y).

(3) The graph of an odd function h is unchanged by a rotation by π radians about the origin

(x , y) = (0, 0) because it is invariant under the transformation (x , y) 7→ (−x ,−y).
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Properties of even/odd functions

• The following properties of even and odd functions follow from their definitions and again you

may find it instructive to interpret geometrically.

• If g , g1 are even and h, h1 are odd, then:

(1) gg1 is even, gh is odd, and hh1 is even;

(2)
α∫
−α

g(x) dx = 2
α∫
0

g(x) dx for all α ∈ R;

(3)
α∫
−α

h(x)dx = 0 for all α ∈ R;

(4) h(0) = 0.
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The even and odd part of a function

• Proposition: Given a function f : R→ R there exist unique functions g : R→ R and h : R→ R
with g even and h odd such that

f (x) = g(x) + h(x) for x ∈ R.

• Proof:

To prove existence note that the following functions have the required properties:

g(x) =
1

2

(
f (x) + f (−x)

)
, h(x) =

1

2

(
f (x)− f (−x)

)
for x ∈ R. (†)

To prove uniqueness suppose that f = g1 + h1 and f = g2 + h2, with g1, g2 even and h1, h2 odd;

then g1 − g2 = h2 − h1 is both even and odd, and hence must vanish on R. �

• Definition: The function g in (†) is the even part of f and h the odd part of f .

• Remark: The proof of uniqueness illustrates a common theme in the elementary uniqueness

proofs in this course, namely that of showing the difference between two solutions must vanish.
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2.2 Fourier series for functions of period 2π
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Fundamental questions

• Let f : R→ R be a periodic function of period 2π. We would like an expansion for f of the form

f (x) =
a0

2
+
∞∑
n=1

(
an cos (nx) + bn sin (nx)

)
for x ∈ R, (?)

where a0, a1, . . . and b1, b2, . . . are constants.

• Recall the two fundamental questions raised in §1.1:

Question 1: If (?) is true, can we find an and bn in terms of f ?

Question 2: With these an and bn, when is (?) true?

• We address the first question in this section and the second in §2.5.

31/308



Question 1

• Suppose (?) is true and that we can integrate it term-by-term over a period, so that

π∫
−π

f (x) dx =
1

2
a0

π∫
−π

dx +
∞∑
n=1

an

π∫
−π

cos (nx) dx + bn

π∫
−π

sin (nx)dx

.
• Since, for positive integers n,∫ π

−π
dx = 2π,

∫ π

−π
cos(nx) dx = 0,

∫ π

−π
sin(nx) dx = 0,

we must have

a0 =
1

π

π∫
−π

f (x) dx ,

which determines a0 in terms of f .

• Notes:

(1) f is 2π-periodic so could have integrated over any interval of length 2π.

(2) The leading term a0/2 in the Fourier series for f is equal to the mean of f over a period.
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• In order to determine the higher-order coefficients we will need the following Lemma.

• Lemma: Let m and n be positive integers. Then we have the orthogonality relations:

π∫
−π

cos (mx) cos (nx) dx = πδmn,

π∫
−π

cos (mx) sin (nx) dx = 0,

π∫
−π

sin (mx) sin (nx) dx = πδmn,

where δmn is Kronecker’s delta defined by

δmn =

0 for m 6= n,

1 for m = n.

• Proof: see online notes and a problem sheet.
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• Fixing m ∈ N \ {0}, multiplying (?) by cos (mx) and assuming that the orders of summation and

integration may be interchanged, we obtain

π∫
−π

f (x) cos (mx)dx =
1

2
a0

π∫
−π

cos (mx) dx

+
∞∑
n=1

an

π∫
−π

cos (mx) cos (nx)dx

+
∞∑
n=1

bn

π∫
−π

cos (mx) sin (nx) dx .

• Using the first two of the orthogonality relations, we deduce that

π∫
−π

f (x) cos (mx)dx =
1

2
a0 · 0 +

∞∑
n=1

(anπδmn + bn · 0) = πam,

so that

am =
1

π

π∫
−π

f (x) cos (mx) dx for m ∈ N \ {0}.
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• Question: How would you derive a similar integral expression for bn?

• Answer: By multiplying (?) by sin (mx), integrating from x = −π to x = π and assuming that

the orders of summation and integration may be interchanged. As shown on a problem sheet, this

gives

bm =
1

π

π∫
−π

f (x) sin (mx)dx for m ∈ N \ {0}.

• We wrap these formulae into the following definition.

• Definition: Let f : R→ R be 2π-periodic and integrable on [−π, π]. Then, regardless of whether

or not it converges, the Fourier series for f is defined to be the infinite series given by

a0

2
+
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
for x ∈ R, where the Fourier coefficients of f are the constants an and bn given by

an =
1

π

∫ π

−π
f (x) cos(nx) dx for n ∈ N,

bn =
1

π

∫ π

−π
f (x) sin(nx) dx for n ∈ N\{0}.
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Notes

(1) The integrability condition ensures the existence of the Fourier coefficients.

(2) We adopt the short-hand notation

f (x) ∼ a0

2
+
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
to indicate that the Fourier series for f is given by the RHS of this expression regardless of

whether or not it converges.

(3) The factor of 1/2 in the first term of the Fourier series ensures that the formulae for the Fourier

cosine coefficients is the same for all non-negative integers n.

(4) It is readily shown that the Fourier series for f may be written in the equivalent complex form

f (x) ∼
∞∑

n=−∞

cne
inx ,

where the complex Fourier coefficients cn are given by

cn =
1

2π

∫ π

−π
f (x)e−inx dx for n ∈ Z.

This is an elegant formulation, but the original one is better suited to our PDE applications.
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Example 1

� Find the Fourier series for the 2π-periodic function f defined by

f (x) = |x | for − π < x ≤ π.

� The plot of the graph of f shows that it has a “sawtooth” profile that is piecewise linear and

continuous, with corners at integer multiples of π.

� Since f (x) is even, f (x) cos (nx) is even and f (x) sin (nx) is odd, giving

an =
1

π

∫ π

−π
f (x) cos(nx) dx =

2

π

∫ π

0

f (x) cos(nx) dx ,

bn =
1

π

∫ π

−π
f (x) sin(nx) dx = 0.
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� For n = 0, direct integration gives

a0 =
2

π

π∫
0

x dx =

[
2

π

x2

2

]π
0

= π.

� For n ≥ 1, we use integration by parts by taking u = x and v = sin (nx)/n in the identity[
uv
]π

0
=

∫ π

0

(uv)′ dx =

∫ π

0

u′v + uv ′ dx ,

which gives

an =
2

π

∫ π

0

x cos(nx) dx =
2

π

[x
n

sin (nx)
]π

0
−

π∫
0

1 · 1

n
sin (nx)dx

 .
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� Hence,

an =
2

π

[
cos (nx)

n2

]π
0

= − 2

π

[1− (−1)n]

n2

=


0 for n = 2m, m ∈ N \ {0},

− 4

π(2m + 1)2
for n = 2m + 1, m ∈ N.

� Thus,

f (x) ∼ π

2
− 4

π

∞∑
m=0

cos ((2m + 1)x)

(2m + 1)2
,

the right-hand side being the Fourier series for f . �
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Notes

(1) The partial sums of the Fourier series for f may be defined for N ∈ N by

SN(x) =
π

2
− 4

π

N∑
m=0

cos ((2m + 1)x)

(2m + 1)2
for x ∈ R.

The plots below show that SN rapidly approaches f with increasing N, suggesting that the Fourier

series converges to f on R, i.e.

lim
N→∞

SN(x) = f (x) for x ∈ R.

(2) If this is true, then we can pick x to evaluate the sum of a series, e.g. x = 0 gives

0 =
π

2
− 4

π

∞∑
m=0

1

(2m + 1)2
=⇒

∞∑
m=0

1

(2m + 1)2
=
π2

8
.
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Example 2

� Find the Fourier Series for the 2π-periodic function f defined by

f (x) =

{
1 for 0 ≤ x ≤ π,

−1 for − π < x < 0.

� The plot of the graph of f shows that it has a “square wave” profile that is piecewise linear with

jump discontinuities at integer multiples of π.

� Since f (x) is odd for x/π ∈ R\Z, we have an = 0 and

bn =
1

π

∫ π

−π
f (x) sin(nx) dx =

2

π

∫ π

0

f (x) sin(nx) dx .
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� But f (x) = 1 for 0 < x < π, so

bn =
2

π

π∫
0

sin (nx) dx

=

[
− 2

π

cos (nx)

n

]π
0

=
2[1− (−1)n]

πn
.

� Hence, setting n = 2m + 1 to enumerate the non-zero terms, we obtain

f (x) ∼ 4

π

∞∑
m=0

sin ((2m + 1)x)

2m + 1
,

the right-hand side being the Fourier series for f . �
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Notes

(1) The partial sums of the Fourier series for f may be defined for N ∈ N by

SN(x) =
4

π

N∑
m=0

sin ((2m + 1)x)

2m + 1
for x ∈ R.

The plots below show that SN slowly approaches f with increasing N away from the jump

discontinuities at which SN vanishes, suggesting that

lim
N→∞

SN(x) =

 f (x) for x/π ∈ R\Z,

0 for x/π ∈ Z.

(2) The convergence is slower than in Example 1 and there is a persistent overshoot near the

discontinuities of f — this is called Gibb’s phenomenon, about which more in §2.7.
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2.3 Cosine and sine series
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• Let f : R→ R be 2π-periodic and integrable on [−π, π], so that the Fourier coefficients exist.

• In numerous practical applications the relevant function f is even or odd.

• It is for this reason we chose to integrate from x = −π to x = π, rather than over any other

interval of length 2π, since we may then exploit immediately the symmetry of f , as we shall now

describe.

• If f is even, then f (x) cos (nx) is even and f (x) sin (nx) is odd, giving

an =
1

π

∫ π

−π
f (x) cos(nx) dx =

2

π

∫ π

0

f (x) cos(nx) dx for n ∈ N,

bn =
1

π

∫ π

−π
f (x) sin(nx) dx = 0 for n ∈ N\{0},

so that

f (x) ∼ a0

2
+
∞∑
n=1

an cos(nx),

i.e. f has a Fourier cosine series.
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• If f is odd, then f (x) cos (nx) is odd and f (x) sin (nx) is even, giving

an =
1

π

∫ π

−π
f (x) cos(nx) dx = 0 for n ∈ N,

bn =
1

π

∫ π

−π
f (x) sin(nx) dx =

2

π

∫ π

0

f (x) sin(nx) dx for n ∈ N\{0},

so that

f (x) ∼
∞∑
n=1

bn sin(nx),

i.e. f has a Fourier sine series.

• Remark: Since the value of an integral is unchanged if the value of its integrand is modified at a

finite number of points, we obtain exactly the same Fourier sine series for f if f is odd on

e.g. R\{kπ : k ∈ Z}, as in Example 2, rather than on the whole of R.
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2.4 Tips for evaluating the Fourier coefficients
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(1) Exploit as early as possible any simplifications afforded by an integrand being even or odd. This

will more or less half the work required.

(2) When integrating by parts it is usually safer to write down the identity

[uv ]ba =

∫ b

a

(uv)′ dx =

∫ b

a

uv ′ + u′v dx

and make appropriate choices for u, v , a and b, rather than doing the calculation in your head.

(3) Similarly, when integrating by parts twice it is usually quicker to write down the identity

[
uv ′ − u′v

]b
a

=

∫ b

a

(uv ′ − u′v)′ dx =

∫ b

a

uv ′′ − u′′v dx

and make appropriate choices for u, v , a and b, rather than undertaking two sequential

integration by parts.
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(4) If f is a piecewise exponential or trigonometric function, it is usually quicker to evaluate the

complex integral expression

an + ibn =
1

π

∫ π

−π
f (x)einx dx .

(5) Beware of special cases: do not divide by zero. Such special cases sometimes arise for the same

reasons that m = n is a special case in the orthogonality relations.

(6) Check that an → 0 and bn → 0 as n→∞. This is a direct consequence of the Riemann-Lebesgue

Lemma, which you will prove in Analysis III. Later on in this course we will be more precise about

the rate of decay of the Fourier coefficients as n→∞.
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2.5 Convergence of Fourier series
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Left- and right-hand limits

• Definition: The RH limit of f at c is f (c+) = lim
h→0
h>0

f (c + h) if it exists.

• Definition: The LH limit of f at c is f (c−) = lim
h→0
h<0

f (c + h) if it exists.

• Notes:

(1) f (c+) can only exist if f is defined on (c, c + ε) for some ε > 0.

(2) f (c−) can only exist if f is defined on (c − ε, c) for some ε > 0.

(3) f (c) need not be defined for f (c+) or f (c−) to exist.

(4) The existence part is important, e.g. if f (x) = sin(1/x) for x 6= 0, then f (0±) do not exist.

(5) f is continuous at c if and only if f (c−) = f (c) = f (c+).

(6) In Example 2, f is continuous for x/π ∈ R\Z with f (0±) = ±1 and f (π±) = ∓1.
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Piecewise continuity

• Definition: f is piecewise continuous on (a, b) ⊆ R if there exists a finite number of points

x1, . . . , xm ∈ R with a = x1 < x2 < . . . < xm = b s.t.

(1) f is defined and continuous on (xk , xk+1) for all k = 1, . . . ,m − 1;

(2) f (xk+) exists for k = 1, . . . ,m − 1;

(3) f (xk−) exists for k = 2, . . . ,m.

• Notes:

(1) Note that f need not be defined at its exceptional points x1, . . . , xm.

(2) The functions in Examples 1 and 2 are piecewise continuous on any interval (a, b) ⊂ R.

51/308



Fourier Convergence Theorem

• Let f : R→ R be 2π-periodic, with f and f ′ piecewise continuous on (−π, π). Then the Fourier

series of f at x converges to the value 1
2

(
f (x+) + f (x−)

)
, i.e.

1

2

(
f (x+) + f (x−)

)
=

a0

2
+
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
for x ∈ R,

where the Fourier coefficients an and bn exist and are given by

an =
1

π

π∫
−π

f (x) cos (nx)dx for n ∈ N,

bn =
1

π

π∫
−π

f (x) sin (nx) dx for n ∈ N \ {0}

52/308



Notes on the hypotheses

(1) If f and f ′ are piecewise continuous on (−π, π), then there exist x1, . . . , xm ∈ R with

−π = x1 < x2 < . . . < xm = π such that

(i) f and f ′ are continuous on (xk , xk+1) for k = 1, . . . ,m − 1.

(ii) f (xk+) and f ′(xk+) exist for k = 1, . . . ,m − 1.

(iii) f (xk−) and f ′(xk−) exist for k = 2, . . . ,m.

(2) Thus, in any period f , f ′ are continuous except possibly at a finite number of points. At each

such point f ′ need not be defined, and one or both of f and f ′ may have a jump discontinuity, as

illustrated for some of the possibilities in the schematic below.

53/308



(3) For example, if

f (x) =

 x1/2 for 0 ≤ x ≤ π,

0 for − π < x < 0,

then

f ′(x) =


1

2
x−1/2 for 0 < x < π,

0 for − π < x < 0,

undefined for x = 0, π.

Hence, while f is piecewise continuous on (−π, π), f ′ is not because f ′(0+) does not exist.
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Notes on the convergence result

(1) The partial sums of the Fourier series are defined for N ∈ N\{0} by

SN(x) =
a0

2
+

N∑
n=1

(
an cos (nx) + bn sin (nx)

)
for x ∈ R.

The theorem states that the partial sums converge pointwise in the sense that

lim
N→∞

SN(x) =
1

2

(
f (x+) + f (x−)

)
for x ∈ R.

(2) If f has a jump discontinuity at x , so that f (x+) 6= f (x−), then the Fourier series converges to(
f (x+) + f (x−)

)
/2, i.e. the average of the left- and right-hand limits of f at x .

(3) If f is continuous at x , then f (x−) = f (x) = f (x+) and the Fourier series converges to f (x).

55/308



(4) If we redefined f to be equal to the average of its left- and right-hand limits at each of its jump

discontinuities, then the Fourier series would converge instead to f on R.

(5) If f is defined only on e.g. (−π, π], then the Fourier Convergence Theorem holds for its

2π-periodic extension.

(6) The Fourier Convergence Theorem implies that

1

2

(
g(x+) + g(x−)

)
=

a0

2
+
∞∑
n=1

an cos (nx) for x ∈ R,

1

2

(
h(x+) + h(x−)

)
=

∞∑
n=1

bn sin (nx) for x ∈ R,

where g(x) = 1
2

(
f (x) + f (−x)

)
is the even part of f and h(x) = 1

2

(
f (x)− f (−x)

)
is the odd part

of f .
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Notes on the proof

(1) Use the integral expressions for the Fourier coefficients and properties of periodic, even and odd

functions to manipulate the partial sums into the form

SN(x)− 1

2

(
f (x+) + f (x−)

)
=

π∫
0

F (x , t) sin

[(
N +

1

2

)
t

]
dt,

where

F (x , t) =
1

π

(
f (x + t)− f (x+)

t
+

f (x − t)− f (x−)

t

)(
t

2 sin (t/2)

)
.

(2) Use the Mean Value Theorem (of Analysis II) to show that F (x , t) is a piecewise continuous

function of t on (0, π), and hence deduce from the Riemann-Lebesgue Lemma (of Analysis III)

that
π∫

0

F (x , t) sin

[(
N +

1

2

)
t

]
dt → 0 as N →∞.
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Notes on differentiability and integrability

(1) The Fourier series can be integrated termwise under weaker conditions, e.g. if f is 2π-periodic

and piecewise continuous on (−π, π), then the Fourier Convergence Theorem implies∫ x

0

f (s) ds =

∫ x

0

1

2
a0 ds +

∞∑
n=1

∫ x

0

(
an cos(ns) + bn sin(ns)

)
ds for x ∈ R,

this function being 2π-periodic if and only if a0 = 0.

(2) However, we need stronger conditions to differentiate termwise, e.g. if f is 2π-periodic and

continuous on R with both f ′ and f ′′ piecewise continuous on (−π, π), then the Fourier

Convergence Theorem implies

1

2

(
f ′(x+) + f ′(x−)

)
=
∞∑
n=1

d

dx

(
an cos (nx) + bn sin (nx)

)
for x ∈ R.
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Examples 1 and 2 revisited

� Recall the 2π-periodic function of Example 1 which we defined by setting

f (x) = |x | for − π < x ≤ π.

� We calculate

f ′(x) =


1 for 0 < x < π,

−1 for − π < x < 0,

undefined for x = 0, π.

� Since both f and f ′ are piecewise continuous on (−π, π), with f continuous on R, the Fourier

Convergence Theorem gives

π

2
− 4

π

∞∑
m=0

cos ((2m + 1)x)

(2m + 1)2
= f (x) for x ∈ R. (A)

� Since f is piecewise continuous on (−π, π), we can integrate termwise to obtain

4

π

∞∑
m=0

sin ((2m + 1)x)

(2m + 1)3
=

∫ x

0

f (s)− π

2
ds for x ∈ R. (B)
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� We calculate

f ′′(x) =


0 for 0 < x < π,

0 for − π < x < 0,

undefined for x = 0, π.

� Since f is continuous on R and both f ′ and f ′′ are piecewise continuous on (−π, π), we can

differentiate termwise the Fourier series for f to obtain

4

π

∞∑
m=0

sin ((2m + 1)x)

2m + 1
=

1

2

(
f ′(x−) + f ′(x+)

)
=


1 for 0 < x < π,

−1 for − π < x < 0,

0 for x = 0, π.

(C)

� The function to which this Fourier series converges is equal to the function considered in Example

2 for x/π ∈ R\Z, which deals thereby with the convergence and termwise integration of the

Fourier series of that function; it remains to note that, since that function is not continuous on R,

its Fourier series cannot be differentiated termwise.
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2.6 Rate of convergence
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Rate of convergence

• The smoother f , i.e. the more continuous derivatives it has, the faster the convergence of the

Fourier series for f .

• If the first jump discontinuity is in the pth derivative of f , with the convention that p = 0 if there

is a jump discontinuity in f , then in general the slowest decaying an and bn decay like 1/np+1 as

n→∞.

• More specifically, if the first jump discontinuity is in the pth derivative of the even part of f , then

in general an decays like 1/np+1 as n→∞; similarly, if the first jump discontinuity is in the pth

derivative of the odd part of f , then in general bn decays like 1/np+1 as n→∞.

• For example, p = 1 in (A), p = 2 in (B) and p = 0 in (C) in the previous example.
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• This is an extremely useful result

in practice, e.g. for approximately 1% accuracy we need 100 terms for p = 0, but only 10 terms for

p = 1;

for checking calculations, e.g. an erroneous contribution to a Fourier coefficient can be rapidly

identified if it does not decay fast enough.

• We can understand the rate of decay as follows.

• Suppose f is such that

(i) the first jump discontinuity is in the pth-derivative f (p)(x) with jumps at the exceptional points

x1 < x2 < · · · < xm, where x1 ≥ x0 = −π and xm ≤ xm+1 = π.

(ii) f (p+1)(x) is integrable on each of the intervals (xk , xk+1) for k = 0, 1, . . . , m, which is often the case

in practice.

• Then, repeated integration by parts gives . . . .
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π
(
an + ibn

)
=

∫ π

−π
f (x)einx dx

=
1

in

([
f (x)einx

]π
−π −

∫ π

−π
f (1)(x)einx dx

)

=
−1

in

∫ π

−π
f (1)(x)einx dx

...

=
(−1)p

(in)p

∫ π

−π
f (p)(x)einx dx

=
(−1)p

(in)p

m∑
k=0

∫ xk+1

xk

f (p)(x)einx dx

=
(−1)p

(in)p+1

m∑
k=0

([
f (p)(x)einx

](xk+1)−

(xk )+

−
∫ xk+1

xk

f (p+1)(x)einx dx

)

for p ≥ 1, though final result holds for p = 0 by skipping over the second and third equalities.
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• While the Riemann-Lebesgue Lemma implies that each of the integrals in the sum tend to zero as

n→∞, the pth-derivative f (p)(x) has jump discontinuities at the exceptional points, so in general

each of the boundary contributions in the sum is bounded and does not decay as n→∞. Hence,

we recover the claimed rate of decay.

• If the Fourier coefficients decay like 1/np+1 as n→∞ with p ≥ 1, then the Weierstrass M-test of

Analysis II may be used to show that the Fourier series for f converges uniformly to f on any

interval (a, b) ⊂ R.

• If the Fourier coefficients decay like 1/n as n→∞ (so that p = 0), then the partial sums of the

Fourier series for f do not converge uniformly on any interval containing a jump discontinuity.

Remarkably, the form of the non-uniformity is universal for such functions, being characterized by

Gibb’s phenomenon, as we shall now describe.
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2.7 Gibb’s phenomenon
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• Gibb’s phenomenon is the persistent overshoot near a jump discontinuity that we first encountered

in Example 2. It happens whenever there is a jump discontinuity.

• In the plots below of the partial sums from Example 2, we have zoomed into near the jump

discontinuity at the origin to illustrate the so-called “ringing” nature of the overshoot as the

number of terms in the partial sum is increased.
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• More generally, as the number of terms in the partial sum tends to infinity:

the width of the overshoot region tends to zero by the Fourier Convergence Theorem;

it may be shown that the total height of the overshoot region approaches γ|f (x+)− f (x−)|, where

γ =
1

π

π∫
−π

sin x

x
dx ≈ 1.18,

i.e. approximately a 9% overshoot top and bottom.

• The plots above illustrate the approach to this value, which is evidently awful for approximation

purposes.
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• Some geometric insight into the underlying cause of Gibb’s phenomenon may be gleamed from

the following manipulation of the partial sums of the Fourier series for f , which for positive

integers N are defined by

SN(x) =
a0

2
+

N∑
n=1

(
an cos(nx) + bn sin(nx)

)
for x ∈ R,

where in terms of a dummy variable t, the Fourier coefficients are

an =
1

π

π∫
−π

f (t) cos(nt) dt, bn =
1

π

π∫
−π

f (t) sin(nt) dt.

• Substituting these expressions into the partial sum and interchanging the orders of summation and

integration gives

SN(x) =

∫ π

−π
f (t)

(
1

2π
+

1

π

N∑
n=1

(
cos(nt) cos(nx) + sin(nt) sin(nx)

))
dt

=

∫ π

−π
f (t)

(
1

2π
+

1

π

N∑
n=1

cos
(
n(t − x)

))
dt.
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• Hence,

SN(x) =

∫ π

−π
f (t)DN(t − x) dt, (A)

where the function DN : R→ R is defined by

DN(t) =
1

2π
+

1

π

N∑
n=1

cos(nt) for t ∈ R. (B)

• The integral in (A) is a convolution integral giving the mean of the function f (t) over a period

weighted by the Dirichlet kernel DN(t − x). Since DN does not depend on f it encodes the

operation of taking a partial sum of a Fourier series.

• It follows from (B) that DN is an even 2π-periodic function that is infinitely differentiable on R
and has integral over a period equal to unity, i.e.∫ π

−π
DN(t) dt = 1. (C)
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• Using a trigonometric identity we compute

2π sin(t/2)DN(t) = sin(t/2) +
N∑

n=1

2 cos(nt) sin(t/2)

= sin(t/2) +
N∑

n=1

(
sin
(
(n + 1/2)t

)
− sin

(
(n − 1/2)t

))

= sin
(
(N + 1/2)t

)
,

the last equality following from the fact that the preceding sum is telescoping.

• Hence,

DN(t) =


sin
(
(N + 1/2)t

)
2π sin(t/2)

for
t

2π
∈ R\Z.

2N + 1

2π
for

t

2π
∈ Z.

• We plot below the graph of DN for N = 4, 8, 16 and 32, illustrating that as N →∞ the main

contribution of the integrand in (C) comes from the central lobe that lies above the interval

[−π, π]/(N + 1/2).

70/308



-1 -0.5 0 0.5 1
-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

t/⇡

<latexit sha1_base64="p38O9DdWsgPkXUNpwi0HMQcvbu4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU02koIKHghePFUxbaEPZbDft0s0m7E6EUvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjuFtfWNza3idmlnd2//oHx41DRJphn3WSIT3Q6p4VIo7qNAydup5jQOJW+Fo7uZ33ri2ohEPeI45UFMB0pEglG0ko8X3VT0yhW36s5BVomXkwrkaPTKX91+wrKYK2SSGtPx3BSDCdUomOTTUjczPKVsRAe8Y6miMTfBZH7slJxZpU+iRNtSSObq74kJjY0Zx6HtjCkOzbI3E//zOhlG18FEqDRDrthiUZRJggmZfU76QnOGcmwJZVrYWwkbUk0Z2nxKNgRv+eVV0ryserXqzUOtUr/N4yjCCZzCOXhwBXW4hwb4wEDAM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AZUZjoo=</latexit>

2
⇡
D

N
(t

)/
(2

N
+

1
)

<latexit sha1_base64="sI9OECkUOJAwLZ3TNnQ5LSbC3t8=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCghB3Q0AFDwE9eAoRzAOSZZmdzCZDZh/M9Ioh5Fe8eFDEqz/izb9xkuxBEwsaiqpuuru8WHAFlvVtZNbWNza3stu5nd29/QPzMN9SUSIpa9JIRLLjEcUED1kTOAjWiSUjgSdY2xvdzPz2I5OKR+EDjGPmBGQQcp9TAlpyzXylF3N869aLUDovVupndsk1C1bZmgOvEjslBZSi4ZpfvX5Ek4CFQAVRqmtbMTgTIoFTwaa5XqJYTOiIDFhX05AETDmT+e1TfKqVPvYjqSsEPFd/T0xIoNQ48HRnQGColr2Z+J/XTcC/dCY8jBNgIV0s8hOBIcKzIHCfS0ZBjDUhVHJ9K6ZDIgkFHVdOh2Avv7xKWpWyXS1f3VcLtes0jiw6RieoiGx0gWroDjVQE1H0hJ7RK3ozpsaL8W58LFozRjpzhP7A+PwBQr6R/g==</latexit>

t/⇡

<latexit sha1_base64="p38O9DdWsgPkXUNpwi0HMQcvbu4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU02koIKHghePFUxbaEPZbDft0s0m7E6EUvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjuFtfWNza3idmlnd2//oHx41DRJphn3WSIT3Q6p4VIo7qNAydup5jQOJW+Fo7uZ33ri2ohEPeI45UFMB0pEglG0ko8X3VT0yhW36s5BVomXkwrkaPTKX91+wrKYK2SSGtPx3BSDCdUomOTTUjczPKVsRAe8Y6miMTfBZH7slJxZpU+iRNtSSObq74kJjY0Zx6HtjCkOzbI3E//zOhlG18FEqDRDrthiUZRJggmZfU76QnOGcmwJZVrYWwkbUk0Z2nxKNgRv+eVV0ryserXqzUOtUr/N4yjCCZzCOXhwBXW4hwb4wEDAM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AZUZjoo=</latexit>

t/⇡

<latexit sha1_base64="p38O9DdWsgPkXUNpwi0HMQcvbu4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU02koIKHghePFUxbaEPZbDft0s0m7E6EUvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjuFtfWNza3idmlnd2//oHx41DRJphn3WSIT3Q6p4VIo7qNAydup5jQOJW+Fo7uZ33ri2ohEPeI45UFMB0pEglG0ko8X3VT0yhW36s5BVomXkwrkaPTKX91+wrKYK2SSGtPx3BSDCdUomOTTUjczPKVsRAe8Y6miMTfBZH7slJxZpU+iRNtSSObq74kJjY0Zx6HtjCkOzbI3E//zOhlG18FEqDRDrthiUZRJggmZfU76QnOGcmwJZVrYWwkbUk0Z2nxKNgRv+eVV0ryserXqzUOtUr/N4yjCCZzCOXhwBXW4hwb4wEDAM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AZUZjoo=</latexit>

t/⇡

<latexit sha1_base64="p38O9DdWsgPkXUNpwi0HMQcvbu4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU02koIKHghePFUxbaEPZbDft0s0m7E6EUvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjuFtfWNza3idmlnd2//oHx41DRJphn3WSIT3Q6p4VIo7qNAydup5jQOJW+Fo7uZ33ri2ohEPeI45UFMB0pEglG0ko8X3VT0yhW36s5BVomXkwrkaPTKX91+wrKYK2SSGtPx3BSDCdUomOTTUjczPKVsRAe8Y6miMTfBZH7slJxZpU+iRNtSSObq74kJjY0Zx6HtjCkOzbI3E//zOhlG18FEqDRDrthiUZRJggmZfU76QnOGcmwJZVrYWwkbUk0Z2nxKNgRv+eVV0ryserXqzUOtUr/N4yjCCZzCOXhwBXW4hwb4wEDAM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AZUZjoo=</latexit>

2
⇡
D

N
(t

)/
(2

N
+

1
)

<latexit sha1_base64="sI9OECkUOJAwLZ3TNnQ5LSbC3t8=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCghB3Q0AFDwE9eAoRzAOSZZmdzCZDZh/M9Ioh5Fe8eFDEqz/izb9xkuxBEwsaiqpuuru8WHAFlvVtZNbWNza3stu5nd29/QPzMN9SUSIpa9JIRLLjEcUED1kTOAjWiSUjgSdY2xvdzPz2I5OKR+EDjGPmBGQQcp9TAlpyzXylF3N869aLUDovVupndsk1C1bZmgOvEjslBZSi4ZpfvX5Ek4CFQAVRqmtbMTgTIoFTwaa5XqJYTOiIDFhX05AETDmT+e1TfKqVPvYjqSsEPFd/T0xIoNQ48HRnQGColr2Z+J/XTcC/dCY8jBNgIV0s8hOBIcKzIHCfS0ZBjDUhVHJ9K6ZDIgkFHVdOh2Avv7xKWpWyXS1f3VcLtes0jiw6RieoiGx0gWroDjVQE1H0hJ7RK3ozpsaL8W58LFozRjpzhP7A+PwBQr6R/g==</latexit>

2
⇡
D

N
(t

)/
(2

N
+

1
)

<latexit sha1_base64="sI9OECkUOJAwLZ3TNnQ5LSbC3t8=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCghB3Q0AFDwE9eAoRzAOSZZmdzCZDZh/M9Ioh5Fe8eFDEqz/izb9xkuxBEwsaiqpuuru8WHAFlvVtZNbWNza3stu5nd29/QPzMN9SUSIpa9JIRLLjEcUED1kTOAjWiSUjgSdY2xvdzPz2I5OKR+EDjGPmBGQQcp9TAlpyzXylF3N869aLUDovVupndsk1C1bZmgOvEjslBZSi4ZpfvX5Ek4CFQAVRqmtbMTgTIoFTwaa5XqJYTOiIDFhX05AETDmT+e1TfKqVPvYjqSsEPFd/T0xIoNQ48HRnQGColr2Z+J/XTcC/dCY8jBNgIV0s8hOBIcKzIHCfS0ZBjDUhVHJ9K6ZDIgkFHVdOh2Avv7xKWpWyXS1f3VcLtes0jiw6RieoiGx0gWroDjVQE1H0hJ7RK3ozpsaL8W58LFozRjpzhP7A+PwBQr6R/g==</latexit> 2
⇡
D

N
(t

)/
(2

N
+

1
)

<latexit sha1_base64="sI9OECkUOJAwLZ3TNnQ5LSbC3t8=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCghB3Q0AFDwE9eAoRzAOSZZmdzCZDZh/M9Ioh5Fe8eFDEqz/izb9xkuxBEwsaiqpuuru8WHAFlvVtZNbWNza3stu5nd29/QPzMN9SUSIpa9JIRLLjEcUED1kTOAjWiSUjgSdY2xvdzPz2I5OKR+EDjGPmBGQQcp9TAlpyzXylF3N869aLUDovVupndsk1C1bZmgOvEjslBZSi4ZpfvX5Ek4CFQAVRqmtbMTgTIoFTwaa5XqJYTOiIDFhX05AETDmT+e1TfKqVPvYjqSsEPFd/T0xIoNQ48HRnQGColr2Z+J/XTcC/dCY8jBNgIV0s8hOBIcKzIHCfS0ZBjDUhVHJ9K6ZDIgkFHVdOh2Avv7xKWpWyXS1f3VcLtes0jiw6RieoiGx0gWroDjVQE1H0hJ7RK3ozpsaL8W58LFozRjpzhP7A+PwBQr6R/g==</latexit>

N = 4

<latexit sha1_base64="LBsRYSgoKd2wU6y0W1ASsZCt7jM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKQAWFgBdPEtE8IAlhdtKbDJmdXWZmhbDkE7x4UMSrX+TNv3GS7EETCxqKqm66u/xYcG1c99vJrayurW/kNwtb2zu7e8X9g4aOEsWwziIRqZZPNQousW64EdiKFdLQF9j0RzdTv/mESvNIPppxjN2QDiQPOKPGSg9315VeseSW3RnIMvEyUoIMtV7xq9OPWBKiNExQrdueG5tuSpXhTOCk0Ek0xpSN6ADblkoaou6ms1Mn5MQqfRJEypY0ZKb+nkhpqPU49G1nSM1QL3pT8T+vnZjgoptyGScGJZsvChJBTESmf5M+V8iMGFtCmeL2VsKGVFFmbDoFG4K3+PIyaZyVvUr58r5Sql5lceThCI7hFDw4hyrcQg3qwGAAz/AKb45wXpx352PemnOymUP4A+fzB56ZjV0=</latexit>

N = 8

<latexit sha1_base64="JC0de+tUtQFv7uwmY7sRT5/a+Ws=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYASFgBdPEtE8IFnC7KQ3GTI7u8zMCiHkE7x4UMSrX+TNv3GS7EETCxqKqm66u4JEcG1c99vJrayurW/kNwtb2zu7e8X9g4aOU8WwzmIRq1ZANQousW64EdhKFNIoENgMhjdTv/mESvNYPppRgn5E+5KHnFFjpYe760q3WHLL7gxkmXgZKUGGWrf41enFLI1QGiao1m3PTYw/pspwJnBS6KQaE8qGtI9tSyWNUPvj2akTcmKVHgljZUsaMlN/T4xppPUoCmxnRM1AL3pT8T+vnZqw4o+5TFKDks0XhakgJibTv0mPK2RGjCyhTHF7K2EDqigzNp2CDcFbfHmZNM7K3nn58v68VL3K4sjDERzDKXhwAVW4hRrUgUEfnuEV3hzhvDjvzse8NedkM4fwB87nD6SpjWE=</latexit>

N = 16

<latexit sha1_base64="G4Cz7DZH72XUITQF1t1Ir9Y1ocU=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKexK8AEKAS+eJIJ5QLKE2clsMmRmdpmZFcKSX/DiQRGv/pA3/8bZZA+aWNBQVHXT3RXEnGnjut9OYWV1bX2juFna2t7Z3SvvH7R0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsa3md9+okqzSD6aSUx9gYeShYxgk0n3N955v1xxq+4MaJl4OalAjka//NUbRCQRVBrCsdZdz42Nn2JlGOF0WuolmsaYjPGQdi2VWFDtp7Nbp+jEKgMURsqWNGim/p5IsdB6IgLbKbAZ6UUvE//zuokJL/2UyTgxVJL5ojDhyEQoexwNmKLE8IklmChmb0VkhBUmxsZTsiF4iy8vk9ZZ1atVrx5qlfp1HkcRjuAYTsGDC6jDHTSgCQRG8Ayv8OYI58V5dz7mrQUnnzmEP3A+fwARmI2a</latexit>

N = 32

<latexit sha1_base64="aHFVTlJwlIS13MfkxjT9zAD8nY4=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ4Kru1oIJCwYsnqWA/oF1KNs22oUl2SbJCWfoXvHhQxKt/yJv/xmy7B219MPB4b4aZeUHMmTau++2srK6tb2wWtorbO7t7+6WDw5aOEkVok0Q8Up0Aa8qZpE3DDKedWFEsAk7bwfg289tPVGkWyUcziakv8FCykBFsMun+5rzaL5XdijsDWiZeTsqQo9EvffUGEUkElYZwrHXXc2Pjp1gZRjidFnuJpjEmYzykXUslFlT76ezWKTq1ygCFkbIlDZqpvydSLLSeiMB2CmxGetHLxP+8bmLCSz9lMk4MlWS+KEw4MhHKHkcDpigxfGIJJorZWxEZYYWJsfEUbQje4svLpFWteLXK1UOtXL/O4yjAMZzAGXhwAXW4gwY0gcAInuEV3hzhvDjvzse8dcXJZ47gD5zPHw6SjZg=</latexit>

71/308



• When x nears a jump discontinuity of f , it is the interaction of this jump and the rapidly

oscillating Dirichlet kernel DN(t − x) around its dominant central lobe in the convoluton integral

SN(x) =

∫ π

−π
f (t)DN(t − x) dt

that results in Gibb’s phenomenon or the so-called “ringing of the partial sums,” with the

structure of the central lobe causing the 9% overshoot as N →∞.

• There are ways of mitigating against Gibb’s phenomenon, e.g. it is eliminated in the Fejér series

whose Mth-partial sum FM(x) is equal to the arithmetic mean of the first M partial sums of a

Fourier series, viz.

FM(x) =
1

M

M∑
N=1

SN(x) for x ∈ R.

However, they are beyond the scope of this course.
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2.8 Functions of any period
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• Suppose now f : R→ R is a periodic function of period 2L, where L > 0.

• We want to develop the analogous results for the Fourier series for f (x).

• Since this will involve a series in the trigonometric functions cos(nπx/L) and sin(nπx/L), where n

is a positive integer, we make the transformation

x =
LX

π
, f (x) = g(X )

which defines a new function g : R→ R.

• It follows that, for X ∈ R,

g(X + 2π) = f

(
L

π
(X + 2π)

)
= f

(
LX

π
+ 2L

)
= f

(
LX

π

)
= g(X ),

where we used the fact that g(X ) = f (LX/π) in the first equality and the fact that f is

2L-periodic in the third equality.

• Hence, g is periodic with period 2π, and we can therefore use the transformation to derive the

Fourier theory for f from that for g .
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• In particular, suppose we can write

g(X ) ∼ a0

2
+
∞∑
n=1

(
an cos(nX ) + bn sin(nX )

)
so that the Fourier coefficients an and bn exist.

• Then

an =
1

π

∫ π

−π
g(X ) cos(nX )dX =

1

π

∫ L

−L

g
(πx

L

)
cos
(nπx

L

) π
L
dx =

1

L

∫ L

−L

f (x) cos
(nπx

L

)
dx ,

where we used X = πx/L in the first equality and g(πx/L) = f (x) in the second.

• Similarly,

bn =
1

π

∫ π

−π
g(X ) sin(nX )dX =

1

π

∫ L

−L

g
(πx

L

)
sin
(nπx

L

) π
L
dx =

1

L

∫ L

−L

f (x) sin
(nπx

L

)
dx .
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• So if we can write

f (x) ∼ a0

2
+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

then

an =
1

L

∫ L

−L

f (x) cos
(nπx

L

)
dx , bn =

1

L

∫ L

−L

f (x) sin
(nπx

L

)
dx .

• We wrap these formal calculations into the definition of the Fourier series for f .

• Definition: Let f : R→ R be 2L-periodic and integrable on [−L, L]. Then, regardless of whether

or not it converges, the Fourier series for f is defined to be the infinite series given by

a0

2
+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
for x ∈ R, where the Fourier coefficients of f are given by

an =
1

L

∫ L

−L

f (x) cos
(nπx

L

)
dx (n ∈ N),

bn =
1

L

∫ L

−L

f (x) sin
(nπx

L

)
dx (n ∈ N \ {0}).
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• Remark: The formulae for the Fourier coefficients may also be derived from the Fourier series for

f by assuming that the orders of summation and integration may be interchanged and using the

orthogonality relations

L∫
−L

cos
(mπx

L

)
cos
(nπx

L

)
dx = Lδmn,

L∫
−L

cos
(mπx

L

)
sin
(nπx

L

)
dx = 0,

L∫
−L

sin
(mπx

L

)
sin
(nπx

L

)
dx = Lδmn,

where n,m ∈ N \ {0} and δmn is Kronecker’s delta.
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Fourier Convergence Theorem

• Let f : R→ R be 2L-periodic, with f and f ′ piecewise continuous on (−L, L). Then the Fourier

series of f at x converges to the value 1
2

(
f (x+) + f (x−)

)
, i.e.

1

2

(
f (x+) + f (x−)

)
=

a0

2
+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
for x ∈ R,

where the Fourier coefficients an and bn exist and are given by

an =
1

L

∫ L

−L

f (x) cos
(nπx

L

)
dx for n ∈ N,

bn =
1

L

∫ L

−L

f (x) sin
(nπx

L

)
dx for n ∈ N \ {0}.
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Example 3

� Consider the 2L-periodic function f defined by

f (x) =

{
x for 0 ≤ x ≤ L,

0 for −L < x < 0.

Find the Fourier series for f and the function to which the Fourier series converges.

� The plot of the graph of f shows that it is piecewise linear with corners as x = 2kL for k ∈ Z and

jump discontinuities at x = (2k + 1)L for k ∈ Z.

� By the definition of f , the Fourier coefficients are given by

an =
1

L

L∫
0

x cos
(nπx

L

)
dx , bn =

1

L

L∫
0

x sin
(nπx

L

)
dx .
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� A direct integration gives a0 = L/2, but for n ≥ 1 it is a bit quicker to evaluate

an + ibn =
1

L

L∫
0

x︸︷︷︸
u

exp

(
inπx

L

)
︸ ︷︷ ︸

v′

dx

=

 1

L
x︸︷︷︸
u

L

inπ
exp

(
inπx

L

)
︸ ︷︷ ︸

v


L

0

− 1

L

L∫
0

1︸︷︷︸
u′

L

inπ
exp

(
inπx

L

)
︸ ︷︷ ︸

v

dx

= −

[
1

L

(
L

inπ

)2

exp

(
inπx

L

)]L
0

+
L

inπ
exp (inπ)

=
L

n2π2
((−1)n − 1) +

iL(−1)n+1

nπ
.

79/308



� Hence,

f (x) ∼ L

4
+
∞∑
m=1

(
− 2L

(2m − 1)2π2
cos

(
(2m − 1)πx

L

)
+

L(−1)m+1

mπ
sin
(mπx

L

))
.

� Since f and f ′ are piecewise continuous on (−L, L), the Fourier Convergence Theorem implies

that the Fourier series for f converges to

f (x) at points of continuity of f , i.e. for x 6= (2k + 1)L, k ∈ Z;

to the average of the left- and right-hand limits of f at the jump discontinuities, i.e. to(
f (L+) + f (L−)

)
/2 = (0 + L)/2 = L/2 at x = L and hence at x = (2k + 1)L, k ∈ Z by periodicity. �
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Notes:

(1) The slowest decaying Fourier coefficients bn decay as expected like 1/n as n→∞ because f has

jump discontinuities so that p = 0.

(2) The partial sums of the Fourier series for f may be defined for positive integers N by

SN(x) =
L

4
+

N∑
m=1

(
− 2L

(2m − 1)2π2
cos

(
(2m − 1)πx

L

)
+

L(−1)m+1

mπ
sin
(mπx

L

))
for x ∈ R.

We plot below the partial sums for N = 8, 16, 32 and 64, which illustrates that the slow

convergence away from the jump discontinuities of f is hindered by Gibb’s phenomenon.
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2.9 Half-range series
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• In many practical applications we wish to express a given function f : [0, L]→ R in terms of either

a Fourier cosine series or a Fourier sine series.

• This may be accomplished by extending f to be even (for only cosine terms) or odd (for only sine

terms) on (−L, 0) ∪ (0, L) and then extending to a periodic function of period 2L.

• We wrap these extensions and the corresponding Fourier series into the following definitions.
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• Definition: The even 2L-periodic extension fe : R→ R of f : [0, L]→ R is defined by

fe(x) =

{
f (x) for 0 ≤ x ≤ L,

f (−x) for −L < x < 0,

with fe(x + 2L) = fe(x) for x ∈ R. The Fourier cosine series for f : [0, L]→ R is the Fourier series

for fe , i.e.

fe(x) ∼ a0

2
+
∞∑
n=1

an cos
(nπx

L

)
,

where

an =
1

L

∫ L

−L

fe(x) cos
(nπx

L

)
dx =

2

L

L∫
0

f (x) cos
(nπx

L

)
dx for n ∈ N.
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• Definition: The odd 2L-periodic extension fo : R→ R of f : [0, L]→ R is defined by

fo(x) =

{
f (x) for 0 ≤ x ≤ L,

−f (−x) for −L < x < 0,

with fo(x + 2L) = fo(x) for x ∈ R. The Fourier sine series for f : [0, L]→ R is the Fourier series

for fo , i.e.

fo(x) ∼
∞∑
n=1

bn sin
(nπx

L

)
,

where

bn =
1

L

∫ L

−L

fo(x) sin
(nπx

L

)
dx =

2

L

L∫
0

f (x) sin
(nπx

L

)
dx for n ∈ N\{0}.
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Notes:

(1) fo(x) is odd for x/L ∈ R\Z and odd (on R) if and only if f (0) = f (L) = 0.

(2) If f is continuous on [0, L] and f ′ piecewise continuous on (0, L), then the Fourier Convergence

Theorem implies that

a0

2
+
∞∑
n=1

an cos
(nπx

L

)
= fe(x) for x ∈ R,

∞∑
n=1

bn sin
(nπx

L

)
=

 fo(x) for x/L ∈ R\Z,

0 for x/L ∈ R\Z.
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Example 4

� Consider the function f : [0, L]→ R defined by f (x) = x for 0 ≤ x ≤ L. Find the Fourier cosine

and sine series for f and the functions to which each of them converge on [0, L]. Which truncated

series gives the best approximation to f on [0, L]?

� The even 2L-periodic extension fe is defined by

fe(x) =

{
x for 0 ≤ x ≤ L,

−x for −L < x < 0,

i.e. fe(x) = |x | for −L < x ≤ L, with fe(x + 2L) = fe(x) for x ∈ R.

� The plot of the graph of fe shows that it has a “sawtooth” profile that is piecewise linear and

continuous, with corners at integer multiples of L.
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� Since fe is even, we have bn = 0 and

an =
2

L

L∫
0

x cos
(nπx

L

)
dx .

� Evaluating this integral as in Example 3 gives the Fourier cosine series

fe(x) ∼ L

2
−
∞∑
m=0

4L

(2m + 1)2π2
cos

(
(2m + 1)πx

L

)
.

� Since fe is continuous on R and f ′e is piecewise continuous on (−L, L), the Fourier Convergence

Theorem implies that the Fourier series for fe converges to fe on R.

� Hence the Fourier cosine series for f converges to f on [0, L].

� The partial sums of the Fourier series for fe may be defined for N ∈ N by

SN(x) =
L

2
−

N∑
m=0

4L

(2m + 1)2π2
cos

(
(2m + 1)πx

L

)
for x ∈ R.

We plot below the partial sums for N = 2, 4, 8 and 16, which illustrates their rapid convergence

to fe .
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� Similarly, the odd 2L-periodic extension fo is defined by

fo(x) =

{
x for 0 ≤ x ≤ L,

−(−x) for −L < x < 0,

i.e. fo(x) = x for −L < x ≤ L, with fo(x + 2L) = fo(x) for x ∈ R.

� The plot of the graph of f0 shows that it is piecewise linear with jump discontinuities at

x = (2k + 1)L for k ∈ Z.

� Since fo is odd, we have an = 0 and

bn =
2

L

L∫
0

x sin
(nπx

L

)
dx .

90/308



� Evaluating this integral as in Example 3 gives the Fourier sine series

fo(x) ∼
∞∑
n=1

2L(−1)n+1

nπ
sin
(nπx

L

)
.

� Since fo and f ′o are piecewise continuous on (−L, L), the Fourier Convergence Theorem implies

that the Fourier series for fo converges to

fo(x) at points of continuity of fo , i.e. for x 6= (2k + 1)L, k ∈ Z;

the average of the left- and right-hand limits of fo at its jump discontinuities, i.e. to(
f (L+) + f (L−)

)
/2 = (−L + L)/2 = 0 for x = L and hence for x = (2k + 1)L, k ∈ Z by periodicity.

� Hence, the Fourier sine series for f converges to f (x) for 0 ≤ x < L, but to 0 for x = L.

� The partial sums of the Fourier series for fo may be defined for positive integers N by

SN(x) =
N∑

n=1

2L(−1)n+1

nπ
sin
(nπx

L

)
for x ∈ R.

� We plot below the partial sums for N = 8, 16, 32 and 64, which illustrates that the slow

convergence away from the jump discontinuities of f0 is hindered by Gibb’s phenomenon.
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� The truncated cosine series gives a better approximation to f on [0, L] than the truncated sine

series because

(1) it converges everywhere on [0, L];

(2) it converges more rapidly;

(3) it does not exhibit Gibb’s phenomenon. �

Remark

• Let f3 denote twice the function in Example 3, so that

f3(x) ∼ L

2
−
∞∑
m=1

4L

(2m − 1)2π2
cos

(
(2m − 1)πx

L

)
+
∞∑
m=1

2L(−1)m+1

mπ
sin
(mπx

L

)
.

• Question: Why is the Fourier series for f3 equal to the sum of the Fourier series for fe and fo?

• Answer: Because fe is the even part of f3 and fo the odd part of f3.

• This explains the rate of decay of the Fourier coefficients in Example 3, with p = 1 for fe and

p = 0 for f0 in the notation of §2.6.
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3 The heat equation
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3.1 Preliminaries
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• Fundamental Theorem of Calculus: If f (x) is continuous in a neighbourhood of a, then

1

h

a+h∫
a

f (x) dx → f (a) as h→ 0.

• Leibniz’s Integral Rule: Let F (x , t) and ∂F/∂t be continuous in both x and t in some region R

of the (x , t) plane containing the region S = {(x , t) : a(t) ≤ x ≤ b(t), t0 ≤ t ≤ t1}, where the

functions a(t) and b(t) and their derivatives are continuous for t ∈ [t0, t1].

Then
d

dt

∫ b(t)

a(t)

F (x , t) dx =

∫ b(t)

a(t)

∂F

∂t
(x , t)dx + ḃ(t)F (b(t), t)− ȧ(t)F (a(t), t).

As a result, if a(t) and b(t) are

constants, then

d

dt

∫ b

a

F (x , t) dx =

∫ b

a

∂F

∂t
(x , t)dx .
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3.2 Derivation of the one-dimensional heat equation
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• Consider a rigid isotropic conducting rod (e.g. metal) of constant cross-sectional area A lying

along the x-axis.

• We shall consider conservation of thermal or heat energy in the arbitrary section of the rod in

a ≤ x ≤ a + h, where a and h are constants, as illustrated below.

• In simplest 1D model we assume that the lateral surfaces of the rod are insulated, so that no

thermal energy can be transported through them and the absolute temperature T may be taken

to be a function of distance x along an axis of the rod and time t.

• This assumption is applicable if the rod is long and thin, like a wire.
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• We denote by ρ the density of the rod and by cv the specific heat of the rod, and we assume that

these material parameters are constant.

• The specific heat cv of a material is the energy required to heat up a kilogram by one degree

kelvin (in SI units, about which more in §3.4), so the thermal energy in the section of the rod in

a ≤ x ≤ a + h is given by

A

∫ a+h

a

ρcvT (x , t) dx .

• We now introduce the heat flux q(x , t) in the positive x-direction, which is the rate at which

thermal energy is transported through a cross-section of the rod at station x at time t in the

positive x-direction per unit cross-sectional area per unit time.

• By definition, the rate at which thermal energy enters the section through its left-hand

cross-section in the plane x = a is Aq(a, t).

• Similarly, the rate at which thermal energy leaves the section through the right-hand cross-section

in the plane x = a + h is Aq(a + h, t).

• Hence, with our sign convention on the heat flux, the net rate at which thermal energy enters the

section is

Aq(a, t)− Aq(a + h, t).
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• Assuming insulated lateral surfaces and no external heating (e.g. due to microwave heating),

conservation of energy states that the rate of change of the thermal energy in the section is equal

to the net rate at which thermal energy enters the section, so that

d

dt

A

a+h∫
a

ρcvT (x , t) dx


︸ ︷︷ ︸

(1)

= Aq(a, t)

︸ ︷︷ ︸
(2)

−Aq(a + h, t)

︸ ︷︷ ︸
(3)

,

where we have labeled the three terms in order to summarize their physical significance as follows:

(1) is the time rate of change of thermal energy in the section in a ≤ x ≤ a + h;

(2) is the rate at which thermal energy enters the section through x = a;

(3) is the rate at which thermal energy leaves the section through x = a + h.

• We note this integral conservation law is also true for h < 0 with appropriate reinterpretation of

the terms.
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• Assuming Tt is continuous, Leibniz’s Integral Rule with a and a + h constant gives

ρcv
h

a+h∫
a

Tt(x , t)dx +
q(a + h, t)− q(a, t)

h
= 0,

where we have also rearranged into a form that will enable us to take the limit h→ 0.

• To take the limit h→ 0,

apply the Fundamental Theorem of Calculus assuming Tt is continuous in a neighbourhood of a;

use the definition of qx assuming it to exist at a.

• We obtain thereby the partial differential equation

ρcvTt + qx = 0,

which relates the time rate of change of the temperature and the spatial rate of change of the

heat flux.
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• To make further progress we must decide how the heat flux q depends on the temperature T .

• This is called a constitutive relation and cannot be deduced, relying instead on some assumptions

about the physical properties of the material under consideration.

• An example of a simple constitutive relation is Hooke’s law for the extension of a spring — we

note that

a “thought-experiment” suggests this law is reasonable;

it could be confirmed experimentally;

it will almost certainly fail under “extreme” conditions.

• To close our model for heat conduction we will adopt Fourier’s Law, which is the constitutive law

given by

q = −kTx ,

where k is the thermal conductivity of the rod, which is another material parameter that we take

to be constant.
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• The minus sign in Fourier’s law means that thermal energy flows down the temperature gradient,

i.e. from high to low temperatures.

• Physical experiments confirm that Fourier’s law is an excellent approximation in many practical

applications.

• We note that a good conductor of heat (such as silver) will have a higher thermal conductivity

than a poor conductor of heat (such as glass).

• Substituting Fourier’s law q = −kTx into the PDE ρcvTt + qx = 0 representing conservation of

thermal energy, we arrive at the heat equation

∂T

∂t
= κ

∂2T

∂x2
,

where the thermal diffusivity

κ =
k

ρcv
.

• The heat equation is a second-order linear partial differential equation.
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3.3 Initial boundary value problems
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• There are numerous applications of the heat equation ranging from the diffusive transport of

chemical species to the pricing of financial derivatives, the latter being governed by a backward

heat equation called the Black-Scholes equation.

• In this course we focus on the modelling of the evolution of the temperature T (x , t) in a metal

rod of finite length L lying along the x-axis in the region 0 ≤ x ≤ L.

• Suppose the metal is at room temperature T0 ≈ 300 K when some large ice blocks at their melting

temperature T ∗ ≈ 273 K are held instantaneously against each end of the rod at time t = 0.

• We encode this setup into a mathematical model, as follows:

the temperature T (x , t) satisfies the heat equation inside the rod, so that

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0;

the effect of the ice blocks on the rod are modelled through the boundary conditions

T (0, t) = T∗, T (L, t) = T∗ for t > 0;

the initial state of the temperature in the rod is fed into the initial condition

T (x , 0) = T0 for 0 < x < L.
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Notes

(1) The heat equation, boundary conditions and initial condition forms an initial boundary value

problem (IBVP) for the temperature T (x , t).

(2) The boundary conditions are called Dirichlet boundary conditions because they prescribe the value

of the dependent variable T . They are homogeneous if T ∗ = 0 and inhomogeneous otherwise.

(3) While the boundary and initial conditions were motivated on physical grounds, they can only make

mathematical sense if the IBVP is well-posed in the sense that it has a unique solution that varies

continuously with the boundary and initial data (i.e. with T ∗ and T0) in some suitable sense. We

we shall return to the issue of well-posedness in §7.

(4) The total number of boundary conditions is equal to the number of spatial partial derivatives in

the heat equation, which is the same count as for a typical ODE BVP. The total number of initial

conditions is equal to the number of temporal derivatives in the heat equation, which is the same

count as for a typical ODE IVP. These counts are typical for PDE IBVPs.
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• Definition: The outward normal derivative of T on the boundary is equal to the directional

derivative in the direction of the outward pointing unit normal, i.e. −i ·∇T = −Tx on x = 0 and

i ·∇T = Tx on x = L.

• Other common boundary conditions are:

inhomogeneous Neumann boundary conditions which prescribe the outward normal derivative of the

dependent variable on the boundary (here proportional to the heat flux q = −kTx by Fourier’s law),

e.g.

−
∂T

∂x
(0, t) = φ(t),

∂T

∂x
(L, t) = ψ(t) for t > 0,

where the functions φ(t) and ψ(t) are given.

inhomogeneous Robin boundary conditions which prescribe a linear combination of the outward

normal derivative and temperature at the boundary, e.g.

−
∂T

∂x
(0, t) + α(t)T (0, t) = φ(t),

∂T

∂x
(L, t) + β(t)T (L, t) = ψ(t) for t > 0,

where the functions α(t), φ(t), β(t) and ψ(t) are given.
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3.4 Units and nondimensionalisation
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• Notation: We denote the dimension of the quantity p by [p] in either fundamental units

(M, L,T ,Θ etc) or SI units (kg, m, s, K etc).

• We will work with the latter and recall that kelvin K is the SI unit of temperature, the newton N

is the SI derived unit of force (1 N = 1 kg m s−2), while the joule J is the SI derived unit of energy

(1 J = 1 N m).

• Both sides of an equation modelling a physical process must have the same dimensions, e.g. in the

integral conservation law, d

dt

A

a+h∫
a

ρcvT (x , t) dx

 = [Aq(a, t)] = [Aq(a + h, t)] = J s−1,

while in the heat equation,

[Tt ] = [κTxx ] = K s−1.

• We can exploit this fact to determine the dimensions of parameters and to check that solutions

are dimensionally correct.
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• For example, using Fourier’s Law we find that

[k] =
[q]

[Tx ]
=

J m−2 s−1

K m−1 = J K−1 m−1 s−1,

and using the heat equation we find that

[κ] =
[Tt ]

[Txx ]
=

K s−1

K m−2 = m2 s−1.

• We summarize below the dimensions of the variables and parameters involved in the derivation of

the one-dimensional heat equation.

Symbol Quantity SI units

x Axial distance m

t Time s

T Absolute temperature K

q Heat flux in positive x-direction J m−2 s−1

A Cross-sectional area m2

ρ Rod density kg m−3

cv Rod specific heat J kg−1 K−1

k Rod thermal conductivity J K−1 m−1 s−1

κ Rod thermal diffusivity m2 s−1
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• Nondimensionalisation: The method of scaling variables with typical values to derive

dimensionless equations. These usually contain dimensionless parameters that characterise the

relative importance of the physical mechanisms in the model.

• We illustrate the method with an example.
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Example: nondimensionalisation of an IBVP

� Consider the IBVP for the temperature T (x , t) in a metal rod of length L given by the heat

equation
∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0,

with the inhomogeneous Dirichlet boundary conditions

T (0, t) = T0, T (L, t) = T1 for t > 0,

and the initial condition

T (x , 0) = T2
x

L

(
1− x

L

)
for 0 < x < L,

where T0, T1 snd T2 are prescribed constant temperatures.

� Remark: There are five dimensional parameters, namely κ, L, T0, T1 and T2.

� We can nondimensionalise by scaling

x = Lx̂ , t = τ t̂, T (x , t) = T2T̂ (x̂ , t̂ ),

where L, τ and T2 are a typical lengthscale, timescale and temperature, respectively, so that the

quantities x̂ , t̂ and T̂ are dimensionless.
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� By the chain rule,

∂T

∂t
= T2

∂T̂

∂ t̂

dt̂

dt
=

T2

τ

∂T̂

∂ t̂
,

∂T

∂x
= T2

∂T̂

∂x̂

dx̂

dx
=

T2

L

∂T̂

∂x̂
, etc.

� Hence, the dimensional problem for the dimensional temperature T (x , t) implies that the

corresponding dimensionless problem for the dimensionless temperature T̂ (x̂ , t̂ ) is given by

∂T̂

∂ t̂
= D

∂2T̂

∂x̂2
for 0 < x̂ < 1, t̂ > 0,

with the boundary conditions

T̂ (0, t̂ ) = α0, T̂ (1, t) = α1 for t̂ > 0,

and the initial condition

T̂ (x̂ , 0) = x̂(1− x̂ ) for 0 < x̂ < 1,

where the three dimensionless parameters D, α0 and α1 are defined by

D =
κτ

L2
, α0 =

T0

T2
, α1 =

T1

T2
.
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� We can further reduce the number of dimensionless parameters to two by choosing the timescale

τ so that D = 1, i.e. by choosing

τ = L2/κ,

which is the timescale for conductive transport of heat over a distance L because it balances both

terms in the heat equation.

� With this choice of timescale, we note that if T̂ (x̂ , t̂;α0, α1) is a solution of the IBVP for T̂ , then

a solution of the IBVP for T is given by

T

T2
= T̂

(
x

L
,
κt

L2
;
T0

T2
,
T1

T2

)
,

i.e. T/T2 must be a function of x/L and κt/L2.

� This means that we can compare heat problems on different scales. For example, two IBVPs that

are identical except for L and κ will exhibit the same behaviour on the same timescale if and only

if L2/κ is the same in each problem. �
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3.5 Heat conduction in a finite rod
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• Consider the initial boundary value problem for the temperature T (x , t) in a metal rod of length L

given by the heat equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0,

with the homogeneous Dirichlet boundary conditions

T (0, t) = 0, T (L, t) = 0 for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L,

where the initial temperature profile f (x) is given.

• We will construct a solution using Fourier’s method, which consists of three steps.
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• Fourier’s method:

(I) Use the method of separation of variables to find the countably infinite set of nontrivial separable

solutions satisfying the heat equation and boundary conditions, each containing an arbitrary constant.

(II) Use the principle of superposition — that the sum of any number of solutions of a linear

homogeneous problem is also a solution (assuming convergence) — to form the general series solution

that is the infinite sum of the separable solutions.

(III) Use the theory of Fourier series to determine the constants in the general series solution for which it

satisfies the initial condition.

• Notes:

(1) Both the partial differential equation and and the boundary conditions are linear and homogeneous,

so if T1 and T2 satisfy them, then so does α1T1 + α2T2 for all α1, α2 ∈ R.

(2) To verify that the resulting infinite series is actually a solution of the heat equation, we need it to

converge sufficiently rapidly that Tt and Txx can be computed by termwise differentiation.
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Step (I) Find all nontrivial separable solutions of the PDE and BCs

• We begin by seeking a nontrivial separable solution of the form T = F (x)G(t) for which the heat

equation Tt = κTxx gives

F (x)G ′(t) = κF ′′(x)G(t),

with a prime ′ denoting here and hereafter the derivative with respect to the argument.

• Separating the variables by assuming F (x)G(t) 6= 0 therefore gives

F ′′(x)

F (x)
=

G ′(t)

κG(t)
.

• The LHS of this expression is independent of t, while the RHS is independent of x . Since the LHS

is equal to the RHS, they must both be independent of x and t, and therefore equal to a

constant, −λ ∈ R say.

• Hence,

F ′′ + λF = 0 for 0 < x < L and G ′ = −λκG for t > 0.
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• The boundary condition at x = 0 implies that F (0)G(t) = 0 for t > 0. Since we’re seeking

solutions T that are nontrivial (i.e. not identically equal to zero), there must exist a time t > 0

such that G(t) 6= 0, and hence we must impose on F (x) the boundary condition F (0) = 0.

Similarly, the boundary condition at x = L implies that F (L) = 0.

• In summary, we have deduced that F (x) satisfies the BVP given by the ODE

−F ′′(x) = λF (x) for 0 < x < L,

with the boundary conditions

F (0) = 0, F (L) = 0,

where λ ∈ R.

• Now we need to find all λ ∈ R such that the BVP for F (x) has a nontrivial solution.

• Since the general solution of the ODE is different for (i) λ < 0, (ii) λ = 0 and (iii) λ > 0, there

are three cases to consider.
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• Case (i): λ = −ω2 (ω > 0 wlog)

If F ′′ − ω2F = 0, then F (x) = A cosh(ωx) + B sinh(ωx), where A,B ∈ R.

The boundary conditions then require A = 0, B sinh(ωL) = 0, so that F = 0.

• Case (ii): λ = 0

If F ′′ = 0, then F (x) = A + Bx , where A,B ∈ R.

The boundary conditions then require A = 0, BL = 0, so that F = 0.

• Case (iii): λ = ω2 (ω > 0 wlog)

If F ′′ + ω2F = 0, then F (x) = A cos(ωx) + B sin(ωx), where A,B ∈ R.

The boundary conditions then require A = 0, B sin(ωL) = 0.

Since B 6= 0 for nontrivial F , we must have sinωL = 0, i.e. ωL = nπ for some n ∈ N \ {0}.
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• Hence, the nontrivial solutions of the BVP for F (x) are given for positive integers n by

F (x) = B sin
(nπx

L

)
, λ =

n2π2

L2
,

where B is an arbitrary constant.

• Since G(t) satisfies the ordinary differential equation G ′ = −λκG , we deduce that

G(t) = C exp (−λκt) ,

where C ∈ R.

• Since T (x , t) = F (x)G(t), we conclude that the nontrivial separable solutions of the heat

equation that satisfy the boundary conditions are given by

Tn(x , t) = bn sin
(nπx

L

)
exp

(
−n2π2κt

L2

)
,

where n is a positive integer, bn is a constant (equal to BC above) and we have introduced the

subscript n on Tn and bn to enumerate the countably infinite set of such solutions.
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Step (II) Apply the principle of superposition

• Since the heat equation and boundary conditions are linear and homogeneous, a formal

application of the principle of superposition implies that the general series solution is given by

T (x , t) =
∞∑
n=1

Tn(x , t) =
∞∑
n=1

bn sin
(nπx

L

)
exp

(
−n2π2κt

L2

)
.
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Step (III) Use the theory of Fourier series to satisfy the IC

• The initial condition can only be satisfied by the general series solution if

f (x) = T (x , 0) =
∞∑
n=1

bn sin
(nπx

L

)
for 0 < x < L,

so that we need to find the Fourier sine series for f on [0, L].

• The theory of Fourier series implies that the Fourier coefficients bn are given by

bn =
2

L

L∫
0

f (x) sin
(nπx

L

)
dx for n ∈ N \ {0}.

• Hence, we have derived a solution in the form of an infinite trigonometric series.

117/308



Notes:

• The ODE BVP for F (x) and λ is an eigenvalue problem in which the unknown parameter λ is

called an eigenvalue and the corresponding non-trivial solution F (x) an eigenfunction.

• The Fourier series expansions for f and T are therefore called eigenfunction expansions.

• That there are a discrete countably infinite set of eigenvalues and corresponding eigenfunctions is

a property of the BVP that is explained by Sturm-Liouville theory of e.g. part A DEs 2.

• The integral expressions for the Fourier coefficients may be derived by assuming that the orders of

summation and integration may be interchanged and using the orthogonality relations

L∫
0

sin
(mπx

L

)
sin
(nπx

L

)
dx =

L

2
δmn for m, n ∈ N \ {0}.
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• Since Tn(x , t) decays exponentially as n→∞ for t > 0, comparison methods from Analysis II

may be used to show that if the Fourier coefficients bn are merely bounded for all n, then the

general series solution has partial derivatives of all orders for t > 0 that may be computed by

term-by-term differentiation.

• It follows from the Fourier convergence theorem that if f and f ′ are piecewise continuous on

(0, L), then the infinite series solution is indeed a solution of the IBVP. Thus, Fourier’s method

can accommodate even jump discontinuities in the initial temperature profile, the heat equation

acting to instantaneously “smooth” them out.

• If the initial temperature profile has a jump discontinuity, then the truncated series solution for

T (x , t) will exhibit Gibb’s phenomenon at t = 0, and hence at sufficiently small times t � L2/κ

by continuity.

• In principle this deficiency can be avoided at some fixed t > 0 by keeping enough terms. In

contrast, the exponential decay of Tn(x , t) with n2κt/L2 means that the solution will be well

approximated by the leading-term T1(x , t) at sufficiently large large times t � L2/κ.
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Example: the smoothing effect of the heat equation

� Consider the IBVP in which the initial temperature profile given by

f (x) =

{
T ∗ for L1 < x < L2,

0 otherwise,

where T ∗, L1 and L2 are constants, so that the Fourier coefficients are given by

bn =
2

L

L2∫
L1

T ∗ sin
(nπx

L

)
dx =

2T ∗

nπ

(
cos

(
nπL1

L

)
− cos

(
nπL2

L

))
for n ∈ N\{0}.

� We plot below snapshots of the partial sums of the truncated series solution (red lines) with 32,

64, 128 and 256 terms at times t given by κt/L2 = 10−5, 10−4, 10−3, 10−2 and 10−1 for

L1/L = 0.2, L2/L = 0.4.

� The jump conditions in the initial temperature profile at L1/L = 0.2 and L2/L = 0.4 are indicated

by vertical black lines.
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� As the number of terms increases we see that Gibb’s phenomenon is suppressed more rapidly.

� Any profile that is oscillatory or not positive for 0 < x < L, t > 0 is a poor approximation of the

solution, so we see that only the plot with 256 terms is acceptable for the times chosen.

� The final snap shot in each case is close to T1(x , t) (dashed line) for which π2κt/L2 = π2/10.

� The early time behaviour is captured much more effectively by the asymptotic solution

T (x , t) ≈ T ∗√
4πκt

∫ L2

L1

exp

(
− (s − x)2

4κt

)
ds,

which is valid as t → 0+.

� The asymptotic solution does not exhibit Gibb’s phenomenon and tends to the initial profile as

t → 0+ except at the jump discontinuities where it tends to T ∗/2.

� The asymptotic solution is the superposition of fundamental solutions of the heat equation and

may be derived systematically using the method of matched asymptotic expansions — see part A

Differential Equations 2 and Integral Transforms. �
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3.6 Uniqueness Theorem
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• In the last section we considered the IBVP for the temperature T (x , t) given by the heat equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0,

with the homogeneous Dirichlet boundary conditions

T (0, t) = 0, T (L, t) = 0 for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L,

where the initial temperature profile f (x) is given.

• We used Fourier’s method to construct an infinite series solution, but is it the only solution?

• Uniqueness Theorem: The IBVP has at most one solution.
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Proof:

� Our strategy is to show that the difference between any two solutions much vanish.

� Thus, we suppose that T (x , t) and T̃ (x , t) are solutions and let W (x , t) = T (x , t)− T̃ (x , t).

� By linearity, the IBVP for T (x , t) and T̃ (x , t) imply that W (x , t) satisfies the heat equation

∂W

∂t
=
∂T

∂t
− ∂T̃

∂t
= κ

∂2T

∂x2
− κ∂

2T̃

∂x2
= κ

∂2W

∂x2
for 0 < x < L, t > 0,

with the boundary conditions

W (0, t) = T (0, t)− T̃ (0, t) = 0, W (L, t) = T (L, t)− T̃ (L, t) = 0 for t > 0,

and the initial condition

W (x , 0) = T (x , 0)− T̃ (x , 0) = f (x)− f (x) = 0 for 0 < x < L.

� The trick is to analyse the integral I (t) defined by

I (t) =
1

2

L∫
0

W (x , t)2 dx .

� Evidently I (t) ≥ 0 for t ≥ 0 and I (0) = 0 by the initial condition.
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� But, for t > 0,

dI

dt
=

L∫
0

W
∂W

∂t
dx (by Liebniz Integral Rule)

=

L∫
0

Wκ
∂2W

∂x2
dx (by the heat equation)

=

[
κW

∂W

∂x

]x=L

x=0

− κ
L∫

0

∂W

∂x

∂W

∂x
dx (by integration by parts)

= −κ
L∫

0

(
∂W

∂x

)2

dx (by the boundary conditions)

≤ 0

which means that I (t) cannot increase, so that I (t) ≤ I (0) = 0 for t ≥ 0.

� Since I (t) ≥ 0 and I (t) ≤ 0 for t ≥ 0, we deduce that I (t) = 0 for t ≥ 0, and hence that

W (x , t) = 0 for 0 ≤ x ≤ L, t ≥ 0 (assuming continuity of W there). �
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Notes

(1) Since W is the temperature in a metal rod whose initial temperature is everywhere zero and

whose ends are held at zero temperature thereafter, on physical grounds we expect the rod to

remain at zero temperature, i.e. W = 0 for 0 ≤ x ≤ L and t ≥ 0, which is precisely what we

showed to prove uniqueness.

(2) The proof works for any boundary conditions for which it is possible to show that[
κW

∂W

∂x

]x=L

x=0

≤ 0.

Examples include inhomogeneous Dirichlet and Neumann boundary conditions.
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3.7 Inhomogeneous Dirichlet boundary conditions
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• Consider the initial boundary value problem for the temperature T (x , t) given by the heat equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0,

with the inhomogeneous Dirichlet boundary conditions

T (0, t) = T0, T (L, t) = T1 for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L,

where T0 and T1 are prescribed constant temperatures, not both zero, and the initial temperature

profile f (x) is given.

• Lets try to apply Fourier’s method.
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• In step (I) we need to find the nontrivial separable solutions T (x , t) = F (x)G(t) of the heat

equation and boundary conditions.

• But the latter would require

F (0)G(t) = T0, F (L)G(t) = T1 for t > 0,

forcing G to be constant.

• It follows that the only nontrivial separable solution satisfying the boundary conditions is the

time-independent or steady-state solution (about which more shortly).

• Since this cannot satisfy the initial condition, Fourier’s method fails because the boundary

conditions are not homogeneous.

• However, we can transform the problem into one amenable to Fourier’s method, as follows.
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• On physical grounds, we conjecture that T (x , t)→ S(x) as t →∞, where S(x) is the

aforementioned steady-state solution of the heat equation and boundary conditions, which satisfies

0 = κ
d2S

dx2
for 0 < x < L,

with S(0) = T0 and S(L) = T1.

• Thus, S(x) has the linear temperature profile given by

S(x) = T0

(
1− x

L

)
+ T1

(x
L

)
.

• Remark: In steady state thermal energy is conducted along the rod with constant heat flux

q = −k ∂T
∂x

=
k(T0 − T1)

L
,

so that heat flows steadily in the positive x-direction for T0 > T1.
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• We now observe that if we let

T (x , t) = S(x) + U(x , t),

then by linearity the IBVP for T (x , t) implies that U(x , t) satisfies the IBVP given by the heat

equation
∂U

∂t
= κ

∂2U

∂x2
for 0 < x < L, t > 0,

with the homogeneous Dirichlet boundary conditions

U(0, t) = 0, U(L, t) = 0 for t > 0,

and the initial condition

U(x , 0) = f (x)− S(x) for 0 < x < L.

130/308



• The IBVP for U(x , t) is amenable to Fourier’s method.

• We solved it in §3.4 to find the solution given by

U(x , t) =
∞∑
n=1

bn sin
(nπx

L

)
exp

(
−n2π2κt

L2

)
,

where

bn =
2

L

L∫
0

(
f (x)− S(x)

)
sin
(nπx

L

)
dx =

2

L

L∫
0

f (x) sin
(nπx

L

)
dx − 2

nπ
(T0 − (−1)nT1).

• Since U(x , t)→ 0 as t →∞, we can verify our conjecture that T (x , t)→ S(x) as t →∞.

• Remark: The parameters T0 and T1 in the boundary conditions for T (x , t) ended up in the initial

condition for U(x , t) — hence the method is sometimes called ‘the method of shifting the data.’
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Example: infinite speed of propagation

� Consider the IBVP with f (x) = 0, T0 = T ∗ and T1 = 2T ∗.

� We plot below snapshots of the partial sums of the truncated series solution with 128 terms for

κt/L2 = 0 (black line) and κt/L2 = 10−4, 10−3, 10−2, 10−1, 1 (red lines).

� The profiles illustrate the manner in which heat conduction rapidly drives the temperature toward

the linear steady-state temperature profile.

� Since the temperature is zero for 0 < x < L at t = 0, but everywhere positive for t > 0, the effect

of the boundary conditions is felt everywhere instantaneously — the heat equation propagates

information with infinite speed.
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3.8 Homogeneous Neumann boundary conditions
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• Consider the IBVP for the temperature T (x , t) given by the heat equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0,

with the homogeneous Neumann boundary conditions

∂T

∂x
(0, t) = 0,

∂T

∂x
(L, t) = 0 for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L.

• Remark: The ends of the rod are thermally insulated because q = −k∂T/∂x = 0 there.

• Fourier’s method is applied on problem sheet 5 to show that the solution is given by

T (x , t) =
a0

2
+
∞∑
n=1

an cos
(nπx

L

)
exp

(
−n2π2κt

L2

)
,

where the constants an are the Fourier coefficients of the Fourier cosine series for f given by

an =
2

L

L∫
0

f (x) cos
(nπx

L

)
dx .
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Notes

(1) The constant separable and steady-state solution T = a0/2 comes from the case in which the

separation constant is zero.

(2) The Uniqueness Theorem in §3.6 may be adapted to show the IBVP has at most one solution.

(3) Integrating the heat equation from x = 0 to x = L and applying the boundary conditions gives

d

dt

∫ L

0

ρcvT (x , t) dx =

[
k
∂T

∂x

]x=L

x=0

= 0.

This equation represents global conservation of energy: the thermal energy stored in the rod is

constant because all of its surfaces are insulated. Integrating and applying the initial condition

gives ∫ L

0

ρcvT (x , t) dx =

∫ L

0

ρcv f (x) dx for t > 0.

(4) The exponentially decaying modes in the solution for T imply that the temperature

T (x , t)→ a0

2
=

1

L

∫ L

0

f (x) dx as t →∞,

i.e. the temperature tends to the mean of the initial temperature profile. This is because the rod

is insulated so that heat conduction acts to drive the temperature toward the steady-state solution

in which T is spatially uniform.
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Example: trapped heat

� Consider the IBVP in which the initial temperature profile is given by

f (x) = T ∗ exp
(

cos(πx/L)
)

cos
(

sin(πx/L)
)

for 0 < x < L,

where T ∗ is a positive constant.

� Recalling from §1.1 that

exp(cos θ) cos(sin θ) =
∞∑
n=0

cos nθ

n!
for θ ∈ R,

we deduce that a0 = 2T ∗ and an = T ∗/n! for n ≥ 1, giving the solution

T (x , t) = T ∗ +
∞∑
n=1

T ∗

n!
cos
(nπx

L

)
exp

(
−n2π2κt

L2

)
.

� We plot below snapshots of the partial sums of the truncated series solution with 6 terms for

κt/L2 = 0 (black line) and κt/L2 = 10−3, 10−2, 10−1, 1 (red lines), illustrating the rapid

evolution toward the spatially uniform steady-state in which T = T ∗.

� Since the thermal energy of the rod is conserved, the area under each curve is the same.
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3.9 Inhomogeneous heat equation and boundary conditions

137/308



• Consider the IBVP for the temperature T (x , t) in a rod of length L given by the inhomogeneous

heat equation

ρcv
∂T

∂t
= k

∂2T

∂x2
+ Q(x , t) for 0 < x < L, t > 0,

with the inhomogeneous Neumann boundary conditions

−kTx(0, t) = qL(t), −kTx(L, t) = −qR(t) for t > 0,

and the initial condition

T (x , 0) = f (x) for 0 < x < L,

where Q(x , t) is the rate of volumetric heating, qL(t) is the heat flux into the left-hand end, qR(t)

is the heat flux into the right-hand end and f (x) is the initial temperature profile, each of these

functions being prescribed.
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• Notes:

(1) The Uniqueness Theorem in §3.6 may be adapted to show that the initial boundary value problem has

at most one solution.

(2) Integrating the heat equation across the rod and applying the boundary conditions, we find that

d

dt

∫ L

0
ρcvT (x , t) dx = qL(t) + qR(t) +

∫ L

0
Q(x , t) dx ,

which represents global conservation of energy: the thermal energy stored in the rod increases or

decreases at the net rate at which thermal energy is supplied to the rod by the heat flux through its

ends and by volumetric heating.

• In general Fourier’s method cannot be used to solve the IBVP for T (x , t) because the heat

equation and boundary conditions are inhomogeneous, i.e. Q(x , t), qL(t) and qR(t) are non-zero.

We now describe a generalization of Fourier’s method that works.
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• We deal first with the boundary conditions: if we let T (x , t) = S(x , t) + U(x , t), where

S(x , t) = qL(t)
(x − L)2

2kL
+ qR(t)

x2

2kL
,

say, is chosen to satisfy the boundary conditions.

• By linearity the IBVP for T (x , t) implies that the IBVP for U(x , t) is given by

ρcv
∂U

∂t
= k

∂2U

∂x2
+ Q̃(x , t) for 0 < x < L, t > 0,

with the homogeneous Neumann boundary conditions

Ux(0, t) = 0, Ux(L, t) = 0 for t > 0,

and the initial condition

U(x , 0) = f̃ (x) for 0 < x < L,

where the functions

Q̃(x , t) = Q(x , t) + k
∂2S

∂x2
− ρcv

∂S

∂t
, f̃ (x) = f (x)− S(x , 0)

are known in terms of Q(x , t), qL(t), qR(t) and f (x).
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• Thus, the boundary conditions have been rendered homogeneous by ‘shifting the data’ in the

sense that both qL(t) and qR(t) have moved from the boundary conditions for T (x , t) into the

heat equation and initial conditions for U(x , t).

• If Q̃ ≡ 0, then we can solve the IBVP for U(x , t) using Fourier’s method as in §3.8 to obtain

U(x , t) =
a0

2
+
∞∑
n=1

an cos
(nπx

L

)
exp

(
−n2π2kt

ρcvL2

)
, an =

2

L

∫ L

0

f̃ (x) cos
(nπx

L

)
dx ,

where the Fourier coefficients an have been chosen to satisfy the initial condition.

• The series solution for U(x , t) suggests that if Q̃(x , t) is not identically zero, then we should seek

a solution for U(x , t) in the form of the Fourier cosine series

U(x , t) =
U0(t)

2
+
∞∑
n=1

Un(t) cos
(nπx

L

)
in which the Fourier coefficients

Un(t) =
2

L

∫ L

0

U(x , t) cos
(nπx

L

)
dx

are to be determined.
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• Question: How do we derive an equation for Un(t)?

• Answer: Inspired by the proof of the uniqueness theorem in §3.6, we proceed as follows

• We differentiate Un(t) with respect to t to obtain

ρcv
dUn

dt
=

2

L

L∫
0

ρcv
∂U

∂t
cos
(nπx

L

)
dx =

2

L

L∫
0

(
k
∂2U

∂x2
+ Q̃

)
cos
(nπx

L

)
dx ,

where we used Leibniz’s Integral Rule in the first equality and the heat equation in the second.

• Integrating by parts using the identity∫ L

0

uv ′′ − u′′v dx =

∫ L

0

(uv ′ − u′v)′ dx =
[
uv ′ − u′v

]L
0

with u = U and v = cos(nπx/L) gives

L∫
0

U

(
−n2π2

L2
cos
(nπx

L

))
− Uxx cos

(nπx
L

)
dx =

[
U
(
−nπ

L

)
sin
(nπx

L

)
− Ux cos

(nπx
L

)]L
0

= 0

by the boundary conditions, so that

2

L

L∫
0

Uxx cos
(nπx

L

)
dx = −n2π2

L2

2

L

L∫
0

U cos
(nπx

L

)
dx = −n2π2

L2
Un.
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• We deduce that Un(t) is governed by the ODE

ρcv
dUn

dt
+

kn2π2

L2
Un = Q̃n(t) for t > 0,

where the coefficients of the Fourier cosine series for Q̃(x , t) are defined by

Q̃n(t) =
2

L

L∫
0

Q̃(x , t) cos
(nπx

L

)
dx =

2

L

L∫
0

(
Q(x , t) + k

∂2S

∂x2
− ρcv

∂S

∂t

)
cos
(nπx

L

)
dx .

• The initial condition for U(x , t) implies that the initial condition for Un(t) is given by

Un(0) =
2

L

∫ L

0

f̃ (x) cos
(nπx

L

)
dx =

2

L

∫ L

0

(
f (x)− S(x , 0)

)
cos
(nπx

L

)
dx .

• Using an integrating factor, we find that the solution for Un(t) may be written in the form

Un(t) =

(
1

ρcv

∫ t

0

Q̃n(s)eκns ds + Un(0)

)
e−κnt ,

where κn = n2π2κ/L2 in terms of the thermal diffusivity κ = k/(ρcv ).
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• In summary, we have been able to solve analytically the IBVP for T (x , t): the solution is given by

T (x , t) = S(x , t) +
U0(t)

2
+
∞∑
n=1

Un(t) cos
(nπx

L

)
,

where

S(x , t) = qL(t)
(x − L)2

2kL
+ qR(t)

x2

2kL
,

Un(t) =

(
1

ρcv

∫ t

0

Q̃n(s)eκns ds + Un(0)

)
e−κnt ,

with κn = n2π2κ/L2, κ = k/(ρcv ) and

Q̃n(t) =
2

L

L∫
0

(
Q(x , t) + k

∂2S

∂x2
− ρcv

∂S

∂t

)
cos
(nπx

L

)
dx ,

Un(0) =
2

L

∫ L

0

(
f (x)− S(x , 0)

)
cos
(nπx

L

)
dx .
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Notes

(1) If Q̃(x , t) = 0, then Q̃n(t) = 0 and we recover the solution for Un(t) obtained by Fourier’s method.

(2) The ODE for U0(t) is equivalent to the expression representing global conservation of energy.

(3) The derivation of the ODE for Un(t) may also be accomplished by multiplying the heat equation

by cos(nπx/L) and integrating from x = 0 to x = L to obtain∫ L

0

(
ρcv

∂U

∂t
− k

∂2U

∂x2
− Q̃(x , t)

)
cos
(nπx

L

)
dx = 0;

the ODE then follows upon applying Leibniz’s integral rule to the Ut term and integrating by parts

the Uxx term.

(4) Question: What are the advantages of expanding U as a Fourier cosine series rather than T?

Answer: Expanding T as a Fourier cosine series is equivalent to expanding S as a Fourier cosine

series, which cannot improve the accuracy of the approximate solution that would be obtained by

truncation. In general the method of shifting the data (to render homogeneous the boundary

conditions) results in a solution that converges more rapidly, especially if Gibb’s phenomenon can

be avoided by doing so.
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Example: sinusoidal forcing

� Consider the IBVP in which

qL(t) = q∗ sin(ωt), qR(t) = 0, Q(x , t) = 0, f (x) = 0,

where q∗ and ω are positive constants, as if the left-hand end of the rod were radiated sinusoidally.

� We obtain,

Q̃n(s) =


2q∗

L
sin(ωs)− ωLq∗

3κ
cos(ωs) for n = 0,

−2ωLq∗

κn2π2
cos(ωs) for n ≥ 1,

with Un(0) = 0 for n ≥ 0.

� Hence, the solution for Un(t) gives

Un(t) =


2κT ∗

ωL2

(
1− cos(ωt)

)
− T ∗

3
sin(ωt) for n = 0,

2ωT ∗

n2π2(κ2
n + ω2)

(
κn cos(ωt) + ω sin(ωt)− κn exp(−κnt)

)
for n ≥ 1,

where we defined the temperature T ∗ = Lq∗/k.
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� It follows that the solution may be written in the form

T (x , t) = T∞(x , t) + V (x , t),

where

T∞(x , t) = T ∗ sin(ωt)
(x − L)2

2L2
+
κT ∗

ωL2

(
1− cos(ωt)

)
− T ∗

6
sin(ωt)

+
∞∑
n=1

2ωT ∗

n2π2(κ2
n + ω2)

(
κn cos(ωt) + ω sin(ωt)

)
cos
(nπx

L

)
and

V (x , t) = −
∞∑
n=1

2κnωT
∗

n2π2(κ2
n + ω2)

exp(−κnt) cos
(nπx

L

)
.

� Since V (x , t) decays exponentially with t, the solution settles down rapidly to a periodic solution

T∞(x , t) with frequency ω.
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� Since V (x , t) satisfies the homogeneous versions of the heat equation and boundary conditions,

the long-time solution T∞(x , t) satisfies the same heat equation, but the inhomogeneous

boundary conditions.

� We now show that these properties of the long-time solution can be used to construct it directly.

� The trick is to seek a complex-valued separable solution eiωtF (x) with frequency ω.

� Substituting this ansatz into the homogeneous heat equation, we find that

κF
′′

= iωF for 0 < x < L.

� Seeking an exponential solution F (x) = eλx gives the auxiliary equation λ2 = iω/κ, so that

λ = ±
√
ω

κ
eiπ/4 = ±

√
ω

2κ
(1 + i),

giving the general solution

F (x) = Aeν(1+i)x/L + Be−ν(1+i)x/L,

where A and B are arbitrary complex constants and ν = L
√
ω/2κ is a dimensionless parameter.
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� We now observe that if we impose on F the boundary conditions −kF ′(0) = q∗ and F ′(L) = 0,

then

Tp(x , t) = Im
(
eiωtF (x)

)
satisfies both the homogeneous heat equation and sinusoidally-forced boundary conditions because

taking the imaginary part commutes with partial differentiation.

� The resulting solution for F (x) may then be written in the form

F (x) =
T ∗ cosh

(
ν(1 + i)(1− x/L)

)
ν(1 + i) sinh

(
ν(1 + i)

) ,

so that

Tp(x , t) = Im

(
T ∗ cosh

(
ν(1 + i)(1− x/L)

)
ν(1 + i) sinh

(
ν(1 + i)

) eiωt
)
.
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� Question: How are the solutions T∞(x , t) and Tp(x , t) related?

� Answer: Having found a particular solution Tp(x , t) satisfying the homogeneous heat equation

and sinusoidally-forced boundary conditions, we see that we could also solve the IBVP for T (x , t)

by setting

T (x , t) = Tp(x , t) + W (x , t),

since then W (x , t) satisfies

ρcv
∂W

∂t
= k

∂2W

∂x2
for 0 < x < L, t > 0,

with

Wx(0, t) = 0, Wx(L, t) = 0 for t > 0,

and

W (x , 0) = −Tp(x , 0) for 0 < x < L,

i.e. the boundary conditions are rendered homogeneous by the ansatz for W (x , t) while retaining

the homogeneity of the heat equation, in contrast to the ansatz for U(x , t) which results in

homogeneous boundary conditions but at the expense of a forced heat equation.
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� The IBVP for W (x , t) may be solved using Fourier’s method as in §3.8, giving the solution

W (x , t) =
c0

2
+
∞∑
n=1

cn cos
(nπx

L

)
exp

(
−n2π2kt

ρcvL2

)
, cn = − 2

L

∫ L

0

Tp(x , 0) cos
(nπx

L

)
dx ,

so that

W (x , t)→ c0

2
= − 1

L

∫ L

0

Tp(x , 0) dx =
κT ∗

ωL2
as t →∞.

� We can now invoke uniqueness of the IBVP for T (x , t) to deduce that

T∞(x , t) + V (x , t) = Tp(x , t) + W (x , t) for 0 ≤ x ≤ L, t ≥ 0.

But V (x , t)→ 0 and W (x , t)→ κT ∗/ωL2 as t →∞, which can only be the case if

T∞(x , t) = Tp(x , t) +
κT ∗

ωL2
for 0 ≤ x ≤ L, t ≥ 0 (†)

because both T∞(x , t) and Tp(x , t) are periodic in t with frequency ω.
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� Remark: This argument saves us from the unwieldy algebraic manipulations that would otherwise

be required to establish the relationship (†), e.g. by showing that the Fourier cosine coefficients of

each side are identical at say t = 0.

� The plots below show a period of oscillation of Tp(x , t) for ν = 0.1, 1, 10 and 100.

� The plots illustrate that the heat flux imposed at x = 0 generates a temperature profile that is

almost spatially uniform for small ν, but penetrates only partially and inside a thin boundary layer

of thickness of order L/ν for large ν.

� This is in accordance with the physical interpretation of ν = L/
√

2κ/ω as the ratio of the length

of the rod L to the typical distance thermal energy conducts in a period of oscillation (since there

is a balance in the heat equation when x and t are scaled with
√
κ/ω and 1/ω, respectively).

� That the shape of the profiles for ν = 10 and ν = 100 are almost identical is because the response

in the thin boundary layer is as if the rod were semi-infinite.
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4 The wave equation
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4.1 Derivation of the one-dimensional wave equation
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• Consider the small transverse vibrations of a homogeneous extensible elastic string stretched

initially along the x-axis at time t = 0 to a length L.

• A point at x i at time t = 0 is displaced to r(x , t) = x i + y(x , t)j at time t > 0, where the

transverse displacement y(x , t) is to be determined, as illustrated.

• Consider the section of the string in the fixed region a ≤ x ≤ a + h, where a and h are arbitrary

constants (with 0 < a < a + h < L).

• The linear momentum of the section of the string in a ≤ x ≤ a + h is

a+h∫
a

ρ
∂r
∂t

dx ,

where ρ is the constant line density of the string (with [ρ] = kg m−1).
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• The string offers no resistance to bending (cf. a ruler) in the sense that the string to the right of

the point r(x , t) exerts at that point a tangential force T (x , t)τ (x , t) on the string to the left,

where T (x , t) is the tension ([T ] = N = kg m s−2) and τ = r x/ |r x | is the unit tangent vector

pointing in the positive x-direction.

• Note that Newton’s third law implies that the string to the left of the point r(x , t) exerts at that

point a tangential force −T (x , t)τ (x , t) on the string to the right.

• Assuming the tension is so large that the effects of gravity and air resistance may be neglected,
the forces acting on the ends of the section of string in a ≤ x ≤ a + h are

(i) the force T (a + h, t)τ (a + h, t) exerted at RH end at r(a + h, t) by the string to right of section;

(ii) the force −T (a, t)τ (a, t) exerted at LH end at r(a, t) by string to the left of section.

We illustrate the forces and where they act on the section in the schematic below.
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• We are now in a position to apply Newton’s Second Law, which states that the rate of change of

the linear momentum of the section of string in a ≤ x ≤ a + h is equal to the net force acting on

it, so that

d

dt

 a+h∫
a

ρ
∂r
∂t

dx

 = T (a + h, t)τ (a + h, t)− T (a, t)τ (a, t).

• Assuming r tt is continuous, Leibniz’s Integral Rule with a and a + h constant gives

1

h

a+h∫
a

ρ
∂2r
∂t2

dx =
T (a + h, t)τ (a + h, t)− T (a, t)τ (a, t)

h
,

where we divided by h in anticipation of taking the limit h→ 0.

• To take the limit h→ 0,

apply the Fundamental Theorem of Calculus assuming r tt is continuous in a neighbourhood of a;

use the definition of
(
Tτ
)
x

assuming it to exist at a.

• We obtain thereby the partial differential equation

ρ
∂2r
∂t2

=
∂

∂x

(
Tτ
)
.
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• Recalling the definitions of r and τ , it follows that

ρ
∂2y

∂t2
j =

∂

∂x

(
T i + Tyx j
(1 + y 2

x )
1/2

)
.

• But we are also assuming that the transverse displacement is small in the sense that the slope of

the string is small, i.e. |yx | � 1.

• Since a Taylor expansion gives(
1 + y 2

x

)1/2

= 1 +
1

2
(yx)2 + · · · for |yx | � 1,

to a first approximation, i.e. neglecting quadratic and higher order terms,

ρ
∂2y

∂t2
j =

∂

∂x

(
T i + Tyx j

)
.

• Remark: We call this PDE the linearized version of the nonlinear PDE above.
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• The x- and y -components of the linearized PDE are given by

∂T

∂x
= 0, ρ

∂2y

∂t2
=
∂

∂x

(
Tyx
)
.

• The x-component implies that the tension T is spatially uniform, but could vary with time t,

e.g. as when tuning a guitar string.

• We shall take the tension T to be constant, which is the case in many practical applications.

• The y -component then implies that

ρ
∂2y

∂t2
= T

∂2y

∂x2
,

giving the wave equation
∂2y

∂t2
= c2 ∂

2y

∂x2
,

where the wave speed (for reasons that will become apparent) is given by

c =

√
T

ρ
.

• The wave equation is a second-order linear PDE.
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4.2 Units and nondimensionalisation
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• Consider the units of the variables (x , t and y) and parameter (c) in the wave equation.

• Since

[ytt ] = m s−2, [yxx ] = m m−2,

it follows that [
c2
]

=
[ytt ]

[yxx ]
= m2 s−2,

so that [c] = m s−1, i.e. c has the units of speed.

• Question: On what timescale does a displacement travel a distance L?

• Answer: If we nondimensionalize by scaling x = Lx̂ , t = t0t̂, y = Hŷ(x̂ , t̂ ), then the wave

equation becomes
H

t2
0

∂2ŷ

∂ t̂2
=

Hc2

L2

∂2ŷ

∂x̂2
;

the terms balance giving
∂2ŷ

∂ t̂2
=
∂2ŷ

∂x̂2

provided t0 = L/c, which is therefore the timescale for a displacement to travel a distance L.
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4.3 Normal modes of vibration for a finite string
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• Suppose an elastic string is stretched between x = 0 and x = L and the ends held fixed, so that

the small transverse displacement y(x , t) of the string is governed by the wave equation

∂2y

∂t2
= c2 ∂

2y

∂x2
for 0 < x < L,

with the boundary conditions

y(0, t) = 0 y(L, t) = 0.

• An experiment with a slinky suggests there exist discrete modes of vibration, as illustrated in the

schematic below.
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• To analyse mathematically the possible modes of vibration, we seek nontrivial separable solutions

of the form y = F (x)G(t) for which the wave equation ytt = c2yxx gives

F (x)G ′′(t) = c2F ′′(x)G(t).

• Separating the variables for FG 6= 0, we obtain

F ′′(x)

F (x)
=

G ′′(t)

c2G(t)
.

• The LHS of this expression is independent of t, while the RHS is independent of x . Since the LHS

is equal to the RHS, they must both be independent of x and t, and therefore equal to a

constant, −λ ∈ R say.

• Hence,

F ′′ + λF = 0 for 0 < x < L and G ′′ + λc2G = 0 for all t.

• Since G(t) 6= 0 for some t for y nontrivial, the boundary conditions imply F (0) = 0 and F (L) = 0.
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• In summary, we have deduced that F (x) and λ satisfy the ODE BVP given by

−F ′′(x) = λF (x) for 0 < x < L,

with F (0) = 0 and F (L) = 0.

• We solved this problem in §3.4: the nontrivial solutions are given for positive integers n by

F (x) = B sin
(nπx

L

)
, λ =

(nπ
L

)2

,

where B is an arbitrary constant

• Since G ′′ + λc2G = 0, the corresponding solution for G(t) is given by

G(t) = C cos
(nπct

L

)
+ D sin

(nπct
L

)
,

where C and D are arbitrary constants.

• Since T (x , t) = F (x)G(t), we conclude that the nontrivial separable solutions or the normal

modes are given for positive integers n by

yn(x , t) = sin
(nπx

L

)(
an cos

(nπct
L

)
+ bn sin

(nπct
L

))
where an and bn are arbitrary constants (with an = BC and bn = BD) and we have introduced the

subscript n to enumerate the countably infinite set of such solutions.
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Notes

(1) The normal mode yn(x , t) is periodic in t with prime period

p =
2π

nπc/L
=

2L

nc

and frequency or pitch
1

p
=

nc

2L
.

(2) The first normal mode y1 is called the fundamental mode, with associated fundamental frequency

c/(2L). All of the other modes have a frequency that is an integer multiple of the fundamental

frequency.

(3) The predictions are consistent with the slinky experiment.

(4) The normal modes are an example of a standing wave because yn is equal to a function of x

multiplied by an oscillatory function of time.
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4.4 Initial boundary value problem for a finite string
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• Consider the initial boundary value problem for the small transverse displacement y(x , t) of an

elastic string given by the wave equation

∂2y

∂t2
= c2 ∂

2y

∂x2
for 0 < x < L, t > 0,

with the Dirichlet boundary conditions

y(0, t) = 0, y(L, t) = 0 for t > 0,

and the two initial conditions

y(x , 0) = f (x),
∂y

∂t
(x , 0) = g(x) for 0 < x < L,

where the initial transverse displacement f (x) and the initial transverse velocity g(x) are given.

• Remark: The total number of boundary (initial) conditions is equal to the number of spatial

(temporal) partial derivatives in the wave equation.

• We will use Fourier’s method to find a series solution.
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Step (I): Find all nontrivial separable solutions of the PDE and BCs

• We found above that these are the normal modes given for positive integers n by

yn(x , t) = sin
(nπx

L

)(
an cos

(nπct
L

)
+ bn sin

(nπct
L

))
,

where an and bn are arbitrary real constants.

Step (II): Apply the principle of superposition

• Since the wave equation and boundary conditions are linear and homogeneous, we can

superimpose the normal modes (assuming convergence) to obtain the general series solution

y(x , t) =
∞∑
n=1

yn(x , t) =
∞∑
n=1

sin
(nπx

L

)(
an cos

(nπct
L

)
+ bn sin

(nπct
L

))
.
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Step (III): Use the theory of Fourier series to satisfy the ICs

• The initial conditions can only be satisfied if

f (x) =
∞∑
n=1

an sin
(nπx

L

)
for 0 < x < L,

g(x) =
∞∑
n=1

nπc

L
bn sin

(nπx
L

)
for 0 < x < L.

• Hence, an is the nth Fourier coefficient of the Fourier sine series for f , while nπcbn/L is the nth

Fourier coefficient of the Fourier sine series for g , i.e., for positive integers n,

an =
2

L

L∫
0

f (x) sin
(nπx

L

)
dx ,

nπc

L
bn =

2

L

L∫
0

g(x) sin
(nπx

L

)
dx .
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Example: plucking a guitar string

� If the midpoint of the string is drawn aside a distance h and released from rest, then

f (x) =

 2hx/L for 0 ≤ x ≤ L/2,

2h(L− x)/L for L/2 ≤ x ≤ L,
g(x) = 0.

� Since g(x) = 0 we have bn = 0, and integration by parts gives

an =
2

L

L/2∫
0

2hx

L
sin
(nπx

L

)
dx +

2

L

L∫
L/2

2h(L− x)

L
sin
(nπx

L

)
dx =

8h

n2π2
sin
(nπ

2

)
.

� Since

sin
(nπ

2

)
=

 0 for n = 2m, m ∈ N \ {0},

(−1)m for n = 2m + 1, m ∈ N,

we deduce that a series solution is given by

y(x , t) =
8h

π2

∞∑
m=0

(−1)m

(2m + 1)2
sin

(
(2m + 1)πx

L

)
cos

(
(2m + 1)πct

L

)
,

so that p = 2L/c is the prime period of the oscillation.
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� We plot below snapshots of the series solution truncated to 128 terms over the first half-period,

which illustrates the persistence of corners moving with speed c.

�
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� The mesh plot below shows the series solution again truncated to 128 terms, but this time over

the first period, with the orientation chosen for a good view.
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Example: hammering a piano string

� Suppose we hit the string with a hammer so that

f (x) = 0, g(x) =

 v for L1 ≤ x ≤ L2,

0 otherwise,

where v , L1 and L2 are constants.

� We have an = 0 and

nπc

L
bn =

2

L

L2∫
L1

v sin
(nπx

L

)
dx =

2v

nπ

[
cos

(
nπL1

L

)
− cos

(
nπL2

L

)]
.

� It follows that a series solution is given by

y(x , t) =
2h

π2

∞∑
n=1

1

n2

[
cos

(
nπL1

L

)
− cos

(
nπL2

L

)]
sin
(nπx

L

)
sin
(nπct

L

)
,

where h = vL/c and we see that the prime period of the oscillation is again p = 2L/c.
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� We plot below show snapshots of the evolution of the series solution truncated to 128 terms for

L1/L = 0.3, L2/L = 0.5 over the first half-period, which again illustrates the persistence of corners

moving with speed c.
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<latexit sha1_base64="z0/rBuJTOaei3EDc9uTUseKteiU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe8koIJFwMbCIqL5gOQIe5tNsmRv79idE8ORn2BjoYitv8jOf+MmuUKjDwYe780wMy+IpTDoul9Obml5ZXUtv17Y2Nza3inu7jVMlGjG6yySkW4F1HApFK+jQMlbseY0DCRvBqOrqd984NqISN3jOOZ+SAdK9AWjaKW7x5ObbrHklt0ZyF/iZaQEGWrd4menF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2enTsiRVXqkH2lbCslM/TmR0tCYcRjYzpDi0Cx6U/E/r51g/9xPhYoT5IrNF/UTSTAi079JT2jOUI4toUwLeythQ6opQ5tOwYbgLb78lzROy16lfHFbKVUvszjycACHcAwenEEVrqEGdWAwgCd4gVdHOs/Om/M+b8052cw+/ILz8Q3tr42R</latexit>

x/L

<latexit sha1_base64="z0/rBuJTOaei3EDc9uTUseKteiU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe8koIJFwMbCIqL5gOQIe5tNsmRv79idE8ORn2BjoYitv8jOf+MmuUKjDwYe780wMy+IpTDoul9Obml5ZXUtv17Y2Nza3inu7jVMlGjG6yySkW4F1HApFK+jQMlbseY0DCRvBqOrqd984NqISN3jOOZ+SAdK9AWjaKW7x5ObbrHklt0ZyF/iZaQEGWrd4menF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2enTsiRVXqkH2lbCslM/TmR0tCYcRjYzpDi0Cx6U/E/r51g/9xPhYoT5IrNF/UTSTAi079JT2jOUI4toUwLeythQ6opQ5tOwYbgLb78lzROy16lfHFbKVUvszjycACHcAwenEEVrqEGdWAwgCd4gVdHOs/Om/M+b8052cw+/ILz8Q3tr42R</latexit>

x/L

<latexit sha1_base64="z0/rBuJTOaei3EDc9uTUseKteiU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe8koIJFwMbCIqL5gOQIe5tNsmRv79idE8ORn2BjoYitv8jOf+MmuUKjDwYe780wMy+IpTDoul9Obml5ZXUtv17Y2Nza3inu7jVMlGjG6yySkW4F1HApFK+jQMlbseY0DCRvBqOrqd984NqISN3jOOZ+SAdK9AWjaKW7x5ObbrHklt0ZyF/iZaQEGWrd4menF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2enTsiRVXqkH2lbCslM/TmR0tCYcRjYzpDi0Cx6U/E/r51g/9xPhYoT5IrNF/UTSTAi079JT2jOUI4toUwLeythQ6opQ5tOwYbgLb78lzROy16lfHFbKVUvszjycACHcAwenEEVrqEGdWAwgCd4gVdHOs/Om/M+b8052cw+/ILz8Q3tr42R</latexit>

y

h

<latexit sha1_base64="CkQOsTB/4Ep3auE63gPFvowU5W0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUMFDwYvHCvYD0lA22027dLMbdidCCPkZXjwo4tVf481/47bNQVsfDDzem2FmXpgIbsB1v53K2vrG5lZ1u7azu7d/UD886hqVaso6VAml+yExTHDJOsBBsH6iGYlDwXrh9G7m956YNlzJR8gSFsRkLHnEKQEr+YNIE5pnRT4phvWG23TnwKvEK0kDlWgP61+DkaJpzCRQQYzxPTeBICcaOBWsqA1SwxJCp2TMfEsliZkJ8vnJBT6zyghHStuSgOfq74mcxMZkcWg7YwITs+zNxP88P4XoOsi5TFJgki4WRanAoPDsfzzimlEQmSWEam5vxXRCbApgU6rZELzll1dJ96LpXTZvHi4brdsyjio6QafoHHnoCrXQPWqjDqJIoWf0it4ccF6cd+dj0Vpxyplj9AfO5w/7oJG3</latexit>

y

h

<latexit sha1_base64="CkQOsTB/4Ep3auE63gPFvowU5W0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUMFDwYvHCvYD0lA22027dLMbdidCCPkZXjwo4tVf481/47bNQVsfDDzem2FmXpgIbsB1v53K2vrG5lZ1u7azu7d/UD886hqVaso6VAml+yExTHDJOsBBsH6iGYlDwXrh9G7m956YNlzJR8gSFsRkLHnEKQEr+YNIE5pnRT4phvWG23TnwKvEK0kDlWgP61+DkaJpzCRQQYzxPTeBICcaOBWsqA1SwxJCp2TMfEsliZkJ8vnJBT6zyghHStuSgOfq74mcxMZkcWg7YwITs+zNxP88P4XoOsi5TFJgki4WRanAoPDsfzzimlEQmSWEam5vxXRCbApgU6rZELzll1dJ96LpXTZvHi4brdsyjio6QafoHHnoCrXQPWqjDqJIoWf0it4ccF6cd+dj0Vpxyplj9AfO5w/7oJG3</latexit>

y

h

<latexit sha1_base64="CkQOsTB/4Ep3auE63gPFvowU5W0=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUMFDwYvHCvYD0lA22027dLMbdidCCPkZXjwo4tVf481/47bNQVsfDDzem2FmXpgIbsB1v53K2vrG5lZ1u7azu7d/UD886hqVaso6VAml+yExTHDJOsBBsH6iGYlDwXrh9G7m956YNlzJR8gSFsRkLHnEKQEr+YNIE5pnRT4phvWG23TnwKvEK0kDlWgP61+DkaJpzCRQQYzxPTeBICcaOBWsqA1SwxJCp2TMfEsliZkJ8vnJBT6zyghHStuSgOfq74mcxMZkcWg7YwITs+zNxP88P4XoOsi5TFJgki4WRanAoPDsfzzimlEQmSWEam5vxXRCbApgU6rZELzll1dJ96LpXTZvHi4brdsyjio6QafoHHnoCrXQPWqjDqJIoWf0it4ccF6cd+dj0Vpxyplj9AfO5w/7oJG3</latexit>

t = 0

<latexit sha1_base64="Y/6ig5juC9mCiF2tgowBy75t+pU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoIJCwYvHCqYttKFstpt26WYTdidCKf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXphKYdB1v53C2vrG5lZxu7Szu7d/UD48apok04z7LJGJbofUcCkU91Gg5O1UcxqHkrfC0d3Mbz1xbUSiHnGc8iCmAyUiwShayUdyS9xeueJW3TnIKvFyUoEcjV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dkjOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoKpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKmhdVr1a9fqhV6jd5HEU4gVM4Bw8uoQ730AAfGAh4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/fvON0w==</latexit>

t = p/16

<latexit sha1_base64="Xtl8vUtIz60ykveHAx6pShkqsLM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKe5K8AEKAS8eI5gHJEuYnUySIbOz60yvEJb8hBcPinj1d7z5N06SPWi0oKGo6qa7K4ilMOi6X05uaXlldS2/XtjY3NreKe7uNUyUaMbrLJKRbgXUcCkUr6NAyVux5jQMJG8Go5up33zk2ohI3eM45n5IB0r0BaNopRaSaxKfeGfdYsktuzOQv8TLSAky1LrFz04vYknIFTJJjWl7box+SjUKJvmk0EkMjykb0QFvW6poyI2fzu6dkCOr9Eg/0rYUkpn6cyKloTHjMLCdIcWhWfSm4n9eO8H+hZ8KFSfIFZsv6ieSYESmz5Oe0JyhHFtCmRb2VsKGVFOGNqKCDcFbfPkvaZyWvUr58q5Sql5lceThAA7hGDw4hyrcQg3qwEDCE7zAq/PgPDtvzvu8NedkM/vwC87HNzbljsc=</latexit>

t = 2p/16

<latexit sha1_base64="D3OdJfJk63m03SVHj2prSLMNlnA=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKe6G4AMUAl48RjAPSZYwO5lNhszMLjO9QljyFV48KOLVz/Hm3zhJ9qCJBQ1FVTfdXUEsuAHX/XZyK6tr6xv5zcLW9s7uXnH/oGmiRFPWoJGIdDsghgmuWAM4CNaONSMyEKwVjG6nfuuJacMj9QDjmPmSDBQPOSVgpUfAN7gSn3nnvWLJLbsz4GXiZaSEMtR7xa9uP6KJZAqoIMZ0PDcGPyUaOBVsUugmhsWEjsiAdSxVRDLjp7ODJ/jEKn0cRtqWAjxTf0+kRBozloHtlASGZtGbiv95nQTCSz/lKk6AKTpfFCYCQ4Sn3+M+14yCGFtCqOb2VkyHRBMKNqOCDcFbfHmZNCtlr1q+uq+WatdZHHl0hI7RKfLQBaqhO1RHDUSRRM/oFb052nlx3p2PeWvOyWYO0R84nz+pWI8D</latexit>

t = 3p/16

<latexit sha1_base64="Dk4EHeUNGl1XneMyKgZdIzWNTks=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKe5q8AEKAS8eI5iHJEuYncwmQ2Zml5lZISz5Ci8eFPHq53jzb5wke9DEgoaiqpvuriDmTBvX/XZyS8srq2v59cLG5tb2TnF3r6GjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLyd+M0nqjSL5IMZxdQXuC9ZyAg2Vno06AadxSfeebdYcsvuFGiReBkpQYZat/jV6UUkEVQawrHWbc+NjZ9iZRjhdFzoJJrGmAxxn7YtlVhQ7afTg8foyCo9FEbKljRoqv6eSLHQeiQC2ymwGeh5byL+57UTE176KZNxYqgks0VhwpGJ0OR71GOKEsNHlmCimL0VkQFWmBibUcGG4M2/vEgap2WvUr66r5Sq11kceTiAQzgGDy6gCndQgzoQEPAMr/DmKOfFeXc+Zq05J5vZhz9wPn8AquCPBA==</latexit>

t = 4p/16

<latexit sha1_base64="cC9rnCOIwxYi8CR391gJkL1BcMs=">AAAB8HicbVDJSgNBEK2JW4xb1KOXxiB4ijMSXEAh4MVjBLNIMoSeTk/SpHtm6K4RwpCv8OJBEa9+jjf/xs5y0OiDgsd7VVTVCxIpDLrul5NbWl5ZXcuvFzY2t7Z3irt7DROnmvE6i2WsWwE1XIqI11Gg5K1Ec6oCyZvB8GbiNx+5NiKO7nGUcF/RfiRCwSha6QHJNakkJ95Zt1hyy+4U5C/x5qQEc9S6xc9OL2ap4hEySY1pe26CfkY1Cib5uNBJDU8oG9I+b1saUcWNn00PHpMjq/RIGGtbEZKp+nMio8qYkQpsp6I4MIveRPzPa6cYXviZiJIUecRmi8JUEozJ5HvSE5ozlCNLKNPC3krYgGrK0GZUsCF4iy//JY3TslcpX95VStWreRx5OIBDOAYPzqEKt1CDOjBQ8AQv8Opo59l5c95nrTlnPrMPv+B8fAOsaI8F</latexit>

t = 5p/16

<latexit sha1_base64="ZlGI/Rw1rYsv94lgfBrNbAGWjY4=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKe5KfIFCwIvHCOYhyRJmJ7PJkJnZZWZWCEu+wosHRbz6Od78GyfJHjSxoKGo6qa7K4g508Z1v53c0vLK6lp+vbCxubW9U9zda+goUYTWScQj1QqwppxJWjfMcNqKFcUi4LQZDG8nfvOJKs0i+WBGMfUF7ksWMoKNlR4NukFn8Yl33i2W3LI7BVokXkZKkKHWLX51ehFJBJWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LJRZU++n04DE6skoPhZGyJQ2aqr8nUiy0HonAdgpsBnrem4j/ee3EhJd+ymScGCrJbFGYcGQiNPke9ZiixPCRJZgoZm9FZIAVJsZmVLAhePMvL5LGadmrlK/uK6XqdRZHHg7gEI7Bgwuowh3UoA4EBDzDK7w5ynlx3p2PWWvOyWb24Q+czx+t8I8G</latexit>

t = 6p/16

<latexit sha1_base64="CLO+LrWS4fHzxmwj3/814Sm7QHI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqe5KqQoKBS8eK9gPaZeSTbNtaJJdklmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhALbsB1v53cyura+kZ+s7C1vbO7V9w/aJoo0ZQ1aCQi3Q6IYYIr1gAOgrVjzYgMBGsFo9up33pi2vBIPcA4Zr4kA8VDTglY6RHwDa7GZ161Vyy5ZXcGvEy8jJRQhnqv+NXtRzSRTAEVxJiO58bgp0QDp4JNCt3EsJjQERmwjqWKSGb8dHbwBJ9YpY/DSNtSgGfq74mUSGPGMrCdksDQLHpT8T+vk0B46adcxQkwReeLwkRgiPD0e9znmlEQY0sI1dzeiumQaELBZlSwIXiLLy+T5nnZq5Sv7iul2nUWRx4doWN0ijx0gWroDtVRA1Ek0TN6RW+Odl6cd+dj3ppzsplD9AfO5w+veI8H</latexit>

t = 7p/16

<latexit sha1_base64="NBhW6CyLa1QSagpaCMAKrv6N99w=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU92VYhUUCl48VrAf0i4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGN1O/dYTVZpF8sGMY+oLPJAsZAQbKz0adIOq8Zl30SuW3LI7A1omXkZKkKHeK351+xFJBJWGcKx1x3Nj46dYGUY4nRS6iaYxJiM8oB1LJRZU++ns4Ak6sUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhJd+ymScGCrJfFGYcGQiNP0e9ZmixPCxJZgoZm9FZIgVJsZmVLAheIsvL5PmedmrlK/uK6XadRZHHo7gGE7BgyrU4A7q0AACAp7hFd4c5bw4787HvDXnZDOH8AfO5w+xAI8I</latexit>

t = 8p/16

<latexit sha1_base64="SbM3xtpIHKl16hjoDBJm5EBtT7Q=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqe5K0QoKBS8eK9gPaZeSTbNtaJJdklmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhALbsB1v53cyura+kZ+s7C1vbO7V9w/aJoo0ZQ1aCQi3Q6IYYIr1gAOgrVjzYgMBGsFo9up33pi2vBIPcA4Zr4kA8VDTglY6RHwDa7GZ95Fr1hyy+4MeJl4GSmhDPVe8avbj2gimQIqiDEdz43BT4kGTgWbFLqJYTGhIzJgHUsVkcz46ezgCT6xSh+HkbalAM/U3xMpkcaMZWA7JYGhWfSm4n9eJ4Gw6qdcxQkwReeLwkRgiPD0e9znmlEQY0sI1dzeiumQaELBZlSwIXiLLy+T5nnZq5Sv7iul2nUWRx4doWN0ijx0iWroDtVRA1Ek0TN6RW+Odl6cd+dj3ppzsplD9AfO5w+yiI8J</latexit>
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� The mesh plot below shows the series solution again truncated to 128 terms, but this time over

the first period, with the orientation chosen for a good view.

t/p

<latexit sha1_base64="QH9XOfXsAWQjVkSUtjQ949pvLZU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU02koN6KXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++5FrI2L1gJOE+xEdKhEKRtFK93iW9MsVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOq16tenVXq9Sv8ziKcATHcAoeXEAdbqEBTWAwhCd4gVdHOs/Om/O+aC04+cwh/ILz8Q0gBI23</latexit>

x/L

<latexit sha1_base64="0NVldua9g9yyoCG8QLqnihE/g7o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe8koHZBGwuLiOYDkiPsbTbJkr29Y3dODEd+go2FIrb+Ijv/jZvkCo0+GHi8N8PMvCCWwqDrfjm5peWV1bX8emFjc2t7p7i71zBRohmvs0hGuhVQw6VQvI4CJW/FmtMwkLwZjK6mfvOBayMidY/jmPshHSjRF4yile4eT266xZJbdmcgf4mXkRJkqHWLn51exJKQK2SSGtP23Bj9lGoUTPJJoZMYHlM2ogPetlTRkBs/nZ06IUdW6ZF+pG0pJDP150RKQ2PGYWA7Q4pDs+hNxf+8doL9cz8VKk6QKzZf1E8kwYhM/yY9oTlDObaEMi3srYQNqaYMbToFG4K3+PJf0jgte5XyxW2lVL3M4sjDARzCMXhwBlW4hhrUgcEAnuAFXh3pPDtvzvu8NedkM/vwC87HN+99jZc=</latexit>

y

h

<latexit sha1_base64="sj1IjkWA1ZehEgkem0ypPhAAkrA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4r2A9IQ9lsN+3SzW7YnQgh5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YSK4Adf9dipr6xubW9Xt2s7u3v5B/fCoa1SqKetQJZTuh8QwwSXrAAfB+olmJA4F64XTu5nfe2LacCUfIUtYEJOx5BGnBKzkDyJNaJ4V+aQY1htu050DrxKvJA1Uoj2sfw1GiqYxk0AFMcb33ASCnGjgVLCiNkgNSwidkjHzLZUkZibI5ycX+MwqIxwpbUsCnqu/J3ISG5PFoe2MCUzMsjcT//P8FKLrIOcySYFJulgUpQKDwrP/8YhrRkFklhCqub0V0wmxKYBNqWZD8JZfXiXdi6Z32bx5uGy0bss4qugEnaJz5KEr1EL3qI06iCKFntErenPAeXHenY9Fa8UpZ47RHzifP/1ukb0=</latexit>
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Notes

• Both the guitar solution and piano solution contain persistent corners travelling with speed c.

• This means that neither solution can be twice continuously differentiable with respect to x or t,

and hence a so-called classical solution of the wave equation.

• However, if we were to modify the initial data by smoothing off the corners and jump

discontinuities in small neighbourhoods of these irregularities in such a way that the new initial

data is infinitely differentiable, then the new solutions would also be infinitely differentiable, and

hence classical solutions, and they would be “close” in some sense to the original solutions.

• Hence, we do not want to discount the series solutions we have found, but to view them instead

as motivation to weaken the sense in which a function can be a solution of a PDE — the resulting

notion of a weak solution forms the basis for the modern theory of PDEs that can be studied

further on in the course in e.g. B4.3 and B5.2.

• The differences in the makeup of the normal modes for the guitar and piano solutions contribute

to the different timbres of the musical instruments
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4.5 Conservation of energy
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• An elastic string is stretched between x = 0 and x = L along the x-axis to a line density ρ and a

tension T , so that its small transverse displacement y(x , t) is governed by the wave equation

ρ
∂2y

∂t2
= T

∂2y

∂x2
for 0 < x < L, t > 0,

with the Dirichlet boundary conditions

y(0, t) = 0, y(L, t) = 0 for t > 0,

and the initial conditions

y(x , 0) = f (x),
∂y

∂t
(x , 0) = g(x) for 0 < x < L,

where the initial transverse displacement is f (x) and the initial transverse velocity is g(x).

• Remark: Recall that the point of the string that lies at x i in its so-called reference configuration

is displaced transversely to the point with position vector r(x , t) = x i + y(x , t)j. When we impose

the initial conditions, we must deform the string from its reference configuration along the x-axis

to have transverse displacement y(x , 0) = f (x) and we must impart on the string the transverse

velocity given by yt(x , 0) = g(x).
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• The kinetic energy of the string is given by

L∫
0

1

2
ρ |r t |2 dx =

L∫
0

1

2
ρy 2

t dx .

• The elastic potential energy of the string is the product of tension and extension, and therefore

given by

T

 L∫
0

|r x | dx − L

 = T

L∫
0

(
1 + y 2

x

) 1
2 − 1 dx .

• Since the transverse displacement is small in the sense that |yx | � 1, a Taylor expansion gives(
1 + y 2

x

) 1
2 − 1 =

1

2
y 2
x + · · · .

• Hence, to a first approximation (i.e. neglecting cubic and higher order terms), the elastic potential

energy is given by
L∫

0

1

2
Ty 2

x dx .
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• Definition: The energy of the string is defined to be the sum of its kinetic and elastic potential

energies, and given by

E(t) =

L∫
0

1

2
ρy 2

t +
1

2
Ty 2

x dx .

• Proposition: If y(x , t) satisfies the wave equation and the boundary conditions, then the energy

E(t) is constant for t > 0.
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Proof:

� The idea is to show that the derivative of E(t) is equal to zero.

� By Leibniz’s Integral Rule,

dE

dt
=

L∫
0

∂

∂t

(
1

2
ρy 2

t +
1

2
Ty 2

x

)
dx =

L∫
0

ρytytt + Tyxyxt dx .

� Substituting for ρytt from the wave equation, we deduce that

dE

dt
=

L∫
0

Tytyxx + Tyxyxt dx =

L∫
0

(Tytyx)x dx = [Tytyx ]x=L
x=0 .

� Since each of the boundary conditions may be differentiated with respect to t to give yt(0, t) = 0

and yt(L, t) = 0 for t > 0, we deduce that dE/dt = 0. �
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Notes

(1) We have shown that the energy of the elastic string is conserved during its motion, with the

kinetic and elastic potential energy being transferred back and forth as the string oscillates.

(2) The energy of the string is set by the initial conditions to be given by

E(t) = E(0) =

L∫
0

1

2
ρ(g(x))2 +

1

2
T (f ′(x))2 dx .

(3) The energy of the nth normal mode yn(x , t) is given by

En(t) =

L∫
0

1

2
ρ

(
∂yn
∂t

)2

+
1

2
T

(
∂yn
∂x

)2

dx .

Since yn(x , t) satisfies the wave equation and the boundary conditions by construction, it follows

that its energy is conserved during its motion and given by

En(t) = En(0) =
n2π2ρc2b2

n

4L
+

n2π2Ta2
n

4L
,

where in the last equality we substituted for yn(x , 0) and integrated.
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(4) Recalling that

f (x) =
∞∑
n=1

an sin
(nπx

L

)
for 0 < x < L,

g(x) =
∞∑
n=1

nπc

L
bn sin

(nπx
L

)
for 0 < x < L

and assuming convergence, Parseval’s Identity for g and f ′ imply that

L∫
0

1

2
ρg(x)2 +

1

2
Tf ′(x)2 dx =

∞∑
n=1

(
n2π2ρc2b2

n

4L
+

n2π2Ta2
n

4L

)
;

hence,

E(t) = E(0) =
∞∑
n=1

En(0) =
∞∑
n=1

En(t),

i.e. the energy of the elastic string is made up of that in its normal modes.
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4.6 Uniqueness Theorem
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Uniqueness Theorem:

• There is at most one solution to the IBVP for y(x , t) given by

∂2y

∂t2
= c2 ∂

2y

∂x2
for 0 < x < L, t > 0,

with

y(0, t) = 0, y(L, t) = 0 for t > 0,

and

y(x , 0) = f (x),
∂y

∂t
(x , 0) = g(x) for 0 < x < L,

where f (x) and g(x) are given.

Proof:

� Our strategy is to show that the difference between any two solutions much vanish.

� We suppose that y(x , t) and ỹ(x , t) are solutions and let

w(x , t) = y(x , t)− ỹ(x , t).
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� By linearity, w(x , t) satisfies the wave equation

∂2w

∂t2
= c2 ∂

2w

∂x2
for 0 < x < L, t > 0,

with the boundary conditions

w(0, t) = 0, w(L, t) = 0 for t > 0,

and the initial conditions

w(x , 0) = 0,
∂w

∂t
(x , 0) = 0 for 0 < x < L.

� Remark: Since w is the small transverse displacement of an elastic string whose initial transverse

displacement and velocity are everywhere zero and whose ends are fixed thereafter, on physical

grounds we expect the string to remain stationary along the x-axis, i.e. w = 0 for 0 ≤ x ≤ L and

t ≥ 0, which is what we need to show to prove uniqueness.
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� The trick is to analyse the energy E(t) associated with w(x , t), which is given by

E(t) =

L∫
0

1

2
ρw 2

t +
1

2
Tw 2

x dx .

� Since w satisfies the wave equation and homogeneous Dirichlet boundary conditions, the energy

E(t) is conserved.

� But E(0) = 0 by the initial conditions, so

L∫
0

1

2
ρw 2

t +
1

2
Tw 2

x dx = 0 for t ≥ 0.

� We deduce that wt = wx = 0 on R = {(x , y) : 0 ≤ x ≤ L, t ≥ 0} (assuming wt and wx are

continuous there).

� Since the boundary and initial conditions imply that w = 0 on the boundary of R, we deduce that

w = 0 or y = ỹ on R. �
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4.7 Inhomogeneous wave equation and boundary conditions
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• Consider the IBVP for y(x , t) given by

∂2y

∂t2
= c2 ∂

2y

∂x2
+ F (x , t) for 0 < x < L, t > 0,

with

y(0, t) = φ(t), y(L, t) = ψ(t) for t > 0,

and

y(x , 0) = f (x),
∂y

∂t
(x , 0) = g(x) for 0 < x < L,

where the forcing functions F (x , t), φ(t) and ψ(t), as well as f (x) and g(x), are given.

• In general Fourier’s method cannot be used to solve the IBVP for y because the wave equation

and boundary conditions are inhomogeneous (i.e. F , φ and ψ are non-zero).

• However, we can construct a solution by adapting Fourier’s method in the same way as we did for

the inhomogeneous heat equation in §3.9.
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• We deal first with the boundary conditions: if we let

y(x , t) = φ(t)
(

1− x

L

)
+ ψ(t)

x

L
+ Y (x , t),

then
∂2Y

∂t2
= c2 ∂

2Y

∂x2
+ F̃ (x , t) for 0 < x < L, t > 0,

with

Y (0, t) = 0, Y (L, t) = 0 for t > 0,

and

Y (x , 0) = f̃ (x),
∂Y

∂t
(x , 0) = g̃(x) for 0 < x < L,

where the functions

F̃ (x , t) = F (x , t)− φ̈(t)
(

1− x

L

)
− ψ̈(t)

x

L
,

f̃ (x) = f (x)− φ(0)
(

1− x

L

)
− ψ(0)

x

L
,

g̃(x) = g(x)− φ̇(0)
(

1− x

L

)
− ψ̇(0)

x

L
,

are known in terms of F (x , t), φ(t), ψ(t), f (x) and g(x).
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• Thus, the boundary conditions have been rendered homogeneous by shifting the data in the sense

that both φ(t) and ψ(t) have moved from the boundary conditions for y(x , t) into the wave

equation and initial conditions for Y (x , t).

• If F̃ (x , t) = 0, then we can solve the IBVP for Y (x , t) using Fourier’s method as in §4.4 to obtain

Y (x , t) =
∞∑
n=1

sin
(nπx

L

)(
an cos

(nπct
L

)
+ bn sin

(nπct
L

))
.

where

an =
2

L

L∫
0

f̃ (x) sin
(nπx

L

)
dx ,

nπc

L
bn =

2

L

L∫
0

g̃(x) sin
(nπx

L

)
dx .

• This solution suggests that if F̃ (x , t) 6= 0, then we should seek a solution for Y (x , t) in the form

of the Fourier sine series

Y (x , t) =
∞∑
n=1

Yn(t) sin
(nπx

L

)
,

where the Fourier sine coefficients Yn(t) are to be determined and given in terms of Y (x , t) by

Yn(t) =
2

L

∫ L

0

Y (x , t) sin
(nπx

L

)
dx .

185/308



• Multiplying the wave equation by sin(nπx/L) and integrating from x = 0 to x = L gives∫ L

0

(
∂2Y

∂t2
− c2 ∂

2Y

∂x2
− F̃ (x , t)

)
sin
(nπx

L

)
dx = 0.

• For the Ytt term we use Leibniz’s integral rule and for the Yxx term we integrate by parts twice

using the boundary conditions.

• The result is the constant coefficient, second-order, linear ODE for Yn(t) given by

d2Yn

dt2
+ ω2

n Yn = F̃n(t) for t > 0,

where the natural frequencies ωn and the Fourier coefficients F̃n(t) of the Fourier sine series for

F̃ (x , t) are given by

ωn =
nπc

L
, F̃n(t) =

2

L

L∫
0

F̃ (x , t) sin
(nπx

L

)
dx .
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• The initial conditions for Y (x , t) imply that the initial conditions for Yn(t) are given by

Yn(0) =
2

L

L∫
0

f̃ (x) sin
(nπx

L

)
dx ,

dYn

dt
(0) =

2

L

L∫
0

g̃(x) sin
(nπx

L

)
dx .

• In summary, the solution of the IBVP for y(x , t) is given by

y(x , t) = φ(t)
(

1− x

L

)
+ ψ(t)

x

L
+
∞∑
n=1

Yn(t) sin
(nπx

L

)
,

where Yn(t) is governed by an ODE IVP whose solution is shown in part A DEs II to be given by

Yn(t) = Yn(0) cos(ωnt) +
1

ωn

dYn

dt
(0) sin(ωnt) +

1

ωn

∫ t

0

F̃n(s) sinωn(t − s) ds.
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Example: sinusoidal forcing

� Consider the case in which the string is at rest along the x-axis when we start to oscillate the

left-hand end sinusoidally with frequency ω at time t = 0, so that

F (x , t) = 0, φ(t) = h sin(ωt), ψ(t) = 0, f (x) = 0, g(x) = 0,

where h and ω are positive constants.

� In this case, we find that

F̃ (x , t) = F (x , t)− φ̈(t)
(

1− x

L

)
− ψ̈(t)

x

L
= hω2 sin(ωt)

(
1− x

L

)
,

f̃ (x) = f (x)− φ(0)
(

1− x

L

)
− ψ(0)

x

L
= 0,

g̃(x) = f (x)− φ̇(0)
(

1− x

L

)
− ψ̇(0)

x

L
= −hω

(
1− x

L

)
.

� Thus,

F̃n(t) =
2

L

L∫
0

F̃ (x , t) sin
(nπx

L

)
dx =

2

L

∫ L

0

hω2 sin(ωt)
(

1− x

L

)
sin
(nπx

L

)
dx =

2hω2

πn
sinωt.
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� We deduce that the IVP for Yn(t) becomes

d2Yn

dt2
+ ω2

n Yn = F̃n(t) =
2hω2

πn
sinωt for t > 0,

with

Yn(0) =
2

L

L∫
0

f̃ (x) sin
(nπx

L

)
dx = 0,

dYn

dt
(0) =

2

L

L∫
0

g̃(x) sin
(nπx

L

)
dx = −2hω

πn
.

� Hence, the solution for Yn(t) is given by

Yn(t) =


2hω

nπ(ω2
n − ω2)

(
ω sin(ωt)− ωn sin(ωnt)

)
for ω 6= ωn,

− h

nπ

(
ωnt cos(ωnt) + sin(ωnt)

)
for ω = ωn.
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� Since the solution for y(x , t) is given by

y(x , t) = φ(t)
(

1− x

L

)
+ψ(t)

x

L
+
∞∑
n=1

Yn(t) sin
(nπx

L

)
= h sin(ωt)

(
1− x

L

)
+
∞∑
n=1

Yn(t) sin
(nπx

L

)
,

there are two cases to consider.

� Case (i) ω 6= ωn for all positive integers n:

y(x , t) = h sin(ωt)
(

1− x

L

)
+
∞∑
n=1

2hω

πn(ω2
n − ω2)

(
ω sin(ωt)− ωn sin(ωnt)

)
sin
(nπx

L

)
.

� Case (ii) ω = ωp for some positive integer p:

y(x , t) = h sin(ωpt)
(

1− x

L

)
+
∞∑
n=1
n 6=p

2hωp

πn(ω2
n − ω2

p)

(
ωp sin(ωpt)− ωn sin(ωnt)

)
sin
(nπx

L

)

− h

πp

(
ωpt cos(ωpt) + sin(ωpt)

)
sin
(pπx

L

)
.
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� Question: What is the essential difference between the two cases?

� Answer: In case (i) y(x , t) is bounded for all t ≥ 0, while in case (ii) y(x , t) grows without bound

(because Yp(t) does) as t →∞. That the amplitude grows without bound when the system is

forced at a natural frequency is called resonance.

� We plot below the forcing y(0, t) and response y(L/2, t) over five periods for (i) ω = ω1/2

(left-hand plot) and (ii) ω = ω1 (right-hand plot), which were obtained by truncating the series

solution to 32 terms.

� We see a periodic solution in case (i) and linear growth of the amplitude in case (ii).

� The horizontal red segments are an artefact of the speed of propagation of information being c for

the wave equation, e.g. the string has zero displacement initially and it takes until time t = L/2c

for the effect of the forcing at x = 0 to reach x = L/2.
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4.8 Normal modes for a weighted string
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• An elastic string of length 2L has its ends fixed at (x , y) = (±L, 0) and a point particle of mass m

is attached to the mid-point, as illustrated in the schematic below.

• We seek here the normal modes of vibration.

• Since the transverse displacements are small and the tension T constant, the horizontal

components of the forces exerted by the string on the point particle will balance to a first

approximation.

• Hence, we need only consider the transverse displacement of the point particle, Y (t) say.

• We let y−(x , t) and y+(x , t) denote the small transverse displacements for −L ≤ x < 0 and

0 < x ≤ L, respectively.

193/308



• Then y− and y+ must satisfy the wave equations

∂2y−

∂t2
= c2 ∂

2y−

∂x2
for − L < x < 0,

∂2y+

∂t2
= c2 ∂

2y+

∂x2
for 0 < x < L,

and the boundary conditions

y−(−L, t) = 0,

y+(L, t) = 0.

• Question: What conditions hold at x = 0?

• Answer: There are two.

• Firstly, since the point particle is attached to the string, we require

y−(0−, t) = Y (t) = y+(0+, t).
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• Secondly, the string exerts on the point particle the forces illustrated below.

• Here τ is the right-pointing unit tangent vector to the string given by

τ =
i + yx j

(1 + y 2
x )1/2

,

where y = y− for −L < x < 0 and y = y+ for 0 < x < L.

• Hence, applying Newton’s Second Law to the point particle in the y -direction gives

m
d2Y

dt2
=
(
Tτ (0+, t)− Tτ (0−, t)

)
· j.

• Since (
1 + y 2

x

)1/2

= 1 +
1

2
(yx)2 + · · · for |yx | � 1,

we deduce that to a first approximation

m
d2Y

dt2
= Ty+

x (0+, t)− Ty−x (0−, t).
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• To find the normal modes we seek nontrivial separable solutions of the form

y± = F±(x)G(t),

since we need the same time dependence in y±(x , t) if they are to satisfy the BCs at x = 0.

• In the usual manner we may deduce from the wave equations that there is a constant λ such that

F ′′±(x)

F±(x)
=

G ′′(t)

c2G(t)
= −λ,

• Since we’re seeking nontrivial solutions, it follows from the boundary conditions at x = ±L that

F−(−L) = 0, F+(L) = 0.

• Similarly, the boundary conditions at x = 0 give

F−(0−) = F+(0+),

and

mF±(0)G ′′(t) = T (F ′+(0+)− F ′−(0−))G(t).

• Using G ′′(t) + λc2G(t) = 0 and c2 = T/ρ, we deduce that

−λmF±(0) = ρ
(
F ′+(0+)− F ′−(0−)

)
.

196/308



• Since we are seeking non-trivial oscillatory solutions, we now focus on the case in which λ is

positive by setting λ = ω2, where ω > 0 without loss of generality.

• Then G ′′(t) + λc2G(t) = 0 gives G(t) = C cos(ωct + ε), where ε is an arbitrary constant and we

may take C = 1 without loss of generality.

• Moreover, F±(x) satisfy

F ′′− + ω2F− = 0 for − L < x < 0,

F ′′+ + ω2F+ = 0 for 0 < x < L,

with F−(−L) = 0 and F+(L) = 0, so that

F−(x) = A sin
(
ω(L + x)

)
,

F+(x) = B sin
(
ω(L− x)

)
,

where A and B are arbitrary real constants.
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• Substituting into the boundary conditions relating F±(x) at x = 0, we obtain[
sinωL − sinωL

ρ cosωL−mω sinωL ρ cosωL

]
︸ ︷︷ ︸

M

[
A

B

]
=

[
0

0

]
.

• For nontrivial solutions F±(x), we need [
A

B

]
6=

[
0

0

]

and hence for the matrix M to be singular: setting det(M) = 0, we deduce that ω must satisfy

sinωL (2ρ cosωL−mω sinωL) = 0.

• Hence, there are two cases: either (i) sinωL = 0 or (ii) 2ρ cosωL−mω sinωL = 0.
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Case (i) sinωL = 0

• We deduce immediately that ω = nπ/L, where n is a positive integer.

• Then the matrix equation fo [A,B]T gives B = −A, so that the normal modes are given by

y−(x , t) = A sin
(
ω(L + x)

)
cos (ωct + ε),

y+(x , t) = −A sin
(
ω(L− x)

)
cos (ωct + ε).

• This means that the normal modes are the same as for a string of length 2L with a node at x = 0,

i.e. the point particle is stationary and remains at the origin, as illustrated for the first few such

modes in the schematic below.
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Case (ii) 2ρ cosωL−mω sinωL = 0

• If we scale ω = θ/L, then θ satisfies the transcendental equation

tan θ =
α

θ
,

where the dimensionless parameter α = 2Lρ/m is the ratio of the mass of the string to that of the

point particle.

• By plotting the graphs of z = tan θ and z = α/θ, as illustrated below for α = 1, we can convince

ourselves that there are countably many roots

θ1 < θ2 < θ3 < · · · ,

with (n − 1)π < θn < (n − 1/2)π and θn/(n − 1)→ π+ as n→∞.
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• Hence, there are countably many natural frequencies

ωc = θnc/L,

where n is a positive integer.

• Now the matrix equation fo [A,B]T gives B = A, so that the normal modes are given by

y−(x , t) = A sin
(
ω(L + x)

)
cos (ωct + ε),

y+(x , t) = A sin
(
ω(L− x)

)
cos (ωct + ε).

• This means that the string is symmetric about x = 0, as illustrated for the first few such modes in

the schematic below.
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4.9 General solution to the wave equation
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• It is a remarkable fact that it is possible to write down all solutions of the wave equation

∂2y

∂t2
= c2 ∂

2y

∂x2
,

where we recall that the parameter c > 0 is the wave speed.

• To verify this fact we introduce new independent variables

ξ = x − ct, η = x + ct,

and seek a solution in which

y(x , t) = Y (ξ, η).

• The chain rule implies

yx = Yξξx + Yηηx = Yξ + Yη,

yt = Yξξt + Yηηt = −cYξ + cYη.

• Then, assuming Yξη = Yηξ,

yxx = (Yξ + Yη)ξξx + (Yξ + Yη)ηηx = Yξξ + 2Yξη + Yηη,

ytt = (−cYξ + cYη)ξξt + (−cYξ + cYη)ηηt = c2(Yξξ − 2Yξη + Yηη).
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• We deduce that
∂2y

∂t2
− c2 ∂

2y

∂x2
= −4c2 ∂

2Y

∂ξ∂η
.

• Hence, in the new variables (ξ, η) the wave equation becomes

∂2Y

∂ξ∂η
= 0, i .e.

∂

∂ξ

(
∂Y

∂η

)
= 0.

• Thus, ∂Y /∂η is independent of ξ and is a function of η only, say G ′(η), i.e.

∂Y

∂η
= G ′(η),

and so
∂

∂η
[Y − G(η)] = 0.

• Thus, Y − G(η) is a function of ξ only, say F (ξ), and therefore

Y − G(η) = F (ξ),

giving

y(x , t) = F (x − ct) + G(x + ct),

where F and G are arbitrary twice continuously differentiable functions.
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Notes

(1) It is straightforward to use the chain rule to verify that y(x , t) = F (x − ct) + G(x + ct) is a

solution of the wave quation. We have shown that all solutions must be of this form.

(2) We note that F (x − ct) is a travelling wave of constant shape moving in the positive x-direction

with speed c, as illustrated in the sketch below in which the initial profile y = F (x) at t = 0 is

translated a distance ct to the right at time t.
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(3) We note that G(x + ct) is a travelling wave of constant shape moving in the negative x-direction

with speed c, as illustrated in the sketch below in which the initial profile y = G(x) at t = 0 is

translated a distance ct to the left at time t.

(4) The general solution is therefore the superposition of left- and right-travelling waves each moving

with speed c, which is the reason the parameter c is called the wave speed. It follows that the

wave equation propagates information at constant speed c in contrast to solutions of the heat

equation in which information propagates at infinite speed.
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Example: wave reflection

• A string occupies −∞ < x ≤ 0 and is fixed at x = 0. A wave y(x , t) = f (x − ct) is incident from

x < 0. Find the reflected wave.

• In y(x , t) = F (x − ct) + G(x + ct), we take F = f and G to be found.

• The boundary condition y(0, t) = 0 is to be satisfied for all t. Hence, f (−ct) + G(ct) = 0 for all

t, and so G(θ) = −f (−θ) for all θ. Thus,

y(x , t) = f (x − ct)︸ ︷︷ ︸
incident wave

− f (−x − ct)︸ ︷︷ ︸
reflected wave

.

• The snapshots below illustrates the reflection of an incident wave for

f (x) = h exp(−x2/L2), where h and L are positive constants. The arrows indicated the direction

of travel with speed c of the incident and reflected waves. Focussing on x ≤ 0, we see that the

reflected wave has the same shape and speed as the incident wave, but the opposite sign and

direction of travel.
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4.10 Waves on an infinite string: D’Alembert’s formula
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• Consider the initial value problem for the small transverse displacement y(x , t) of an elastic string

given by the wave equation

∂2y

∂t2
= c2 ∂

2y

∂x2
for −∞ < x <∞, t > 0,

with the initial conditions

y(x , 0) = f (x),
∂y

∂t
(x , 0) = g(x) for −∞ < x <∞,

where the initial transverse displacement f (x) and the initial transverse velocity g(x) are given.

• The general solution of the wave equation is y(x , t) = F (x − ct) + G(x + ct), so it remains to

determine the functions F and G for which it satisfies the initial conditions.

• Substituting gives

F (x) + G(x) = f (x), −cF ′(x) + cG ′(x) = g(x).
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• Integrating the second expression gives the system

F (x) + G(x) = f (x), −F (x) + G(x) =
1

c

∫ x

0

g(s) ds + a,

where a is an arbitrary constant.

• Subtracting and adding, we deduce that F and G are given by

F (x) =
1

2

(
f (x)− 1

c

∫ x

0

g(s) ds − a

)
, G(x) =

1

2

(
f (x) +

1

c

∫ x

0

g(s) ds + a

)
.

• Hence,

y(x , t) =
1

2

(
f (x − ct)− 1

c

∫ x−ct

0

g(s) ds − a

)
+

1

2

(
f (x + ct) +

1

c

∫ x+ct

0

g(s) ds + a

)

=
1

2

(
f (x − ct) + f (x + ct)

)
+

1

2c

(∫ 0

x−ct

g(s) ds +

∫ x+ct

0

g(s) ds

)
,

giving D’Alembert’s Formula,

y(x , t) =
1

2

(
f (x − ct) + f (x + ct)

)
+

1

2c

∫ x+ct

x−ct

g(s) ds.
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Notes:

(1) The argument shows that, for given f and g , the initial value problem has one and only one

solution, i.e. existence and uniqueness.

(2) Uniqueness may also be proved by energy conservation under the additional assumption that yt ,

yx → 0 sufficiently rapidly as x → ±∞ that we can ensure the existence of the energy

E(t) =

∫ ∞
−∞

ρ

2
y 2
t +

T

2
y 2
x dx .
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Example 1

� Suppose that f and g are given by

f (x) =


ε cos4

(πx
2L

)
for |x | ≤ L,

0 otherwise,

g(x) = 0,

where ε and L are positive constants.

� Remark: As illustrated in the sketch below, f , f ′, f ′′ and f ′′′ are continuous on R and f is

compactly supported because it vanishes outside of a closed bounded interval.
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� By D’Alembert’s formula the solution is given by

y(x , t) =
1

2

(
f (x − ct) + f (x + ct)

)
,

� Remark: The solution is a classical solution because it is twice continuously differentiable with

respect to x and t and satisfies the IBVP.

� We can sketch the solution y(x , t) at a fixed time t > 0 using the geometrical properties of its

travelling wave components.

� For ct > L, the supports of f (x − ct) and f (x + ct) do not overlap, as illustrated below.
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� For 0 < ct < L, the supports of f (x − ct) and f (x + ct) overlap, as illustrated below.

� The derivation of explicit formulae for the solution therefore requires some careful bookkeeping for

which it is easier to think geometrically rather than algebraically. �
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4.11 Characteristic diagrams
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• Let us ask how the solution at a point P : (x0, t0) in the upper half of the (x , t)-plane depends

upon the data f and g .

• By D’Alembert’s Formula, we have

y(x0, t0) =
1

2
[f (x0 − ct0) + f (x0 + ct0)] +

1

2c

∫ x0+ct0

x0−ct0

g(x) dx ,

which may be written in the form

y(P) =
1

2

(
f (Q) + f (R)

)
+

1

2c

∫ R

Q

g(s) ds,

where Q and R are the points (x0 − ct0, 0) and (x0 + ct0, 0), respectively.
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• We note the deliberate abuse of notation to aid the geometric interpretation of D’Alembert’s

formula.

• Definition: The lines x ± ct = x0 ± ct0 are the characteristic lines through P : (x0, t0).

• y(P) depends only on

(i) f though the values f takes at Q and R;

(ii) g though the values g takes on the x-axis between Q and R.

This motivates the following definition.

• Definition: The interval [x0 − ct0, x0 + ct0] of the x-axis between Q and R is called the domain of

dependence of P : (x0, t0)

• If f or g are modified outside the domain of dependence of P, then y(P) is unchanged.
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• We can exploit the geometric interpretation of D’Alembert’s formula to construct explicit

formulae for the solution: the contribution to y(P) from f and g changes at points on the x-axis

where f and g change their analytic behaviour.

• Hence, given a particular f and g , the first task is to identify such points on the x-axis and sketch

the characteristic lines x ± ct = constant through each of them — this is the characterisrtic

diagram.

• The characteristic diagram divides the (x , t)-plane into regions in which the contributions from f

and g may be different: the second task is to evaluate y(P) for P in each of these regions.
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Example 1 revisited

� Since g vanishes in this case, D’Alembert’s formula becomes

y(P) =
1

2

(
f (Q) + f (R)

)
,

where Q and R are the left- and right-hand intersections with the x-axis of the characteristic lines

though P.

� Recall that f is given by

f (x) =


ε cos4

(πx
2L

)
for |x | ≤ L,

0 otherwise,

so that it is compactly supported with support (−L, L), and therefore changes its analytic

behaviour at the points (−L, 0) and (L, 0) on the x-axis in the (x , t)-plane.

� The characteristics through these points are x ± ct = −L and x ± ct = L and they divide the

upper-half of the (x , t)-plane into six regions R1, . . . , R6, forming the characteristic diagram

illustrated below.
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Characteristic diagram:
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� In particular, we let

R1 = {(x , t) : t > 0, x + ct < −L},

R2 = {(x , t) : t > 0, x ≤ 0, −L ≤ x + ct ≤ L, x − ct ≤ −L},

R3 = {(x , t) : t > 0, x − ct > −L, x + ct < L},

R4 = {(x , t) : t > 0, x − ct < −L, x + ct > L},

R5 = {(x , t) : t > 0, x > 0, −L ≤ x − ct ≤ L, x + ct ≥ L},

R6 = {(x , t) : t > 0, x − ct > L}.

� Notes:

By including the dividing characteristics in regions R2 and R5 (except where they cross at (0, L/c)),

we have ensured that each point (x , t) in the upper half plane belongs to one and only one region.

The choice to have regions R2 and R5 contain their bounding characteristics (except for the point

(0, L/c)) is arbitrary if the solution is everywhere continuous, as it is in this example.
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� Since PQ is parallel to the characteristics x − ct = ±L, while PR is parallel to the characteristics

x + ct = ±L, we may construct the solution with the aid of the characteristic diagram by drawing

on it the triangle PQR for P in each of the different regions.

� Thus, the locations of Q and R on the x-axis dictate their contributions, as follows.
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� If P ∈ R1, then Q and R lie to the left of (−L, 0), so

f (Q) = f (R) = 0,

giving

y(x , t) = 0 for (x , t) ∈ R1.
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� If P ∈ R2, then Q lies at or to the left of (−L, 0), while R lies at or between (−L, 0) and (L, 0), so

f (Q) = 0, f (R) = f (x + ct) = ε cos4
( π

2L
(x + ct)

)
,

giving

y(x , t) =
ε

2
cos4

( π
2L

(x + ct)
)

for (x , t) ∈ R2.
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� If P ∈ R3, then Q and R lie between (−L, 0) and (L, 0), so

f (Q) = f (x − ct) = ε cos4(π(x − ct)/2L), f (R) = f (x + ct) = ε cos4
( π

2L
(x + ct)

)
,

giving

y(x , t) =
ε

2
cos4

( π
2L

(x − ct)
)

+
ε

2
cos4

( π
2L

(x + ct)
)

for (x , t) ∈ R3.
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� If P ∈ R4, then Q lies to the left of (−L, 0) and R lies to the right of (L, 0), so

f (Q) = f (R) = 0,

giving

y(x , t) = 0 for (x , t) ∈ R4.
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� If P ∈ R5, then Q lies at or between (−L, 0) and (L, 0), while R lies at or to the right of (L, 0), so

f (Q) = f (x − ct) = ε cos4
( π

2L
(x − ct)

)
, f (R) = 0,

giving

y(x , t) =
ε

2
cos4

( π
2L

(x − ct)
)

for (x , t) ∈ R5.
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� If P ∈ R6, then Q and R lie to the right of (L, 0), so

f (Q) = f (R) = 0,

giving

y(x , t) = 0 for (x , t) ∈ R6.
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� In order to plot snapshots of the solution at some fixed time t > 0, we draw the corresponding

horizontal line on the characteristic diagram and then write down the solution in the various

different regions it crosses, e.g. for 0 ≤ t ≤ L/c, the horizontal line crosses all but region R4, as

shown.
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� We deduce that, for 0 < t ≤ L/c,

y(x , t) =



0 for x < −L− ct, (R1)

ε

2
cos4

( π
2L

(x + ct)
)

for − L− ct ≤ x ≤ −L + ct, (R2)

ε

2
cos4

( π
2L

(x − ct)
)

+
ε

2
cos4

( π
2L

(x + ct)
)

for − L + ct < x < L− ct, (R3)

ε

2
cos4

( π
2L

(x − ct)
)

for L− ct ≤ x ≤ L + ct, (R5)

0 for x > L + ct. (R6)
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� Similarly, for t > L/c,

y(x , t) =



0 for x < −L− ct, (R1)

ε

2
cos4

( π
2L

(x + ct)
)

for − L− ct ≤ x ≤ L− ct, (R2)

0 for L− ct < x < −L + ct, (R4)

ε

2
cos4

( π
2L

(x − ct)
)

for − L + ct ≤ x ≤ L + ct, (R5)

0 for x > L + ct. (R6)

� We plot below snapshots of the solution with ε = vL/16c to illustrate the formation of two

distinct compactly supported waves, one moving to the right with speed c and one to the left with

speed c, each of them being the same shape as the initial profile, but half the amplitude. The

arrows indicate the direction of travel of the waves.
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�
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Example 2

� Suppose that f and g are given by

f (x) = 0, g(x) =

 vx/L for |x | ≤ L,

0 otherwise,

where L and v are positive constants.

� By D’Alembert’s formula, we now have

y(P) =
1

2c

∫ R

Q

g(s) ds,

where again Q and R are the left- and right-hand intersections with the x-axis of the

characteristic lines though P.

� Since g is compactly supported with support (−L, L), it changes its analytic behaviour at the

points (−L, 0) and (L, 0) on the x-axis in the (x , t)-plane.

� The characteristic diagram is therefore identical to that in Example 1, with characteristics

x ± ct = constant through the points (±L, 0), which divides the upper-half of the (x , t)-plane into

six regions R1, R2, . . . , R6 that we take to be the same as in Example 1.
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� Since PQ is parallel to the characteristics x − ct = ±L, while PR is parallel to the characteristics

x + ct = ±L, we may construct the solution with the aid of the characteristic diagram by drawing

on it the triangle PQR for P in each of the different regions.

� Thus, the locations of Q and R on the x-axis dictate their contributions, as follows.
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� if P ∈ R1, then Q and R lie to the left of (−L, 0), giving

y(x , t) =
1

2c

x+ct∫
x−ct

0 ds = 0 for (x , t) ∈ R1.
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� if P ∈ R2, then Q lies at or to the left of (−L, 0), while R lies at or between (−L, 0) and (L, 0),

giving

y(x , t) =
1

2c

−L∫
x−ct

0 ds +
1

2c

x+ct∫
−L

vs

L
ds =

v

4Lc

(
(x + ct)2 − L2

)
for (x , t) ∈ R2.
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� if P ∈ R3, then Q and R lie between (−L, 0) and (L, 0), giving

y(x , t) =
1

2c

x+ct∫
x−ct

vs

L
ds =

v

4Lc

(
(x + ct)2 − (x − ct)2

)
=

vxt

L
for (x , t) ∈ R3.
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� if P ∈ R4, then Q lies to the left of (−L, 0) and R lies to the right of (L, 0), giving

y(x , t) =
1

2c

−L∫
x−ct

0 ds +
1

2c

L∫
−L

vs

L
ds +

1

2c

x+ct∫
L

0ds = 0 for (x , t) ∈ R4; .

239/308



� if P ∈ R5, then Q lies at or between (−L, 0) and (L, 0), while R lies at or to the right of (L, 0),

giving

y(x , t) =
1

2c

L∫
x−ct

vs

L
ds +

1

2c

x+ct∫
L

0 ds =
v

4Lc

(
L2 − (x − ct)2

)
for (x , t) ∈ R5.
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� if P ∈ R6, then Q and R lie to the right of (L, 0), giving

y(x , t) =
1

2c

x+ct∫
x−ct

0 ds = 0 for (x , t) ∈ R6.
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� We deduce that for 0 < t ≤ L/c,

y(x , t) =



0 for x < −L− ct, (R1)

v

4Lc

(
(x + ct)2 − L2

)
for − L− ct ≤ x ≤ −L + ct, (R2)

vxt

L
for − L + ct < x < L− ct, (R3)

v

4Lc

(
L2 − (x − ct)2

)
for L− ct ≤ x ≤ L + ct, (R5)

0 for x > L + ct. (R6)
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� While for t > L/c,

y(x , t) =



0 for x < −L− ct, (R1)

v

4Lc

(
(x + ct)2 − L2

)
for − L− ct ≤ x ≤ L− ct, (R2)

0 for L− ct < x < −L + ct, (R4)

v

4Lc

(
L2 − (x − ct)2

)
for − L + ct ≤ x ≤ L + ct, (R5)

0 for x > L + ct. (R6)

� We plot below snapshots of the solution with ε = vL/16c to illustrate the formation of two

distinct compactly supported waves, one moving to the right with speed c and one with the

opposite sign to the left with speed c. The arrows indicate the direction of travel of the waves.
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Notes:

(1) Since f is even in Example 1 and g is odd in Example 2, y(x , t) is an even function of x in

Example 1 and an odd function of x in Example 2. This provides a useful check of the solutions.

(2) While the solution that we constructed in Example 1 is twice continuously differentiable with

respect to x and t and hence a classical solution, the solution in example 2 contains corners

(moving with speed c) and hence is not a classical solution. As mentioned at the end of §4.4,

while we do not discount such solutions, we must wait for a more sophisticated theory of PDEs in

order to make sense of them.
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5 Laplace’s equation
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5.1 Preliminaries
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• Divergence Theorem: Let V be a region of R3 with a piecewise smooth boundary ∂V . Let

F(x , y , z) be a vector field with continuous first-order partial derivatives on V ∪ ∂V . Then∫∫∫
V

∇ · F dV =

∫∫
∂V

F · n dS ,

where n is the outward pointing unit normal to ∂V .
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• Green’s Theorem in the plane: Let R be a region in the (x , y)-plane, whose boundary ∂R is a

piecewise smooth simple closed curve. Let G(x , y) be a vector field with continuous first-order

partial derivatives on R ∪ ∂R. Then∫∫
R

∇ · G dx dy =

∫
∂R

G · n ds,

where n is the outward pointing unit normal to ∂R in the (x , y)-plane.
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5.2 Derivation of the three-dimensional heat equation
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• We begin by recalling from Multivariable Calculus the derivation of the three-dimensional heat

equation because it introduces all of the quantities that we shall need.

• Let T (x, t) be the absolute temperature in a rigid isotropic conducting material (e.g. metal), with

constant density ρ and specific heat cv .

• Let q(x, t) be the heat flux vector, so that q · n dS is the rate at which thermal energy is

transported through a surface element dS in the direction of the unit normal n that orients it.
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• Let V be a fixed region in the conducting material whose boundary ∂V has outward pointing unit

normal n, as in the statement of the Divergence Theorem.

• We suppose that the material is heated volumetrically at a prescribed rate Q(x, t) per unit

volume, so that conservation of thermal energy in V is given by

d

dt

∫∫∫
V

ρcvT dV︸ ︷︷ ︸
(1)

=

∫∫
∂V

q · (−n)dS︸ ︷︷ ︸
(2)

+

∫∫∫
V

Q dV ,︸ ︷︷ ︸
(3)

where (1) is the time rate of change of the thermal energy in V , (2) is the net rate at which

thermal energy enters V through ∂V and (3) is the net rate of volumetric heating of V .

• Assuming Tt to be continuous on V ∪ ∂V , so that we can differentiate under the integral sign in

term (1), and applying the Divergence Theorem with F = q to term (2), we obtain∫∫∫
V

ρcv
∂T

∂t
+ ∇ · q − Q dV = 0.
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• Since V is arbitrary, the integrand must vanish if it is continuous, so we obtain

ρcv
∂T

∂t
+ ∇ · q = Q.

• A closed model for heat conduction is obtained by prescribing a constitutive law relating q and T .

• Fourier’s Law states that thermal energy is transported down the temperature gradient, with

q = −k∇T ,

where k is the constant thermal conductivity.

• Recall that −∇T points in the direction in which T decreases most rapidly.

• Substituting Fourier’s law into the PDE representing energy conservation, we deduce that T

satisfies the three-dimensional inhomogeneous or forced heat equation given by

ρcv
∂T

∂t
= k∇2T + Q.
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5.3 Steady three-dimensional heat conduction
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• In steady state T and Q are independent of t, so the heat equation reduces to Poisson’s equation

−k∇2T = Q,

while conservation of energy becomes∫∫
∂V

q · n dS =

∫∫∫
V

Q dV ,

i.e. the net rate at which thermal energy is supplied to a region by volumetric heating is equal to

the net rate at which thermal energy is conducted out though its boundary.

• This result holds locally for any region V , as well as globally for the whole material.

• If in addition Q = 0, Poisson’s equation becomes Laplace’s equation

∇2T = 0,

while conservation of energy becomes ∫∫
∂V

q · n dS = 0,

i.e. the net rate at which thermal energy is conducted though the boundary of any region must

vanish.
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5.4 Steady two-dimensional heat conduction
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• In this course we consider two-dimensional steady-state solutions of the heat equation.

• Setting T = T (x , y) and Q = Q(x , y), where (x , y) are Cartesian coordinates, we obtain

Poisson’s equation in the plane,

−k
(
∂2T

∂x2
+
∂2T

∂y 2

)
= Q.

• If Q = 0, we recover Laplace’s equation in the plane,

∂2T

∂x2
+
∂2T

∂y 2
= 0.

• In terms of plane polar coordinates (r , θ) defined by (x , y) = (r cos θ, r sin θ), Laplace’s equation is

given by
∂2T

∂r 2
+

1

r

∂T

∂r
+

1

r 2

∂2T

∂θ2
= 0 for r > 0.

• We will use Fourier’s method to construct solutions to boundary value problems for Laplace’s

equation in the plane in terms of both Cartesian and plane polar coordinates.
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• If Laplace’s equation holds in some region R, as in the statement of Green’s Theorem in the

plane, then we will need to prescribe a boundary condition on the boundary ∂R of R.

• Definition: The outward normal derivative of T on the boundary ∂R is the directional derivative

of T in the direction of the outward pointing unit normal n to ∂R, and hence given by

∂T

∂n
= n ·∇T on ∂R.

• Common boundary conditions for Laplace’s equation and Poisson’s equation are:

a Dirichlet boundary condition in which the temperature is prescribed on the boundary,

T = f on ∂R;

a Neumann boundary condition in which the outward normal derivative of the temperature (or

equivalently the heat flux q · n = −k∂T/∂n) is prescribed on the boundary,

∂T

∂n
= −

q

k
on ∂R;

a Robin boundary condition in which a linear relationship between the temperature and its outward

normal derivative is prescribed on the boundary,

∂T

∂n
+ αT = β on ∂R;

here the functions f , q, α and β are prescribed on ∂R.
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• Remark: Since −k(Txx + Tyy ) = Q is equivalent to ∇ · q = Q by Fourier’s law, Green’s Theorem

in the plane with F = q implies that∫
∂R

q · n ds =

∫∫
R

∇ · q dx dy =

∫∫
R

Q dx dy ,

which has two important consequences.

• Firstly, if Q = 0, then the net heat flux through the boundary (per unit distance in the

z-direction) must vanish, i.e. ∫
∂R

q · n ds = 0.

• Secondly, if we impose the Neumann boundary condition q · n = q on ∂R, then there can only be

a steady-state solution if the net heat flux though the boundary equals the net rate of volumetric

heating (per unit distance in the z-direction), i.e.∫
∂R

q ds =

∫∫
R

Q dx dy ,

since otherwise the temperature must change.
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5.5 Boundary value problems in Cartesian coordinates
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• An infinite straight metal rod has a rectangular cross-section whose sides are of length a and b.

• The temperature T (x , y) in each cross-section satisfies the boundary value problem given by

Laplace’s equation
∂2T

∂x2
+
∂2T

∂y 2
= 0 for 0 < x < a, 0 < y < b,

with the Dirichlet boundary conditions

T (0, y) = 0 for 0 < y < b,

T (a, y) = 0 for 0 < y < b,

T (x , 0) = 0 for 0 < x < a,

T (x , b) = f (x) for 0 < x < a,

where f (x) is the prescribed temperature at which the top face of the rod is held.

• We construct a solution to the boundary value problem using Fourier’s method, as follows.
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Step (I) Find all nontrivial separable solutions of the PDE and homogeneous BCs

• We begin by finding all nontrivial separable solutions of Laplace’s equation subject to the three

homogeneous boundary conditions.

• Substituting T (x , y) = F (x)G(y) into Laplace’s equation and dividing through by F (x)G(y) 6= 0

gives
F ′′(x)

F (x)
= −G ′′(y)

G(y)
.

• The LHS is independent of y , while the RHS is independent of x . Since the LHS is equal to the

RHS, they must both be independent of x and y , and therefore equal to a constant, −λ ∈ R say.

• Hence,

−F ′′ = λF for 0 < x < a,

with the homogeneous boundary conditions on T at x = 0 and x = a giving the boundary

conditions F (0) = 0 and F (a) = 0 for nontrivial G .

• We solved this problem for F in §3.4: the nontrivial solutions are given for positive integers n by

F (x) = B sin
(nπx

a

)
λ =

(nπ
a

)2

,

where B is an arbitrary constant.
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• Since G ′′ − λG = 0, the corresponding solution for G(y) that satisfies the homogeneous boundary

condition on y = 0 is given by

G = C sinh
(nπy

a

)
,

where C is an arbitrary constant.

• Hence, the nontrivial separable solutions of Laplace’s equation subject to the three homogeneous

boundary conditions are given for positive integers n by

Tn(x , y) = bn sin
(nπx

a

)
sinh

(nπy
a

)
,

where bn = BC are real constants and we have introduced the subscript n on Tn and bn to

enumerate the countably infinite set of such solutions.

• Remark: In contrast to the wave equation for which the nontrivial separable solutions are the

product of trigonometric functions in x and trigonometric functions in t, the nontrivial separable

solutions of Laplace’s equation are products of trigonometric functions in x with hyperbolic

functions in y or vice versa.
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Step (II) Apply the principle of superposition

• By linearity, we can superimpose the separable solutions to obtain the general series solution

satisfying Laplace’s equation and the three homogeneous boundary conditions (assuming

convergence):

T (x , y) =
∞∑
n=1

Tn(x , y) =
∞∑
n=1

bn sin
(nπx

a

)
sinh

(nπy
a

)
.

Step (III) Use the theory of Fourier series to satisfy the inhomogeneous BC

• The boundary condition at y = b on the top side can only be satisfied if

f (x) =
∞∑
n=1

bn sinh

(
nπb

a

)
sin
(nπx

a

)
for 0 < x < a,

so that the theory of Fourier series gives

bn sinh

(
nπb

a

)
=

2

a

a∫
0

f (x) sin
(nπx

a

)
dx for n ∈ N\{0}.

• Remark: If f satisfies the conditions of the Fourier Convergence Theorem, then it may be shown

that the infinite series solution is termwise infinitely differentiable with respect to x and y inside

the rectangular domain 0 < x < a, 0 < y < b, so that it satisfies Laplace’s equation there.
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Example

� If f (x) = T ∗(1− |2x/a− 1|), where T ∗ is a constant temperature, then

T (x , y) =
8T ∗

π2

∞∑
m=0

(−1)m sin
(
(2m + 1)πx/a

)
sinh

(
(2m + 1)πy/a

)
(2m + 1)2 sinh

(
(2m + 1)πb/a

) .

� Series solution truncated to

100 terms, illustrating the

“smoothing out” of the

corner in boundary data.
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5.6 Boundary value problems in plane polar coordinates
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• Recall that in plane polar coordinates (r , θ), Laplace’s equation for T (r , θ) becomes

∂2T

∂r 2
+

1

r

∂T

∂r
+

1

r 2

∂2T

∂θ2
= 0 for r > 0.

• We start by finding all nontrivial separable solutions of the form T (r , θ) = F (r)G(θ).

• Since T is a single-valued function of position on r > 0, we require G(θ) to be 2π-periodic.

• Substituting T (r , θ) = F (r)G(θ) into Laplace’s equation we obtain

F ′′G +
1

r
F ′G +

1

r 2
FG ′′ = 0.

• Separating the variables by dividing through by F (r)G(θ)/r 2 6= 0 gives

r 2F ′′(r) + rF ′(r)

F (r)
= −G ′′(θ)

G(θ)
.

• The LHS is independent of θ, while the RHS is independent of r . Since the LHS is equal to the

RHS, they must both be independent of r and θ, and therefore equal to a constant, λ ∈ R say.

• Hence, we need to find all λ ∈ R for which G ′′(θ) + λG(θ) = 0 has a nontrivial, 2π-periodic,

solution G(θ). There are three cases to consider.
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Case (i) λ = −ω2 (ω > 0 wlog)

• If G ′′ − ω2G = 0, then G(θ) = A coshωθ + B sinhωθ, where A, B ∈ R.

• If G is 2π-periodic, then G(0) = G(±2π), which implies A = A cosh 2πω ± B sinh 2πω, so that

A(cosh 2πω − 1) = 0 and B sinh 2πω = 0, giving A = B = 0 and G = 0.

Case (ii) λ = 0

• If G ′′ = 0, then G(θ) = A + Bθ, where A, B ∈ R.

• If G is 2π-periodic, then B = 0, but arbitrary A is admissible.

• For λ = 0, r 2F ′′ + rF ′ = 0, so (rF ′)′ = 0, giving F = c + d log r for r > 0, where c, d ∈ R.

• Hence for λ = 0 there is a nontrivial, 2π-periodic, separable solution in r > 0 of the form

T0 = A0 + B0 log r ,

where A0 = cA and B0 = dA are real constants.

• Since this solution is independent of θ it is called a cylindrically-symmetric solution.
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Case (iii) λ = ω2 (ω > 0 wlog)

• If G ′′ + ω2G = 0, then G(θ) = R cos (ωθ + Φ), where R, Φ ∈ R.

• If G is nontrivial, then R 6= 0 and G has prime period p = 2π/ω. Hence, G can only be nontrivial

and 2π-periodic if there exists a positive integer n such that np = 2π, i.e. ω = n for some positive

integer n, which the graph of G would reveal to be a geometrically obvious result.

• In anticipation of the need to write the solution in the form of a Fourier series, we write the

resulting solution for ω = n in the form G(θ) = A cos nθ + B sin nθ, where A = R cos Φ,

B = −R sin Φ are arbitrary real constants.

• If λ = ω2 = n2, then we obtain for F (r) Euler’s ODE in the form

r 2F ′′ + rF ′ − n2F = 0 for r > 0.

• As in Introductory Calculus, we derive the general solution of this ODE by making the change of

variable r = et , F (r) = W (t).

262/308



• By the chain rule,
dW

dt
=

dF

dr

dr

dt
= r

dF

dr
,

so that
d2W

dt2
=

d

dr

(
r
dF

dr

)
dr

dt
= r

d

dr

(
r
dF

dr

)
= r 2F ′′ + rF ′ = n2F = n2W .

Hence, W = Cent + De−nt , where C , D ∈ R, and we conclude that the general solution for F (r)

is given by

F (r) = Crn + Dr−n.

• Remark: An alternative method is to seek a solution of the form F (r) = rµ for which

µ(µ− 1) + µ− µ2 = 0, so that µ = ±n, from which follows the general solution.

• We conclude that for λ = ω2 there are a countably infinite set of nontrivial, 2π-periodic, separable

solution in r > 0 given for positive integers n by

Tn = (Anr
b + Bnr

−n) cos nθ + (Cnr
n + Dnr

−n) sin nθ,

where An = AC , Bn = AD, Cn = BC , Dn = BD are real constants and we have introduced the

subscript n on Tn and these constants to enumerate the countably infinite set of such solutions.
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Summary

• Superimposing the nontrivial separable solutions in r > 0, we obtain the general series solution

T (r , θ) = A0 + B0 log r +
∞∑
n=1

(
(Anr

n + Bnr
−n) cos nθ + (Cnr

n + Dnr
−n) sin nθ

)
.

Notes

(1) The solutions log r , r−n cos nθ and r−n sin nθ are unbounded as r → 0+, and hence not defined at

r = 0. This means that these solutions are not admissible if the origin belongs to the domain in

which T is defined.

(2) Similarly, if the domain in which T is defined extends to infinity and T is bounded there, then the

solutions log r , rn cos nθ and rn sin nθ are not admissible. We illustrate these results below with

some concrete examples.
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Example 1

� Consider the boundary value problem for T given by

∇2T = 0 in a < r < b,

with

T = T ?
0 on r = a, T = T ?

1 on r = b,

where a and b are constant radii, while T ?
0 and T ?

1 are constant temperatures.

� Since T satisfies Laplace’s equation in a < r < b, it has the general series solution

T (r , θ) = A0 + B0 log r +
∞∑
n=1

(
(Anr

n + Bnr
−n) cos nθ + (Cnr

n + Dnr
−n) sin nθ

)
.

� Hence, the boundary conditions can only be satisfied if

T ?
0 = A0 + B0 log a +

∞∑
n=1

(
(Ana

n + Bna
−n) cos nθ + (Cna

n + Dna
−n) sin nθ

)
,

T ?
1 = A0 + B0 log b +

∞∑
n=1

(
(Anb

n + Bnb
−n) cos nθ + (Cnb

n + Dnb
−n) sin nθ

)
,

for −π < θ ≤ π, say.
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� Since the Fourier coefficients of a Fourier series are unique, we can equate them on the left- and

right-hand sides of these equalities to obtain, for positive integers n,[
1 log a

1 log b

][
A0

B0

]
=

[
T ?

0

T ?
1

]
,

[
an a−n

bn b−n

][
An

Bn

]
=

[
0

0

]
,

[
an a−n

bn b−n

][
Cn

Dn

]
=

[
0

0

]
.

� Since 0 < a < b, the matrices have nonzero determinant, so we can invert each of them to obtain[
A0

B0

]
=

1

log
(
b
a

) [log b − log a

−1 1

][
T ?

0

T ?
1

]
,

[
An

Bn

]
=

[
0

0

]
,

[
Cn

Dn

]
=

[
0

0

]
.

� Hence, the solution is cylindrically symmetric and given by

T =
T ?

0 log b − T ?
1 log a

log (b/a)
+

T ?
1 − T ?

0

log
(
b
a

) log r .
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Notes

(1) The solution may be written in the form

T

T ?
0

=
log (r/b)

log (a/b)
+

T ?
1

T ?
0

log (r/a)

log (b/a)
.

Since all of the fractions in this expression are dimensionless, it is dimensionally correct.

(2) We could have sought a circularly-symmetric solution T = T (r) from the outset because the

boundary data is independent of θ. However, the method above generalises to T ?
0 and T ?

1 being

functions of θ.
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Example 2

� Consider the boundary value problem for T given by

∇2T = 0 in r < a,

with

T (a, θ) = T ? sin3 θ for − π < θ ≤ π,

where a is a constant radius and T ? is a constant temperature.

� Recall that in r > 0 Laplace’s equation has the general series solution

T (r , θ) = A0 + B0 log r +
∞∑
n=1

(
(Anr

n + Bnr
−n) cos nθ + (Cnr

n + Dnr
−n) sin nθ

)
.

� Since in this example T satisfies Laplace’s equation in the disk r < a, it must be twice

differentiable with respect to x and y in a neighbourhood of the origin, and therefore continuous

and bounded at the origin.

� Hence, the general series solution pertains, but with B0 = 0 and Bn = Dn = 0 for positive integers

n, giving

T (r , θ) = A0 +
∞∑
n=1

(
Anr

n cos nθ + Cnr
n sin nθ

)
.
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� The boundary condition can only be satisfied if

T ? sin3 θ = A0 +
∞∑
n=1

(Ana
n cos nθ + Cna

n sin nθ) for − π < θ ≤ π.

� Since the Fourier series for the left-hand side of this expression is given by the identity

T ? sin3 θ =
3T ?

4
sin θ − T ?

4
sin 3θ,

we can equate Fourier coefficients to deduce that

C1a =
3T ?

4
, C3a

3 = −T ?

4

while the remainder must vanish.

� Hence, a solution is given by

T =
3T ?

4

( r
a

)
sin θ − T ?

4

( r
a

)3

sin 3θ.
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� Question: What is the heat flux out of the disc through r = a?

� Answer: The heat flux vector q = −k∇T according to Fourier’s Law and we need the component

in the direction of the outward pointing unit normal n = e r to the boundary r = a, namely

q · n|r=a = (−k∇T ) · e r |r=a = −k ∂T
∂r

(a, θ) = −k
(

3T ?

4a
sin θ − 3T ?

4a
sin 3θ

)
,

where in the last equality we substituted the solution.

Since there is no volumetric heating, the net heat flux though r = a must vanish, i.e.∫
r=a

q · n ds = 0,

which may be verified by substituting for q · n and integrating. �
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5.7 Poisson’s Integral Formula
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• Consider the boundary value problem for T given by

∇2T = 0 in r < a,

with

T (a, θ) = f (θ) for − π < θ ≤ π,

where a is a constant radius and the temperature profile f is given.

• As in Example 2, the general series solution that satisfies Laplace’s equation in r < a is given by

T (r , θ) =
A0

2
+
∞∑
n=1

(
Anr

n cos nθ + Cnr
n sin nθ

)
,

where we replaced A0 with A0/2 for algebraic convenience.

• Hence, the boundary condition can only be satisfied if

f (φ) =
A0

2
+
∞∑
n=1

(Ana
n cos(nφ) + Cna

n sin(nφ)) for − π < φ ≤ π,

where we replaced the dummy variable θ with φ in anticipation of the following analysis.
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• The theory of Fourier series then gives the Fourier coefficients

anAn =
1

π

π∫
−π

f (φ) cos (nφ) dφ for n ∈ N,

anCn =
1

π

π∫
−π

f (φ) sin (nφ) dφ for n ∈ N\{0}.

• While these integral expressions can evaluated in simple cases (such as in Example 2), it is a

remarkable fact that the series solution may be summed for a wide class of functions f (namely

those that are sufficiently regular that the following analysis is valid).

• We being by substituting the integral expressions for the Fourier coefficients into the series

solution and assuming that the orders of summation and integration may be interchanged, viz.

T (r , θ) =
1

2π

π∫
−π

f (φ) dφ+
∞∑
n=1

 1

π

π∫
−π

( r
a

)n
[cos (nθ) cos (nφ) + sin (nθ) sin (nφ)]f (φ)dφ



=
1

π

π∫
−π

(
1

2
+
∞∑
n=1

( r
a

)n
cos n(θ − φ)

)
f (φ)dφ.
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• Now, if we let α = θ − φ and z =
r

a
eiα, then

1

2
+
∞∑
n=1

( r
a

)n
cos nα = Re

(
1

2
+
∞∑
n=1

( r
a

)n
einα

)

= Re

(
1

2
+
∞∑
n=1

zn
)

= Re

(
1

2

1 + z

1− z

)
= Re

(
1

2

a + reiα

a− reiα

)
= Re

(
1

2

(a + r cosα + ir sinα)(a− r cosα + ir sinα)

(a− r cosα− ir sinα)(a− r cosα + ir sinα)

)
=

1

2

(a + r cosα)(a− r cosα) + (ir sinα)2

(a− r cosα)2 + (r sinα)2

=
a2 − r 2

2(a2 − 2ar cosα + r 2)
,

where the summation of the geometric series in the third equality is valid for |z | < 1.
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• Hence,

T (r , θ) =
1

π

π∫
−π

(
1

2
+
∞∑
n=1

( r
a

)n
cos n(θ − φ)

)
f (φ) dφ,

where
1

2
+
∞∑
n=1

( r
a

)n
cos n(θ − φ) =

a2 − r 2

2(a2 − 2ar cos (θ − φ) + r 2)

for 0 ≤ r < a.

• Substituting the latter into the former, we obtain Poisson’s Integral Formula in the form

T (r , θ) =
(a2 − r 2)

2π

π∫
−π

f (φ)dφ

a2 − 2ar cos (θ − φ) + r 2
,

which is valid for 0 ≤ r < a.
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Notes

(1) The value of T at the centre of the disc is given by

T (0, θ) =
1

2π

∫ 2π

0

f (φ) dφ,

which is the mean value of T over the boundary.

(2) More generally, we can now see that if T satisfies Laplace’s equation in some region R and if

D(x , y , a) is a disk inside R with centre (x , y) and radius a, then

T (x , y) =
1

2πa

∫
∂D(x,y,a)

T ds,

where ∂D(x , y , a) is the boundary of D(x , y , a) and ds an element of arclength. That the mean

value over a circle is equal to its value at the centre is called the mean-value property of Laplace’s

equation and has important consequences. For example, it explains why solutions of Laplace’s

equation are infinitely differentiable, since local averages over a circle vary smoothly as the circle

moves.
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5.8 Uniqueness Theorems
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• We will state and prove uniqueness theorems for the two-dimensional inhomogeneous Dirichlet

and Neumann problems and illustrate with examples their implications for the application of

Fourier’s method.

• Uniqueness Theorem (Dirichlet problem): Consider the Dirichlet problem for T (x , y) given by

−k∇2T = Q in R,

with

T = f on ∂R,

where R is a path-connected region as in the statement of Green’s theorem in the plane, Q is a

given function on R and f is a given function on ∂R. Then the boundary value problem has at

most one solution.
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Proof:

� Let W be the difference between two solutions, then

∇2W = 0 in R with W = 0 on ∂R.

� The trick is to apply Green’s theorem in the plane with F = W∇W to obtain the integral identify∫∫
R

∇ · (W∇W ) dx dy =

∫
∂R

(W∇W ) · n ds.

� Since ∇2W = 0 in R, we have ∇ · (W∇W ) = W∇2W + ∇W ·∇W = |∇W |2 in R.

� Since W = 0 on ∂R, we have W∇W · n = 0 on ∂R.

� Hence, the integral identity becomes ∫∫
R

|∇W |2 dx dy = 0.

� Assuming ∇W is continuous on R ∪ ∂R, we deduce that ∇W = 0 on R, so that W is constant

on R because R is path connected.

� But W = 0 on ∂R, so assuming W is continuous on R ∪ ∂R, the constant must vanish, and we

deduce that W = 0 on R ∪ ∂R. �
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Example 1

� Find T such that

∇2T = 0 in r < a

with

T =
T ?x

a
on r = a,

where a and T ? are constants.

� If we can find any solution, then the uniqueness theorem guarantees it is the only solution.

� We could proceed via Fourier’s method or Poisson’s Integral Formula, but it is quicker to spot

that the solution is simply

T =
T ?x

a
.
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• Uniqueness Theorem (Neumann problem): Consider the Neumann problem for T (x , y) given by

−k∇2T = Q in R,

with

−k ∂T
∂n

= q on ∂R,

where R is a bounded and path-connected region as in the statement of Green’s theorem in the

plane, Q is a given function on R and q is a given function on ∂R. Then the boundary value

problem has no solution unless Q and q satisfy the solvability condition∫∫
R

Q dx dy =

∫
∂R

q ds.

When a solution exists, it is not unique: any two solutions differ by a constant.

• Remark: The solvability condition is precisely the global energy balance derived earlier on.
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Proof:

� Suppose there is a solution T , then∫∫
R

Q dx dy = −k
∫∫
R

∇ ·∇T dx dy

= −k
∫
∂R

n ·∇T ds

= −k
∫
∂R

∂T

∂n
ds

=

∫
∂R

q ds,

where we used Poisson’s equation in the first equality, Green’s theorem in the plane with F = ∇T

in the second equality and the boundary conditions in the final equality.

� Now let W be the difference between two solutions, so that linearity gives

∇2W = 0 in R with
∂W

∂n
= 0 on ∂R.
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� Then, as in the uniqueness proof for the Dirichlet problem,∫∫
R

|∇W |2 dx dy =

∫∫
R

W∇2W + ∇W ·∇W dx dy

=

∫∫
R

∇ · (W∇W ) dx dy

=

∫
∂R

W∇W · n ds

=

∫
∂R

W
∂W

∂n
ds

= 0,

where we used Laplace’s equation for W in the first equality, Green’s theorem in the plane with

F = W∇W in the second equality and the boundary conditions for W in the final equality.

� Assuming ∇W is continuous on R ∪ ∂R, we deduce that ∇W = 0 on R, so that W is constant

on R because R is path connected.

� Hence, W is constant on R ∪ ∂R, assuming W is continuous there. �
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Example 2

� Find T such that

∇2T = 0 in r < a,

with

−k ∂T
∂r

(a, θ) = q(θ) for− π < θ ≤ π,

where the heat flux q(θ) is given.

� As in §5.5 the general series solution of Laplace’s equation in r < a is given by

T = A0 +
∞∑
n=1

(Anr
n cos nθ + Cnr

n sin nθ) .

so the boundary condition on r = a can be satisfied only if

q(θ) =
∞∑
n=1

(
− knAna

n−1 cos nθ − knCna
n−1 sin nθ

)
for − π < θ ≤ π.
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� The theory of Fourier series then requires

0 =
1

π

π∫
−π

q(θ)dθ, (†)

while for positive integers n,

−knAna
n−1 =

1

π

π∫
−π

q(θ) cos nθ dθ,

−knCna
n−1 =

1

π

π∫
−π

q(θ) sin nθ dθ.

� Hence, there are two cases:

(i) if q is such that (†) is not satisfied, then there is no solution;

(ii) if q is such that (†) is satisfied, then there is a solution but it is not unique because A0 is arbitrary

(while the other Fourier coefficients are uniquely determined). �
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Notes

(1) This conclusion is in agreement with the Uniqueness Theorem, which also guarantees that in case

(ii) we’ve found all possible solutions.

(2) In case (i) there is no solution because the temperature cannot be in steady state if the net heat

flux through r = a is non-zero.

(3) In case (ii) there can be a steady state solution because the net heat flux through r = a vanishes,

but we cannot pin down the temperature without additional information — in practice this would

usually be provided by the evolution toward the steady state.
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5.9 A boundary value problem for Poisson’s equation
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• An infinite straight metal rod of constant thermal conductivity k has a square cross-section whose

sides are of length L. The temperature T (x , y) in each cross-section R = {(x , y) : 0 < x , y < L}
satisfies the boundary value problem given by Poisson’s equation

−k
(
∂2T

∂x2
+
∂2T

∂y 2

)
= Q in R,

with the Dirichlet boundary condition

T = 0 on ∂R,

where the rate of volumetric heating Q(x , y) is given on R.

• We may construct a solution using Fourier series, as follows.
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• Motivated by the success of the Fourier sine series expansion in §4.7 and the form of the boundary

conditions, we suppose that T (x , y) may be expanded as the Fourier sine series

T (x , y) =
∞∑
m=1

Tm(y) sin
(mπx

L

)
,

where for positive integers m the Fourier coefficients are given by

Tm(y) =
2

L

∫ L

0

T (x , y) sin
(mπx

L

)
dx .

• Suppose further that for each positive integer m, Tm(y) may be expanded as the Fourier sine series

Tm(y) =
∞∑
n=1

Bmn sin
(nπy

L

)
,

where for positive integers n the Fourier coefficients are given by

Bmn =
2

L

∫ L

0

Tm(y) sin
(nπy

L

)
dy .
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• Substituting the series for Tm(y) into that for T (x , y) and the integral formula for Tm(y) into

that for Bmn we see that we are seeking a solution for T (x , y) in the form of the doubly-infinite

Fourier sine series

T (x , y) =
∞∑

m,n=1

Bmn sin
(mπx

L

)
sin
(nπy

L

)
,

where the Fourier coefficients are given for positive integers m and n by

Bmn =

(
2

L

)2 ∫ L

0

∫ L

0

T (x , y) sin
(mπx

L

)
sin
(nπy

L

)
dx dy .

• Evidently the doubly-infinite series solution satisfies the homogeneous boundary conditions.

• To determine the dependence of the Fourier coefficients Bmn on Q(x , y), we multiply Poisson’s

equation by sin (mπx/L) sin (nπy/L) and integrate over R to obtain∫ L

0

∫ L

0

(
∂2T

∂x2
+
∂2T

∂y 2
+

Q

k

)
sin
(mπx

L

)
sin
(nπy

L

)
dx dy = 0.
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• Integrating by parts using the boundary conditions gives∫ L

0

∂2T

∂x2
sin
(mπx

L

)
dx = −m2π2

L2

∫ L

0

T sin
(mπx

L

)
dx ,

∫ L

0

∂2T

∂y 2
sin
(nπy

L

)
dx = −n2π2

L2

∫ L

0

T sin
(nπy

L

)
dx .

• Substituting the latter expressions into the former one gives∫ L

0

∫ L

0

(
−m2π2

L2
T − n2π2

L2
T +

Q

k

)
sin
(mπx

L

)
sin
(nπy

L

)
dx dy = 0.

• Hence,

Bmn =
L2Qmn

kπ2(m2 + n2)
,

where the Fourier coefficients of the doubly-infinite Fourier sine series for Q(x , y) are defined by

Qmn =

(
2

L

)2 ∫ L

0

∫ L

0

Q(x , y) sin
(mπx

L

)
sin
(nπy

L

)
dx dy .

• This solves the boundary value problem for T (x , y).
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Example

� Consider the boundary value problem for T (x , y) with Q = Q∗, a constant.

� This gives

Qmn = Q∗
(

2

L

)2(
L

mπ

(
1− (−1)m

))( L

nπ

(
1− (−1)n

))
,

so that

Bmn =
4L2Q∗

π4k

(
1− (−1)m

)(
1− (−1)n

)
mn(m2 + n2)

.

� Setting m = 2i + 1 and n = 2j + 1 to enumerate the non-zero terms, we deduce that

T (x , y) = T ∗
∞∑

i,j=0

sin
(
(2i + 1)πx/L

)
sin
(
(2j + 1)πy/L

)
(2i + 1)(2j + 1)

(
(2i + 1)2 + (2j + 1)2

) .
where T ∗ = 16L2Q∗/π4k.

� We plot below the doubly-infinite series solution truncated symmetrically to 100 terms, which

illustrates that there is a maximum of the temperature at the centre of the square.
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Notes

(1) The functions

Tmn(x , y) = Bmn sin
(mπx

L

)
sin
(nπy

L

)
(m, n ∈ N\{0})

form the doubly-infinite set of eigenfunctions of the eigenvalue problem for T (x , y) and λ given by

−
(
∂2T

∂x2
+
∂2T

∂y 2

)
= λT in R with T = 0 on ∂R,

the eigenvalue λ = λmn corresponding to the eigenfunction Tmn(x , y) being given by

λmn =
m2π2

L2
+

n2π2

L2
.

This eigenvalue problem for T (x , t) and λ is the two-dimensional generalization of the eigenvalue

problem for F (x) and λ in §3.5 and the doubly-infinite series solution for Poisson’e equation is

another example of an eigenfunction expansion.

(2) Such is the importance of Laplace’s equation that the skylight crystals in the Mathematical

Institute are based on an eigenfunction for the opening R in the floor.
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Photo: South Crystal Skylight c© David Hawgood

Licensed for reuse under the Creative Commons Licence (cc-by-sa/2.0)
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6 Well-posedness
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• Definition: A problem is said to be well-posed if the following three conditions are satisfied:

(1) EXISTENCE — there is a solution;

(2) UNIQUENESS — there is no more than one solution;

(3) CONTINUOUS DEPENDENCE — the solution depends continuously on the data.

• The first is obvious: there is no point in trying to find a solution that does not exist.

• As for the second, if a problem is physically motivated, and the solution represents a physical

quantity, then we would expect it to have a unique well-defined value at each point. If it does not,

it suggests that a boundary condition or other constraint is missing from the problem.

• To illustrate condition (3), suppose we vary by a small amount the initial temperature profile f (x)

in an IBVP for the temperature T (x , t) in a metal rod and ask whether the corresponding

variation in the solution is similarly small. If it is not, then the numerical solution of the problem

is practically impossible, since any numerical errors in f (x), however small, would lead to large

errors in the solution.
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6.1 The heat equation
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• Consider the dimensionless IVP for T (x , t) given by

∂T

∂t
=
∂2T

∂x2
for −∞ < x <∞, t > 0,

with the initial condition

T (x , 0) = f (x) for −∞ < x <∞,

where f (x) is given.

• If f (x) = 0, then the trivial solution T (x , t) = 0 satisfies the IVP.

• Tychonoff (1935) showed that a nontrivial solution for f (x) = 0 is given by

T (x , t) =
∞∑
k=0

g (k)(t)x2k

(2k)!
,

where

g(t) =

 exp(−1/t2) for t > 0,

0 for t = 0.

• Since there is more than one solution to the IVP, it is not well-posed — it is ill-posed.
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• However, well-posedness can be established by imposing additional regularity conditions on the

growth of T (x , t) as x → ±∞.

• For example, if T (x , t) is assumed to be bounded for −∞ < x <∞, t > 0 and f (x) to be

piecewise continuous on any interval (a, b) ⊂ R, then it may be shown that the unique solution is

given by

T (x , t) =

∫ ∞
−∞

f (s)√
4πt

exp

(
− (s − x)2

4t

)
ds.

• This solution is the superposition of fundamental solutions of the heat equation weighted by the

initial temperature profile.

• Continuous dependence on the initial data may then be established as follows.
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• Let ε > 0 and suppose that the initial data f = f1 and f = f2 are close together in the sense that

|f1(x)− f2(x)| < ε for−∞ < x <∞.

• Then the corresponding solutions T1(x , t) and T2(x , t) are close together because

|T1(x , t)− T2(x , t)| =

∣∣∣∣∫ ∞
−∞

f1(s)− f2(s)√
4πt

exp

(
− (s − x)2

4t

)
ds

∣∣∣∣
≤

∫ ∞
−∞

|f1(s)− f2(s)|√
4πt

exp

(
− (s − x)2

4t

)
ds

≤
∫ ∞
−∞

ε√
4πt

exp

(
− (s − x)2

4t

)
ds

= ε

for −∞ < x <∞ and 0 ≤ t ≤ t0.

• In this sense condition (3) holds.
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6.2 The wave equation
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• Consider the dimensionless initial value problem for y(x , t) given by

∂2y

∂t2
=
∂2y

∂x2
for −∞ < x <∞, t > 0,

with the initial conditions

y(x , 0) = f (x),
∂y

∂t
(x , 0) = g(x) for −∞ < x <∞,

where f (x) and g(x) are given.

• By D’Alembert’s formula (with c = 1) there exists a unique solution given by

y(x , t) =
1

2

(
f (x − t) + f (x + t)

)
+

1

2

∫ x+t

x−t

g(s) ds.

• Hence, conditions (1) and (2) hold.
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• Suppose

|f (x)| < δ and |g(x)| < δ for −∞ < x <∞,

where δ > 0.

• Then D’Alembert’s formula implies that

|y(x , t)| =

∣∣∣∣12 f (x − t) +
1

2
f (x + t) +

1

2

∫ x+t

x−t

g(s) ds

∣∣∣∣
≤ 1

2

∣∣f (x − t)
∣∣+

1

2

∣∣f (x + t)
∣∣+

1

2

∫ x+t

x−t

∣∣g(s)
∣∣ ds

≤ 1

2
δ +

1

2
δ +

1

2

∫ x+t

x−t

δ ds

=
1

2
δ +

1

2
δ +

1

2
· 2tδ

= (1 + t)δ for −∞ < x <∞, t ≥ 0,

where we used the triangle inequality.

298/308



• Consider the initial value problems with initial data (f , g) = (f1, g1) and (f , g) = (f2, g2) and

corresponding solutions y1(x , t) and y2(x , t), respectively.

• Suppose that we are interested in making predictions in the time interval t ∈ [0, t0] and let ε > 0.

• By taking

f = f1 − f2, g = g1 − g2, y = y1 − y2, δ =
ε

1 + t0
,

we deduce that if the data (f1, g1) is close to the data (f2, g2) in the sense that

|f1(x)− f2(x)| < ε

1 + t0
and |g1(x)− g2(x)| < ε

1 + t0
for −∞ < x <∞,

then the corresponding solutions y1(x , t) and y2(x , t) are close together in the sense that

|y1(x , t)− y2(x , t)| ≤ (1 + t)
ε

1 + t0
< ε for −∞ < x <∞, 0 < t < t0.

• Hence, condition (3) holds in this sense and we conclude that the initial value problem for the

wave equation is well-posed.
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6.3 Laplace’s equation
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• By contrast the corresponding initial value problem for Laplace’s equation is ill-posed.

• Consider the initial value problem for y(x , t) given by

∂2y

∂x2
+
∂2y

∂t2
= 0, −∞ < x <∞, t > 0,

y(x , 0) = f (x),
∂y

∂t
(x , 0) = g(x), −∞ < x <∞,

where f (x) and g(x) are given.

• If we take the initial data (f , g) = (f1, g1) and (f , g) = (f2, g2) given by

f1(x) = 0, g1(x) = 0, f2(x) = 0, g2(x) = δ cos (x/δ) ,

where δ > 0, then corresponding solutions are given by

y1(x , t) = 0, y2(x , t) = δ2 cos
(x
δ

)
sinh

( t
δ

)
.

• Again suppose we want to make predictions in 0 < t < t0.
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• Observe that

|f1(x)− f2(x)| = 0 < δ, |g1(x)− g2(x)| = δ
∣∣∣cos

(x
δ

)∣∣∣ ≤ δ for −∞ < x <∞.

• If we define h(ξ) = ξ2 sinh(1/ξ), then

max
t∈[0,t0]

max
x∈R

∣∣y1(x , t)− y2(x , t)
∣∣ = max

t∈[0,t0]
δ2 sinh

( t
δ

)
= t2

0

(
δ

t0

)2

sinh
( t0

δ

)
= t2

0h(δ/t0).

• As illustrated by the plot below, the function h(ξ) is bounded below by h∗ = h(ξ∗) ≈ 0.905 for

ξ > 0, elementary calculus giving the location of the minimum to be ξ∗, where ξ∗ ≈ 0.522 is the

unique positive root of the transcendental equation 2 tanh(1/ξ∗) = 1/ξ∗.
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• We deduce that

min
δ>0

t2
0 h(δ/t0) = t2

0 min
ξ>0

h(ξ) = h∗t
2
0 .

• Since the maximum of
∣∣y1(x , t)− y2(x , t)

∣∣ for ∞ < x <∞, 0 ≤ t ≤ t0 is bounded below by a

positive constant (namely h∗t
2
0 ) for δ > 0, we cannot make

|y1(x , t)− y2(x , t)| < ε for −∞ < x <∞, 0 < t < t0

by making δ suitably small for all ε > 0.

• Hence, the initial value problem for Laplace’s equation is ill-posed because it fails condition (3).

• Instead of imposing two initial conditions, we should have imposed y(x , t) on t = 0 as well as in

the far-field as x2 + t2 →∞.
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• For example, switching back to spatial coordinates (x , y), suppose that T (x , y) satisfies

∂2T

∂x2
+
∂2T

∂y 2
= 0 for −∞ < x <∞, y > 0,

with boundary condition

T (x , 0) = f (x) for −∞ < x <∞,

and the far-field boundary condition

T (x , y)→ 0 as x2 + y 2 →∞, y > 0,

where f (x) is given.

• It may be shown that the boundary value problem for T (x , y) is well-posed given sufficient

regularity of f , e.g. if f is piecewise continuous on any interval (a, b) ⊂ R.

• In this case it may be shown that the solution is given by

T (x , y) =
y

π

∫ ∞
−∞

f (s)

(s − x)2 + y 2
ds.

• Remark: The solutions for y(x , t) in §6.2 and for T (x , y) above are derived in part A Integral

Transforms using a Fourier transform – a powerful generalization of Fourier series.

303/308



7 Summary

303/308



1 Introduction

History: Fourier’s revolutionary claim.

Revised ODEs: nomenclature and pre-requisite material.

Introduced PDEs: nomenclature and how they arise.

Motivated need to study Fourier series to solve PDE problems.
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2 Fourier Series

Periodic, even and odd functions and periodic extensions.

Euler’s formulae for Fourier coefficients via orthogonality relations.

Statement of a powerful pointwise convergence theorem.

Related rate of convergence to smoothness.

Discussed Gibb’s phenomenon - try to avoid!

Problem sheets imparted “familiarity with the calculation of Fourier coefficients.”
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3 Heat equation

Derivation in 1D.

Simple solutions.

Units and nondimensionalisation.

Fourier’s method for IBVPs.

Generalised to inhomogeneous heat equation and BCs.

Uniqueness.
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4 Wave equation

Derivation in 1D with gravity and air resistance.

Normal modes and natural frequencies.

Fourier’s method for IBVPs – plucked and hammered strings.

Forced wave equation with inhomogeneous BCs – resonance.

Normal modes for weighted strings.

D’Alembert’s solution and characteristic diagrams.

Uniqueness.
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5 Laplace’s equation

Fourier’s method for BVPs in (x , y) and (r , θ).

Poisson’s Integral Formula for Dirichlet problem on a disk.

Uniqueness of Dirichlet problem.

Nonexistence and nonuniqueness of Neumann problem.

6 Well-posedness

Introduced concepts developed later on in course.
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The end — thank you for listening

Please email comments & corrections to oliver@maths.ox.ac.uk
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