
A3: Rings and Modules, 2021–2022

Tom Sanders

We begin with the course overview as described on https://courses.maths.ox.ac.

uk/course/view.php?id=75.

Course Overview:

The first abstract algebraic objects which are normally studied are groups, which arise

naturally from the study of symmetries. The focus of this course is on rings, which generalise

the kind of algebraic structure possessed by the integers: a ring has two operations, addition

and multiplication, which interact in the usual way. The course begins by studying the

fundamental concepts of rings (already met briefly in core Algebra): what are maps between

them, when are two rings isomorphic etc. much as was done for groups. As an application, we

get a general procedure for building fields, generalising the way one constructs the complex

numbers from the reals. We then begin to study the question of factorization in rings,

and find a class of rings, known as Unique Factorization Domains, where any element can

be written uniquely as a product of prime elements generalising the case of the integers.

Finally, we study modules, which roughly means we study linear algebra over certain rings

rather than fields. This turns out to have powerful applications to ordinary linear algebra

and to abelian groups.

Learning Outcomes:

Students should become familiar with rings and fields, and understand the structure theory

of modules over a Euclidean domain along with its implications. The material underpins

many later courses in algebra and number theory, and thus should give students a good

background for studying these more advanced topics.

Course Synopsis:

Recap on rings1 (not necessarily commutative2) and examples: Z3, fields4, polynomial rings5

(in more than one variable6), matrix rings7. Zero-divisors8, integral domains9. Units10. The

characteristic of a ring11. Discussion of fields of fractions and their characterization12 (proofs

non-examinable). [2]
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Homomorphisms of rings13. Quotient rings14, ideals15 and the first isomorphism theorem16

and consequences1718, e.g. Chinese remainder theorem19. Relation20 between ideals in R

and R/I. Prime21 ideals and maximal22 ideals, relation to fields23 and integral domains24.

Examples of ideals252627. Application of quotients to constructing fields by adjunction of

elements28; examples to include C = R[X]/⟨X2 + 1⟩29 and some finite fields3031. Degree of a

field extension32, the tower law33. [4]

Euclidean domains34. Examples353637. Principal Ideal Domains38. EDs are PIDs39. Unique

factorisation for PIDs40. Gauss’s Lemma41 and Eisenstein’s Criterion for irreducibility42. [3]

Modules43: Definition and examples: vector spaces44, abelian† groups45, vector spaces with

an endomorphism46. Submodules47 and quotient modules48 and direct sums49. The first

isomorphism theorem50. [2]

Row and column operations on matrices over a ring51. Equivalence of matrices52. Smith

Normal form of matrices over a Euclidean domain53. [1.5]

Free54 modules and presentations of finitely generated modules55. Structure of finitely gen-

erated modules over a Euclidean domain5657. [2]

Application to rational canonical form58 and Jordan normal form59 for matrices, and struc-

ture of finitely generated abelian † groups60. [1.5]

The links to sections of the notes above are intended as a starting point for the topic and

are not exhaustive.

†We use the word commutative instead of abelian in these notes.
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1 Rings: a recap

A set R containing two (possibly equal) elements 0 and 1, and supporting two binary

operations + and × is a ring if

• R equipped with + is a commutative group with identity 0;

• × is an associative binary operation on R with identity 1;

• × is distributive over +.

Occasionally we shall have multiple rings and it will be instructive to clarify which particular

ring we are referring to. We shall do this with subscripts writing, for example, +R or 1R

instead of + and 1 above.

The operation × is the multiplication of the ring, and we write xy in place of x×y. We

say R is a commutative ring if the multiplication is commutative. !△The modern notion of

commutative ring can be traced back to Emmy Noether [Noe21, §1] (translated into English

in [Ber14]), though her definition does not assume the multiplication has an identity.

Remark 1.1. The multiplication is the most changeable part of a ring. We do not assume

our rings are commutative, while we do assume they have a multiplicative identity. Poonen

[Poo19] provides a full-throated defence of this last position.

There are also interesting non-associative rings both with identity e.g. the octionions,

and without e.g. Lie algebras, but these are outside the scope of this course.

Remark 1.2. Since multiplication is an associative binary operation it can be shown (see e.g.

[Hun80, Theorem 1.6, p28]) that for x1, . . . , xn ∈ R, the expression x1⋯xn gives the same

result regardless of how we insert brackets, provided we do so in a grammatically valid way;

we take the unbracketed expression to denote this common result. The empty product, that

is the product with no terms in it, is defined to be the multiplicative identity.

For a bijection σ ∶ {1, . . . , n} → I and elements xi ∈ R for each i ∈ I, we write ∏σ(n)

i=σ(1)
xi

for the product xσ(1)⋯xσ(n). If multiplication is commutative then it can further be shown

(see e.g. [Hun80, Corollary 1.7, p28], though in this case the proof is left as an exercise)

that xσ(1)⋯xσ(n) gives the same result for any bijection σ ∶ {1, . . . , n} → I; we write ∏i∈I xi

for this common result.

The operation + is the addition of the ring, 0 is the zero of the ring, and the set R

with the operation + (and identity 0) is the additive group of the ring. For each x ∈ R we

write −x for the unique inverse of x, and the map R → R;x ↦ −x is the negation of the

ring.

Remark 1.3. Identities are self-inverse so −0 = 0, and double inversion is the identity map,

so −(−x) = x for all x ∈ R.
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Remark 1.4. A group operation is commutative if and only if inversion is a homomorphism

of the group. In our particular case addition is commutative so negation is a homomorphism.

Remark 1.5. Since addition is an associative and commutative binary operation with iden-

tity, for a set I of size n, and elements xi ∈ R for each i ∈ I, the result of xσ(1) +⋯+xσ(n) for

σ ∶ {1, . . . , n} → I a bijection is independent of how we put in brackets and the particular

choice of bijection σ; we denote it ∑i∈I xi and sometimes ∑σ(n)

i=σ(1)
xi. The empty sum, that

is a sum with no terms or, equivalently, a sum indexed over the empty set, is defined to be

the zero of the ring.

Remark 1.6. Suppose I is a finite set and xi ∈ R for each i ∈ I. If J ⊂ I is such that xi = 0

for all i ∈ I ∖J then ∑j∈J xj = ∑i∈I xi; in words ‘sums of zeros are zero’. In particular if xi = 0

for all i ∈ I then ∑i∈I xi = 0.

Remark 1.7. Suppose I is a finite set and xi ∈ R for each i ∈ I. Addition is commutative

and associative so

∑
i∈I

xi = ∑
P ∈P

(∑
i∈P

xi) for all partitions P of I.

The fact that the right hand side is the same whatever the partition lets us swap between

different partitions in a process called ‘change of variables’.

There are many examples of the power of change of variables: given an m × n matrix of

elements of R we can sum them up first by summing the rows, and then summing the row

totals; or first by summing the columns, and then summing the column totals. The fact that

these are the same already gives that multiplication of natural numbers is commutative, but

there are many more applications, for example the proof of Burnside’s Lemma in [Ear14,

Theorem 286]; or the proof of the formula 1 + ⋯ + n = 1
2n(n + 1) (which also uses the fact

we can reverse the order of summation); or the proof of the Handshaking Lemma in [Lac20,

Lemma 10], famous for its application to the Königsberg Bridge Problem. For us it plays an

essential role in the proof of Proposition 1.12 (though we omit this proof!) and Proposition

1.60.

Given y ∈ R, the map R → R;x ↦ yx (resp. R → R;x ↦ xy) is called left (resp. right)

multiplication by y. The fact that multiplication is distributive over addition in R is

exactly to say that all the left and right multiplication maps are group homomorphisms of

the additive group of R.

Remark 1.8. Group homomorphisms preserve identities, meaning the identity of the domain

is mapped to the identity of the codomain. In our case this means x0 = 0x = 0 for all x ∈ R
– we say ‘zero annihilates’. Group homomorphisms also preserve inverses, meaning that

the inverse of the image of x is the image of the inverse of x. Again, for our case we have

x(−y) = (−x)y = −(xy) for all x, y ∈ R.
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Remark 1.9. The fact that all left and right multiplication maps are homomorphisms and

multiplication has an identity (and the additive group is a group) entails the commutativity

of the additive group. Exercise I.1 asks for a proof of this.

Remark 1.10. We follow the conventions of arithmetic in the integers by writing x − y for

x + (−y), and in the absence of brackets ring multiplication precedes ring addition, for

example xy + z means (xy) + z.

Remark 1.11. For A ⊂ R we write −A ∶= {−a ∶ a ∈ A}. If x ∈ R then we write A + x =
{a + x ∶ a ∈ A}; xA = {xa ∶ a ∈ A}; and Ax ∶= {ax ∶ a ∈ A}. Finally, if B ⊂ R we write

A +B ∶= {a + b ∶ a ∈ A, b ∈ B} so in particular A + x = A + {x}.

Proposition 1.12 (Algebra of polynomials). Suppose that R is a ring, a0, a1, . . . , b0, b1, ⋅ ⋅ ⋅ ∈
R have ai = 0 for all i > n and bj = 0 for all j >m, and λ ∈ R. Then

(
n

∑
i=0

aiλ
i) + (

m

∑
j=0

bjλ
j) =

max{n,m}

∑
i=0

(ai + bi)λi and − (
n

∑
i=0

aiλ
i) =

n

∑
i=0

(−ai)λi.

Furthermore, if λbj = bjλ for all j, then

(
n

∑
i=0

aiλ
i)(

m

∑
j=0

bjλ
j) =

n+m

∑
k=0

(
k

∑
j=0

ak−jbj)λk.

Remark 1.13. We omit the proof though it is not difficult: it makes essential use of distribu-

tivity and changes of variables, both for the first identity and the last.

Example 1.14. The set {0}, with 1 = 0, and addition and multiplication given by 0 + 0 =
0 × 0 = 0 is a ring. We call it the trivial ring1.

We call a ring in which 1 ≠ 0 a non-trivial ring.

Proposition 1.15. Suppose that R is not a non-trivial ring. Then R is the trivial ring.

Proof. Since R is not non-trivial, 1 = 0 and hence for x ∈ R we have x = 1x = 0x = 0 since

zero annihilates. It follows that R = {0} and there is only one function into a set of size one,

so the addition and multiplication are uniquely determined and must be that of the trivial

ring.

Remark 1.16. In view of this proposition a ring is non-trivial if and only if it is not the

trivial ring.

Example 1.17. The set of integers, Z, is a ring with its usual addition and multiplication,

zero and multiplicative identity

Remark 1.18. We write N∗ for the positive integers, that is {1,2,3, . . .}, and N0 for the

non-negative integers, that is {0,1,2, . . .}.
1Some authors (e.g. [Lam07]) use the term zero ring.
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Ring homomorphisms

A map φ ∶ R → S between two rings is called additive if it is a homomorphism of the

additive groups, and multiplicative if φ(xy) = φ(x)φ(y) for all x, y ∈ R. We say that φ is

a ring homomorphism if it is additive and multiplicative and has φ(1R) = 1S.

Remark 1.19. !△ If R is a non-trivial ring (for example Z) and φ ∶ {0} → R is defined by

φ(0) = 0, then φ is additive and multiplicative but 0 = 1 in the domain so φ(1) = φ(0) = 0 ≠ 1

since R is non-trivial. Thus φ is not a ring homomorphism. In particular the condition that

φ(1) = 1 may not be dropped in the definition of ring homomorphism.

Example 1.20. For R a ring the identity map ιR ∶ R → R;x↦ x is a ring homomorphism.

Example 1.21. The zero map zR ∶ R → {0};x ↦ 0 from a ring R to the trivial ring is a

ring homomorphism.

Remark 1.22. Since a ring homomorphism φ ∶ R → S is a homomorphism between the

additive groups, φ(0R) = 0S and φ(−x) = −φ(x) for all x ∈ R.

Lemma 1.23. Suppose that φ ∶ R → S and ψ ∶ S → T are ring homomorphisms. Then ψ ○φ
is a ring homomorphism R → T .

Proof. This is immediate from the definition.

Theorem 1.24. Suppose that R is a ring. Then there is a unique ring homomorphism

χR ∶ Z→ R.

Remark 1.25. We omit the proof though it is not difficult: the idea is to define χR recursively

on N∗, first by χR(n) ∶= 1R +⋯+ 1R, where the sum is n-fold, and then extend this to Z by

putting χR(n −m) ∶= χR(n) − χR(m) for n,m ∈ N∗.

Remark 1.26. The characteristic of a ring R is the smallest n ∈ N∗ such that χR(n) = 0 if

such an n exists, and otherwise the characteristic is 0.

Example 1.27. The integers have characteristic 0.

Isomorphisms

A ring isomorphism is a map φ ∶ R → S that is a bijective ring homomorphism. We write

R ≅ S if there is a ring isomorphism R → S.

Example 1.28. Any ring Z enjoying the conclusions of Theorem 1.24 is isomorphic to Z:

For such a Z there is a ring homomorphism ψ ∶ Z → Z, and by Theorem 1.24 there is a ring

homomorphism φ ∶ Z → Z. By Lemma 1.23, the maps ψ ○ φ ∶ Z → Z and φ ○ ψ ∶ Z → Z

are ring homomorphisms. So are the identity maps ιZ ∶ Z → Z and ιZ ∶ Z → Z, so by the
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uniqueness part of the conclusion of Theorem 1.24 it follows that ψ ○ φ = ιZ, and by the

uniqueness part of the hypothesis on Z that φ ○ ψ = ιZ . The former identity tells us that

ψ is a surjection, and the latter that ψ is an injection. In other words the conclusions of

Theorem 1.24 characterise the integers up to isomorphism.2

Lemma 1.29. Suppose that φ ∶ R → S is a ring isomorphism. Then φ−1 is a ring homo-

morphism, and hence a ring isomorphism.

Proof. First, φ(1) = 1 and φ is a bijection so φ−1(1) = 1. Secondly, φ is a bijective group

homomorphism between the additive groups of R and S, and so φ−1 is also a group homo-

morphism between the additive groups of R and S. Finally, if x, y ∈ S then by surjectivity

there are elements u, v ∈ R such that φ(u) = x and φ(v) = y, and φ−1(xy) = φ−1(φ(u)φ(v)) =
φ−1(φ(uv)) = uv = φ−1(x)φ−1(y). The result is proved.

Proposition 1.30. ≅ is an equivalence relation.

Proof. The identity map on a ring is an isomorphism so ≅ is reflexive. ≅ is symmetric in

view of Lemma 1.29. Finally, ≅ is transitive since the composition of bijections is a bijection,

and composition of ring homomorphisms is a ring homomorphism – this is Lemma 1.23.

Subrings

A ring S is a subring of a ring R if the map j ∶ S → R; s ↦ s is a well-defined3 ring

homomorphism called the inclusion homomorphism; S is proper if S ≠ R.

Remark 1.31. !△ {0} is a subset of Z, and the operations on Z restrict to operations on {0}
giving it the structure of a ring (in fact the trivial ring), however {0} is not a subring of Z
since the inclusion map is not a ring homomorphism as shown in Remark 1.19.

Proposition 1.32 (Subring test). Suppose that R is a ring and S ⊂ R has 1 ∈ S and

x − y, xy ∈ S for all x, y ∈ S. Then the addition and multiplication on R restrict to well-

defined operations on S giving it the structure of a subring of R.

Proof. First S is non-empty and x−y ∈ S whenever x, y ∈ S so by the subgroup test addition

onR restricts to a well-defined binary operation on S giving it the structure of a commutative

group.

Since S is closed under multiplication (meaning xy ∈ S whenever x, y ∈ S) it also restricts

to a well-defined binary operation on S, and is a fortiori associative since multiplication is

associative on R. By hypothesis 1 ∈ S and since this is an identity for R it is a fortiori an

2One might describe the integers as one ring (up to isomorphism) ruling (uniquely embedding in) all

others. [Tol04, Book I, Chapter 2, p66]
3All this does is ensure that S ⊂ R.
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identity for S. Finally, multiplication and addition so restricted are a fortiori distributive

on S. We conclude that S with these restricted operations is a ring.

The map S → R; s↦ s is then well-defined since S is a subset of R, and a ring homomor-

phism when S is equipped with these restricted operations, which is to say S so equipped

is a subring of R.

Remark 1.33. Given a subset satisfying the hypotheses of the above lemma, we make the

common abuse of calling it a subring on the understanding that we are referring to the

restricted operations described by the lemma.

Example 1.34. The set N∗ contains 1 and if x, y ∈ N∗ then x + y, xy ∈ N∗, but N∗ is not

a subring of Z because it does not contain 0. It follows that x − y may not be replaced by

x + y in the hypotheses of the subring test.

Example 1.35. Z has no proper subrings: Given a subring R of Z, by Theorem 1.24 there

is a ring homomorphism Z→ R; composition with the inclusion homomorphism R → Z gives

a ring homomorphism Z→ Z. By Theorem 1.24 this map must be the identity map, and so

the inclusion homomorphism R → Z must be surjective and R = Z as claimed.

Fields and vector space structures

Write4 R∗ for the set of non-zero elements of a ring R. We say that a commutative ring R

is a field if multiplication on R restricts to a binary operation on R∗ making it into a group

with identity 1.

Remark 1.36. If a subring of a ring is also a field we call it a subfield; it is proper if it is

a proper subring.

Example 1.37. The field of rationals, Q, is a field with Z as a subring such that every

rational can be written in the form z/w for some z ∈ Z and w ∈ Z∗.

The construction of the rationals from the integers is part of a general construction of

fields of fractions which we shall meet later in Theorem 2.16.

Example 1.38. The field of reals, R, is a field containing Q as a subfield and with a

strict total order > that is compatible with addition in the sense that z +x > z + y whenever

x > y, and multiplication in the sense that xy > 0 whenever x, y > 0, and satisfying the

completeness axiom, meaning that if S ⊂ R is a non-empty set that is bounded above then

S has a supremum.

4 !△Some authors (e.g. [Lan02, p84] and [Lam07, xiv]) write R∗ for the group of units of R which we

shall define later.
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It turns out that ring homomorphisms from fields induce vector space structures on their

codomain:

Proposition 1.39. Suppose that φ ∶ F → R is a ring homomorphism from a field F. Then

the map . ∶ F ×R → R defined by λ.v ∶= φ(λ)v gives R the structure of an F-vector space so

that right multiplication in R is F-linear.

Proof. First, 1F.v = φ(1F)v = 1Rv = v since 1R is an identity. Since multiplication on R is

associative and φ is multiplicative we have λ.(µ.v) = φ(λ)(φ(µ)v) = (φ(λ)φ(µ))v = φ(λµ)v =
(λµ).v. Since φ is a homomorphism of the additive group of F and right multiplication by

v is a group homomorphism of the additive group of R we have (λ + µ).v = φ(λ + µ)v =
(φ(λ) + φ(µ))v = φ(λ)v + φ(µ)v = λ.v + µ.v. Since left multiplication by φ(λ) is a group

homomorphism of the additive group of R we have λ.(v+w) = φ(λ)(v+w) = φ(λ)v+φ(λ)w =
λ.v+λ.w. Finally, λ.(vw) = φ(λ)(vw) = (φ(λ)v)w = (λ.v)w since multiplication is associative

so right multiplication is F-linear and the result is proved.

Remark 1.40. We call the vector space structure of this proposition the F-vector space

structure induced by φ.

The hypothesis that φ ∶ F → R is a ring homomorphism from a field is more restrictive

than one might at first suppose:

Proposition 1.41. Suppose that φ ∶ F → R is a ring homomorphism, F is a field and R is

non-trivial. Then φ is injective.

Proof. If φ(x) = φ(y) and x ≠ y then x−y ∈ F∗ and so there is u such that (x−y)u = 1 whence

0 = 0φ(u) = (φ(x) − φ(y))φ(u) = φ((x − y)u) = φ(1) = 1, which contradicts the non-triviality

of R. The result is proved.

Example 1.42. Q is a subfield of R, and the Q-vector space structure induced by the

inclusion homomorphism then makes R into a vector space such that multiplication in R is

Q-bilinear. (Bilinear rather than just linear in the first argument since multiplication in R
is commutative.)

Example 1.43. The field of complex numbers, C, is a field with R as a subfield, such that

1 and i are a basis for C in the R-vector space structure induced the inclusion homomorphism

R→ C, and where the multiplication on C is determined by i2 = −1. In particular, for z,w ∈ C
there are unique x, y, u, v ∈ R such that z = x + iy and w = u + iv, and we have

z +w = (x + u) + i(y + v), and zw = (xu − yv) + i(xv + yu).

Example 1.44. Complex conjugation is a ring isomorphism from C to itself: it is a ring

homomorphism since 1 = 1; z +w = z +w; and zw = zw; it is a bijection since z = z which is

to say complex conjugation is self-inverse.
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Example 1.45. The ring Z[i] ∶= {a+ bi ∶ a, b ∈ Z} is called the ring of Gaussian integers.

It is a subring of C by the subring test since 1 ∈ Z[i] and if x, y ∈ Z[i] then x = a + bi and

y = c+di for a, b, c, d ∈ Z, and x−y = (a−c)+(b−d)i ∈ Z[i], while xy = (ac−bd)+(ad+bc)i ∈ Z[i].

Prototypical rings

Groups of symmetries are the prototypes for abstract groups and rings have a similar pro-

totype which we shall now describe.

Remark 1.46. For a commutative group M we denote the group operation by +, the additive

inverse of x by −x, and the identity by 0. We use subscripts to distinguish operations on

different groups, for example writing +M and 0M for the operation and identity on the

commutative group M . This notation agrees with the notation for the additive group of a

ring.

Remark 1.47. For N a commutative group, the set of maps X → N is a commutative

group under pointwise addition: (f + g)(x) = f(x) + g(x) for all x ∈ X. The first + here

is the addition on the set of functions X → N , and the second is the addition on N . The

identity is the map z ∶ X → N ;x ↦ 0N , and the additive inverse of φ ∶ X → N is the map

X → N ;x↦ −φ(x).

Lemma 1.48. Suppose that M and N are commutative groups. Then Hom(M,N), the set

of group homomorphisms M → N , is itself a commutative group under pointwise addition.

Suppose P is a further commutative group and φ ∈ Hom(M,N) and ψ ∈ Hom(N,P ),

then ψ ○ φ ∈ Hom(M,P ) where ○ denotes composition of functions; if π ∈ Hom(M,N) then

ψ ○ (φ+N π) = (ψ ○φ)+P (ψ ○π); and if π ∈ Hom(N,P ) then (ψ +P π) ○φ = (ψ ○φ)+P (π ○φ).

Proof. Suppose that φ,ψ ∈ Hom(M,N). Then for all x, y ∈M we have

(φ+Nψ)(x +M y) = φ(x +M y) +N ψ(x +M y)

= (φ(x) +N φ(y)) +N (ψ(x) +N ψ(y))

= (φ(x) +N ψ(x)) +N (φ(y) +N ψ(y))

= (φ+Nψ)(x) +N (φ+Nψ)(y).

φ and ψ are group

homomorphisms

associativity and

commutativity of +N
definition of pointwise

addition

It follows that φ+Nψ ∈ Hom(M,N). The map z is a homomorphism because z(x) + z(y) =
0N + 0N = 0N = z(x + y), and if φ ∈ Hom(M,N) then the map M → N ;x ↦ −φ(x) is a

homomorphism because it is the composition of the homomorphism φ and negation which

is a homomorphism on N since +N is commutative. By the subgroup test Hom(M,N) is a

subgroup.

For the second part of the proposition recall that the composition of homomorphisms

is a homomorphism which says exactly that if φ ∈ Hom(M,N) and ψ ∈ Hom(N,P ), then
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ψ ○ φ ∈ Hom(M,P ). Now, if φ,π ∈ Hom(M,N) and ψ ∈ Hom(N,P ), then

ψ ○ (φ+Nπ)(x) = ψ(φ(x) +N π(x)) = ψ(φ(x)) +P ψ(π(x)) = ((ψ ○ φ)+P (ψ ○ π))(x)

by definition and the fact that ψ is a homomorphism, and we have that ψ ○ (φ+Nπ) =
(ψ ○ φ)+P (ψ ○ π) as claimed. On the other hand, if φ ∈ Hom(M,N) and ψ,π ∈ Hom(N,P ),
then

(ψ+Pπ) ○ φ(x) = ψ(φ(x)) +P π(φ(x)) = ((ψ ○ φ)+P (π ○ φ))(x)

by definition. The result is proved.

Remark 1.49. To show that Hom(M,N) is a subgroup it is essential thatN be a commutative

group, not just any group.

Remark 1.50. For the identity ψ ○ (φ+Nπ) = (ψ ○ φ)+P (ψ ○ π) we used the homomorphism

property of ψ, while the identity (ψ+Pπ) ○ φ = (ψ ○ φ)+P (π ○ φ) followed simply from the

definition; c.f. Exercise I.2.

Theorem 1.51. Suppose that M is a commutative group. Then the set Hom(M,M)
equipped with pointwise addition as its addition and functional composition as its multi-

plication is a ring whose multiplicative identity is the map M →M ;x↦ x.

Proof. By the first part of Lemma 1.48 Hom(M,M) is a commutative group under this

addition, and by the second part the proposed multiplication distributes over this addition.

It remains to recall that composition of functions is associative so the proposed multiplication

is associative, and the map M →M ;x↦ x is certainly a homomorphism and an identity for

composition.

Theorem 1.52. Suppose that R is a ring. The map Ψ ∶ R → Hom(R,R); r ↦ (R → R;x ↦
rx) is an injective ring homomorphism.

Proof. The R in Hom(R,R) is the additive group of R. Ψ is multiplicative since Ψ(rs)(x) =
(rs)(x) = r(s(x)) = Ψ(r)○Ψ(s)(x); Ψ is additive since Ψ(r+s) = (r+s)x = rx+sx = (Ψ(r)+
Ψ(s))(x); and finally Ψ(1R)(x) = 1Rx = x = 1Hom(R,R)(x), so Ψ is a ring homomorphism. Ψ

is injective because if Ψ(r) = Ψ(s) then s = s1R = Ψ(s)(1R) = Ψ(r)(1R) = r1R = r.

Remark 1.53. This can be thought of as ‘Cayley’s Theorem for rings’.

Remark 1.54. χHom(R,R) = Ψ○χR by Theorem 1.24, and since Ψ is injective, the characteristic

of R is the same as that of Hom(R,R).
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Products of rings

Proposition 1.55. Suppose that R1, . . . ,Rn are rings. Then the product group R1 ×⋯×Rn

of the additive groups of the rings Ri may be equipped with the structure of a ring with

multiplication defined by (xy)i ∶= xiyi for all 1 ⩽ i ⩽ n and, and identity 1 = (1R1 , . . . ,1Rn).

Moreover, R1 ×⋯ ×Rn is commutative iff Ri is commutative for all 1 ⩽ i ⩽ n.

Proof. The product group R1 × ⋯ ×Rn is a commutative group since the Ris are commu-

tative groups. Associativity of multiplication follows coordinate-wise from associativity of

multiplication in each of the rings Ri: for x, y, z we have (x(yz))i = xi(yz)i = xi(yizi) =
(xiyi)zi = (xy)izi = ((xy)z)i. Similarly, the fact that left multiplication is a homomorphism

follows since (x(y + z))i = xi(y + z)i = xi(yi + zi) = (xiyi)+ (xizi) = (xy)i + (xz)i = (xy + xz)i,
this time using the fact that addition in this group is coordinate-wise. The fact that right

multiplication is a homomorphism follows similarly, and hence multiplication is distributive.

Finally, (1x)i = 1Rixi = xi = x and similarly x1 = x.

Multiplication on Ri is commutative if and only if (xy)i = xiyi = yixi = (yx)i for all x, y,

and so multiplication on R1 ×⋯ ×Rn is commutative if and only if it is commutative in Ri

for all i.

Remark 1.56. By the ring R1 × ⋯ × Rn we shall mean the ring of Proposition 1.55 - it is

called the direct product of the Ris.

Remark 1.57. By the ring Rn we mean the ring R ×⋯ ×R with R occurring n times.

Example 1.58. The ring R2 is not ring isomorphic to the the ring C. In particular

(0,1), (1,0) ∈ (R2)∗ have (0,1) × (0,1) = (0,0), but if x, y ∈ C∗ then xy ≠ 0 and so there can

be no ring isomorphism between R2 and C.

This is despite the fact that the additive groups are isomorphic as groups, and even

more the R-vector space structures on R2 induced by the map R→ R2;λ↦ (λ,λ) and on C
induced by the inclusion homomorphism R→ C, are isomorphic.

Matrix rings

Given a ring R we write Mn,m(R) for the set of n ×m matrices with values in R.

Remark 1.59. Mn,m(R) is a commutative group with addition defined by

A +B ∶= (Ai,j +Bi,j)n,mi=1,j=1 for all A,B ∈Mn,m(R).

The additive inverse of A ∈ Mn,m(R) is −A = (−Ai,j)n,mi=1,j=1, and the identity is 0n×m, the

matrix with 0R in every entry.
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For A ∈Mn,m(R) and B ∈Mm,p(R) then we define a matrix AB ∈Mn,p(R) by

(AB)i,k ∶=
m

∑
j=1

Ai,jBj,k. (1.1)

We write Mn(R) ∶=Mn,n(R) and the matrix I denotes the matrix with 1Rs on the diagonal

and 0Rs elsewhere i.e. Ii,i = 1R for all 1 ⩽ i ⩽ n and Ii,j = 0R for all i ≠ j. If we need to make

it clear that I is n × n we write In.

Proposition 1.60 (Algebra of matrix multiplication). Suppose that R is a ring, A ∈
Mn,m(R), B,B′ ∈ Mm,l(R), and C,C ′ ∈ Mp,n(R). Then C(AB) = (CA)B, A(B + B′) =
(AB) + (AB′), (C +C ′)A = (CA) + (C ′A), AIm = A and InA = A.

Proof. First, for 1 ⩽ i ⩽ p and 1 ⩽ j ⩽ l we have

(C(AB))i,j =
n

∑
k=1

Ci,k (
m

∑
l=1

Ak,lBl,j)

=
n

∑
k=1

(
m

∑
l=1

Ci,k(Ak,lBl,j))

=
n

∑
k=1

(
m

∑
l=1

(Ci,kAk,l)Bl,j)

=
m

∑
l=1

(
n

∑
k=1

(Ci,kAk,l)Bl,j)

=
m

∑
l=1

(
n

∑
k=1

Ci,kAk,l)Bl,j = ((CA)B)i,j.

left multiplication by Ci,k is a

homomorphism of the additive group

associativity of multiplication

change of variables

(Remark 1.7)

right multiplication by Bl,j is a

homomorphism of the additive group

This gives the first identity. For 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ l we have

(A(B +B′))i,j =
n

∑
k=1

Ai,k(Bk,j +B′
k,j)

=
n

∑
k=1

(Ai,kBk,j +Ai,kB′
k,j)

= (
n

∑
k=1

Ai,kBk,j) + (
n

∑
k=1

Ai,kB
′
k,j) = (AB)i,j + (AB′)i,j.

left multiplication by

Ai,k is a homomorphism

of the additive group

change of variables

(Remark 1.7)

This gives the second identity, and the third follows in a similar way. Finally, (AI)i,j =
∑n
k=1Ai,kIk,j = 0R+⋯+0R+Ai,j1R+0R+⋯+0R = Ai,j since zero annihilates, 1R is an identity

for R, and sums of zeros are zero. Hence AIm = A, and similarly InA = A.

Remark 1.61. We identify R with M1,1(R), often writing λ in place of (λ), and Rn with

M1,n(R), often writing (a1, . . . , an) in place of ( a1 ⋯ an ) !△ I have a natural inclination

when writing matrices to take Rn to mean Mn,1(R). I have tried to eliminate this in these

notes.

Page 13



Corollary 1.62. Suppose that R is a ring. Then the commutative group Mn(R) is a ring

when endowed with the multiplication (A,B)↦ AB with multiplicative identity I.

Proof. By design the proposed multiplication is a binary operation on the commutative

group Mn(R). By Proposition 1.60 it is associative, distributes over the addition, and has

an identity matrix I. The result is proved.

Example 1.63. For R non-trivial the ring M2(R) is not commutative:

⎛
⎝

1 1

0 1

⎞
⎠
⎛
⎝

1 0

1 1

⎞
⎠
=
⎛
⎝

2 1

1 1

⎞
⎠
≠
⎛
⎝

1 1

1 2

⎞
⎠
=
⎛
⎝

1 0

1 1

⎞
⎠
⎛
⎝

1 1

0 1

⎞
⎠
.

Example 1.64. The map R →Mn(R);λ↦ λI is a ring homomorphism. If R is commutative

then everything in the image of R commutes with the image of this homomorphism, meaning

(λI)A = A(λI) for all A ∈ Mn(R) and λ ∈ R - this will be useful for applying polynomials

to matrices in the forthcoming Proposition 1.73. If R = F is a field this induces the usual

F-vector space structure on Mn(F).

Polynomial rings

Theorem 1.65. Suppose that R is a non-trivial commutative ring. Then there is a ring

R[X] is a non-trivial commutative ring with R as a subring, and a distinguished element

X ∈ R[X] such that

R[X] = {a0 + a1X +⋯ + anXn ∶ a0, . . . , an ∈ R}, (1.2)

and

a0 + a1X +⋯ + anXn = 0R ⇒ a0, . . . , an = 0R. (1.3)

Remark 1.66. We shall not show that a ring with these properties exists though it is not

difficult to do so.

Remark 1.67. The ring R[X] from this theorem is called the polynomial ring over R

with indeterminate X.

Remark 1.68. Since R is a subring of R[X], R[X] has zero and multiplicative identity of

0R and 1R respectively.

Remark 1.69. Given a field F there is an F-vector space structure induced on F[X] by the

inclusion homomorphism F → F[X] (Proposition 1.39). In this structure (1.2) says exactly

that {1,X,X2, . . .} is a spanning set, while (1.3) tells us it is linearly independent; together

this means it forms a basis.
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Remark 1.70. If a0 + a1X +⋯+ anXn = b0 + b1X +⋯+ bmXm for a0, a1, . . . , b0, b1, ⋅ ⋅ ⋅ ∈ R with

ai = 0 for i > n and bj = 0 for j > m, then (a0 − b0) + (a1 − b1)X + ⋯ + (ak − bk)Xk = 0 for

k = max{n,m} by Proposition 1.12. From (1.3) we conclude that ai = bi for all i - this

inference justifies the process of ‘equating coefficients’ between polynomials.

Remark 1.71. For p ∈ R[X]∗ there is a minimal d ∈ N0 such that there are a0, a1, . . . , ad ∈ R
with p(X) = a0 + a1X + ⋯ + adXd. Since zero annihilates and sums of zeros are zero, the

reverse implication in (1.3) holds and so ad ≠ 0R.

We call this minimal d the degree of p and denote it deg p; we call ai the coefficient

of X i; ad the lead coefficient and a0 the constant coefficient. The use of ‘the’ here is

justified by equating coefficients as discussed in Remark 1.70.

The constant polynomials are those for which the constant coefficient is the only

coefficient that may be non-zero. The monic polynomials are those where the lead coefficient

is 1.

Remark 1.72. We define R[X1, . . . ,Xn] ∶= R[X1, . . . ,Xn−1][Xn] and call R[X1, . . . ,Xn] the

polynomial ring in the indeterminates X1, . . . ,Xn.

Proposition 1.73. Suppose that φ ∶ R → S is a ring homomorphism from a commutative

ring R, and λ ∈ S commutes with all elements in the image of φ, meaning φ(r)λ = λφ(r)
for all r ∈ R. Then there is a unique homomorphism φ̃ ∶ R[X] → S such that φ̃(r) = φ(r)
for all r ∈ R and φ̃(X) = λ.

Proof. We begin with existence: Define φ̃ by

φ̃(a0 + a1X +⋯ + anXn) ∶= φ(a0) + φ(a1)λ +⋯ + φ(xn)λn. (1.4)

This is well-defined by (1.2) and (1.3). φ̃(1R[X]) = 1S since φ(1R) = 1S. φ̃ is additive in

view of Proposition 1.12 and the fact that φ is additive. For b0, . . . , bm, a0, . . . , an ∈ R, bi

commutes with X for all i since R[X] is commutative so by Proposition 1.12 we have

φ̃((
n

∑
i=0

aiX
i)(

m

∑
j=0

bjX
j)) =

n+m

∑
k=0

φ(
k

∑
j=0

ak−jbj)λk, (1.5)

and φ(bi) commutes with λ for all i by hypothesis, so by Proposition 1.12 we have

φ̃(
n

∑
i=0

aiX
i) φ̃(

m

∑
j=0

bjX
j) = (

n

∑
i=0

φ(ai)λi)(
m

∑
j=0

φ(bj)λj) =
n+m

∑
k=0

(
k

∑
j=0

φ(ak−j)φ(bj))λk. (1.6)

Since φ is additive and multiplicative we have

φ(
k

∑
j=0

ak−jbj) = (
k

∑
j=0

φ(ak−j)φ(bj)) ,

and so the right hand sides of (1.5) and (1.6) are equal, and hence φ̃ is multiplicative. Finally

from (1.4), φ̃(r) = φ(r) for all r ∈ R and φ̃(X) = φ̃(1X) = φ(1)λ = 1λ = λ as required.
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Uniqueness follows because if φ̃ ∶ R[X]→ S is a ring homomorphism with φ̃(X) = λ and

φ̃(r) = φ(r) for all r ∈ R then (1.4) must hold.

Remark 1.74. The homomorphism of this proposition is called the evaluation homomor-

phism. Sometimes the homomorphism φ ∶ R → S is implicit (for example it will often be

inclusion) and in this case we write p(λ) in place of φ̃(p), and R[λ] for the image of φ̃.

For example, if A ∈ Mn(C) then R[A] denotes the set of matrices often written in the

form a0I+a1A+⋯+anAn for a0, . . . , an ∈ R, and the implicit φ is the map R→Mn(C);λ↦ λI

which is the composition of the inclusion homomorphism R → C and the homomorphism

C→Mn(C) in Example 1.64.

The notation R[X] (from Theorem 1.65) and Z[i] (from Example 1.45) can be consis-

tently interpreted as arising through such homomorphisms: for the first, it is the inclusion

homomorphism R → R[X], and for the second the inclusion homomorphism Z→ C.

2 Units and integral domains

An element x ∈ R is a unit if there is some y ∈ R such that xy = yx = 1; we write4 U(R) for

the set of units of R.

Proposition 2.1. Suppose that R is a ring. Then multiplication on R restricts to a well-

defined binary operation on U(R) giving it the structure of a group with identity 1. Further-

more, if R is commutative then so is this group, and if φ ∶ R → S is a ring homomorphism

then U(R)→ U(S);x↦ φ(x) is a well-defined group homomorphism.

Proof. First, suppose that x, y ∈ U(R). Then there are elements z,w ∈ R such that xz =
zx = 1 and yw = wy = 1, so (xy)(wz) = x((yw)z) = xz = 1 and similarly (wz)(xy) = 1 so

xy ∈ U(R). Hence multiplication on R restricts to a well-defined binary operation on U(R).
Since multiplication is associative on R, it is a fortiori associative when restricted to

U(R). Since 1 is an identity for × on R we have 1 × 1 = 1 and so 1 ∈ U(R), and it is a

fortiori an identity for multiplication restricted to U(R). Finally, if x ∈ U(R) then there is

z ∈ R such that xz = zx = 1, but then z ∈ U(R) and so every x ∈ U(R) has an inverse w.r.t.

multiplication restricted to U(R).
For the last part, if R is commutative then multiplication is commutative on R and a

fortiori it is commutative when restricted to U(R); and if x ∈ U(R) then there is y ∈ R such

that xy = yx = 1 so φ(x)φ(y) = φ(y)φ(x) = φ(1) = 1 so φ(r) ∈ U(S) as required. The result

is proved.

Remark 2.2. We call U(R) equipped with multiplication as above the group of units of

the ring R, and if x ∈ U(R) we write x−1 for the inverse of x in the group in the proposition.
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Remark 2.3. 1−1 = 1 since identities are self-inverse; and (x−1)−1 = x for all x ∈ U(R). In

general inversion is not a homomorphism because multiplication is not commutative, but

we do have (xy)−1 = y−1x−1.

Remark 2.4. If R is a finite commutative ring then U(R) is a finite commutative group, but

exactly which finite commutative groups occur as the group of units of a ring is an open

problem called Fuchs’ problem [Fuc58, Problem 72, p299].

Example 2.5. U(F) = F∗ for F a field. On the one hand, if x ∈ F∗ then since multiplication

restricted to F∗ gives it the structure of a group with identity 1, there is y ∈ F∗ such that

xy = yx = 1 and hence x ∈ U(F). On the other hand 0x = 0 ≠ 1 for all x so 0 /∈ U(F), and

hence if x ∈ U(F) then x ∈ F∗.

Example 2.6. U(Z) = {−1,1}. Indeed, suppose that x, y ∈ Z have xy = 1. If x > 0 then

y > 0 and so x, y ⩾ 1. But then if x > 1 we have 1 = xy > y ⩾ 1 a contradiction, so x = 1.

Similarly if x < 0 then x = −1. Thus U(Z) ⊂ {1,−1}. Moreover, both these are units.

Remark 2.7. In particular, Z is not a field since U(Z) = {−1,1} ≠ Z∗.

Example 2.8. U(Z[i]) = {1,−1, i,−i}. Indeed, suppose that x, y ∈ Z[i] have xy = 1. Then

there are integers a, b, c, d such that x = a + bi and y = c + di. Taking absolute values

of (a + bi)(c + di) = 1 we have (a2 + b2)(c2 + d2) = 1. We conclude a2 + b2 = 1, and hence

(a, b) ∈ {(1,0), (−1,0), (0,1), (0,−1)} as claimed. Conversely, all the elements of {1,−1, i,−i}
are units.

Remark 2.9. We call y ∈ R a left (resp. right) zero-divisor if the left (resp. right)

multiplication-by-y map has a non-trivial kernel i.e. if there is some x ≠ 0 such that yx = 0

(resp. xy = 0).

Example 2.10. 0R is a zero-divisor if and only if R is non-trivial.

Example 2.11. The elements (0,1) and (1,0) in the product ring R2 have (0,1)(1,0) =
(0,0), and so are both non-zero zero-divisors.

Remark 2.12. If x is a unit then left (resp. right) multiplication by x has left (resp. right)

multiplication by x−1 as an inverse map. But left (resp. right) multiplication by x is a group

homomorphism and so it is a group isomorphism. In particular, no unit is a zero-divisor.

Remark 2.13. A commutative ring R is an integral domain if it is non-trivial and R∗ is

closed under multiplication, meaning xy ∈ R∗ whenever x, y ∈ R∗.

Example 2.14. Z is an integral domain: First it is a non-trivial commutative ring. Sec-

ondly, if x, y ≠ 0 then either x, y > 0 or x,−y > 0, or −x, y > 0, or −x,−y > 0. Since negation

distributes, in the first and last case xy > 0 and so xy ≠ 0; in the second and third case

−(xy) > 0 and so 0 > xy and xy ≠ 0. It follows that Z∗ is closed under multiplication.
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Remark 2.15. Suppose that R is a commutative ring. R is non-trivial if 1 ∈ R∗ (since this

exactly means 1 ≠ 0); R is an integral domain if 1 ∈ R∗ and R∗ is closed under multiplication;

and R is a field if 1 ∈ R∗, R∗ is closed under multiplication, and has multiplicative inverses.

Theorem 2.16 (Field of fractions and its characterisation). Suppose that R is an integral

domain. Then there is a field F with R as a subring, and no proper subfield of F contains

R. Moreover, if K is a field with R as a subring, and no proper subfield of K contains R

then there is a ring isomorphism φ ∶ K→ F which is the identity on R.

Remark 2.17. The proof is not hard and can be found in many places e.g. [Hun80, Theorem

4.3] and [Lan02, Chapter II, §4], but it is omitted from the syllabus. It is not dissimilar to

the construction of the integers from the naturals by ‘adding in’ the negative numbers.

Remark 2.18. Suppose that F is a field of fractions for R, and consider the set F (R) ∶= {ab−1 ∶
a ∈ R, b ∈ R∗} as a subset of F. This contains 1 = 1.1−1 and is closed under subtraction and

multiplication since

ac−1 − bd−1 = (ad − bc)(cd)−1 and (ac−1)(bd−1) = (ab)(cd)−1.

It follows from the subring test that F (R) is a subring and it contains R. Now, if ab−1 ≠ 0

then a ∈ R∗ so ba−1 ∈ F (R), and hence F (R) is closed under multiplicative inverses and so

a field, whence F (R) = F. This motivates the name field of fractions: all the elements of F
can be written as a ‘fraction’ ab−1.

Example 2.19. The rationals Q are the field of fractions of the ring of integers Z.

Proposition 2.20. Suppose that R is a finite integral domain. Then R is a field.

Proof. For x ∈ R∗ the map that is left multiplication by x is an injective homomorphism

from the additive group to itself. Since R is finite, the additive group is finite and so every

injection is a surjection. In particular there is y ∈ R such that xy = 1, but R is commutative

and hence x ∈ U(R) = R∗ as required.

Remark 2.21. A finite ring R with no non-zero zero divisors is commutative, and hence a

field. This is a result called Wedderburn’s Little Theorem, a proof of which may be found

in [Wit31].

Integral domains produce polynomial rings where the degree function behaves nicely:

Proposition 2.22. Suppose that R is a non-trivial commutative ring. Then TFAE:

(i) R is an integral domain;

(ii) R[X] is an integral domain;
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(iii) for every p, q ∈ R[X]∗ we have pq ∈ R[X]∗ and deg pq = deg p + deg q.

Proof. Certainly (ii) implies (i) since R is a subring of R[X], and (iii) implies (ii) since

R[X] is a non-trivial commutative ring, and so the fact it is an integral domain follows by

forgetting the degree equation in (iii).

To see (i) implies (iii) suppose that p, q ∈ R[X]∗ have degree n andm, and lead coefficients

an and bm respectively. Then from Proposition 1.12 we see that deg pq ⩽ n +m and the

coefficient of Xn+m is anbm. The coefficient of Xn+m is non-zero since R is an integral

domain and an, bm ∈ R∗. We conclude that pq ∈ R[X]∗ and deg pq = n +m = deg p + deg q as

required.

Example 2.23. By Proposition 2.22 Z[X] is an integral domain since Z is an integral

domain (Example 2.14)

Example 2.24. For F a field, F[X1, . . . ,Xn] is an integral domain by induction on n: For

n = 0, every field is an integral domain and we are done; then by definition (Remark 1.72)

of F[X1, . . . ,Xn+1] = F[X1, . . . ,Xn][Xn+1], so the left hand side is an integral domain by the

inductive hypothesis and Proposition 2.22.

Proposition 2.25. Suppose R is an integral domain. Then U(R[X]) = U(R).

Proof. Suppose that p ∈ U(R[X]). Then there is some q ∈ U(R[X]) such that pq = 1, and

so by Proposition 2.22 (iii) we have 0 = deg p + deg q and so deg p = 0 and deg q = 0 and

hence p(X) = a0 and q(X) = b0 for some a0, b0 ∈ R∗. Since a0b0 = 1 and R is commutative

we conclude that a0 ∈ U(R) as required. Conversely, if p ∈ U(R) then p ∈ U(R[X]) and we

are done.

3 Ideals and quotient rings

We begin this section with an important and familiar example.

Example 3.1. For N ∈ N∗, NZ – the set of integer multiples of N – is a normal subgroup

of the additive group of the ring Z. The quotient group Z/NZ has its addition determined

by the fact the quotient map q ∶ Z → Z/NZ;x ↦ x +NZ is a homomorphism of groups, so

(x +NZ) + (y +NZ) = (x + y) +NZ.

It happens that the multiplication on Z also gives rise to a well-defined multiplication

on Z/NZ by (x +NZ)(y +NZ) = xy +NZ, which gives Z/NZ the structure of a ring with

multiplicative identity 1 +NZ. We denote this ring ZN , and write x ≡ y (mod N) to mean

x +NZ = y +NZ.

Not every subgroup of the additive group of a ring gives rise to a quotient group sup-

porting a ring multiplication:
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Example 3.2. The additive group of Z is a subgroup of the additive group of Q, but

the quotient group Q/Z is not the additive group of any ring. To see this, write S ∶=
Hom(Q/Z,Q/Z) and note that for n ∈ N∗ we have χS(n)(1/2n + Z) = 1/2 + Z ≠ Z = 0Q/Z.

Hence χS(n) ≠ 0S and the characteristic of S is not n. We conclude S has characteristic 0. If

Q/Z is the additive group of a ring R then Hom(R,R) = S and by Remark 1.54 it would have

characteristic 0, but the multiplicative identity in this ring must be some element a/b + Z
for a ∈ Q and b ∈ N∗, and then χR(b) = (a/b+Z)+ ⋅ ⋅ ⋅ + (a/b+Z) = a+Z = 0R meaning R has

non-zero characteristic; a contradiction.

Remark 3.3. To generalise Example 3.1 we need a suitable generalisation of ‘multiples of

N ’. An ideal5 I in a ring R is a subgroup of the additive group of R closed under left

and right multiplication by elements of R, meaning rx, xr ∈ I for all x ∈ I and r ∈ R. The

notation I ⊲ R is used in places (e.g. [Coh00, p12]) to mean I is an ideal of R.

Example 3.4. In any ring R the sets {0} and R are ideals; the set {0} is sometimes called

the zero ideal.

Remark 3.5. !△Note the difference between ideals and subrings: an ideal is closed under

multiplication by any element of the containing ring, while a subring is only closed under

multiplication by elements of itself. On the other hand a subring contains 1, while an ideal

does not in general contain 1. The ring R itself is the only subset that is both an ideal and

a subring.

Example 3.6 (Ideals in Z). For each N ∈ N0, NZ is an ideal in Z. In fact all ideals in Z have

this form: Suppose that I is a non-zero ideal in Z then I contains a positive element (since

ideals are closed under multiplication by −1); let N ∈ I be the minimal positive element of

I. Of course I ⊃ NZ; if I ∖NZ ≠ ∅ then it contains a positive element and so a minimal

positive element, say M . By minimality of N we have M > N and of course M −N ∈ I.

By minimality of M and positivity of M − N we have M − N ∈ NZ whence M ∈ NZ, a

contradiction. It follows that I = NZ as claimed.

Example 3.7 (The fields Fp). If N is composite then N = ab for 1 < a, b < N and so ab ≡ 0

(mod N) while a, b /≡ 0 (mod N). It follows that ZN is not an integral domain.

On the other hand, if p is prime and p ∣ ab then p ∣ a or p ∣ b, which in other language

means if ab ≡ 0 (mod p) then a ≡ 0 (mod p) or b ≡ 0 (mod p). It follows that Zp is an

integral domain and since it is finite it is a field by Proposition 2.20; we write Fp for Zp to

emphasise this property.6

5Also called a two-sided ideal.
6 !△Zp is sometimes (e.g. [Lam07]) used to denote a different ring (which we shall not consider) called

the p-adic integers.
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Proposition 3.8. Suppose that R is a ring and I1, . . . , In are ideals in R. Then I1 +⋯+ In
is an ideal in R.

Proof. Since the Iis are non-empty, the sum I1+⋯+In is non-empty. Suppose x, y ∈ I1+⋯+In,

then there are elements xi, yi ∈ Ii such that x = x1 + ⋯ + xn and y = y1 + ⋯ + yn. Hence

x−y = (x1−y1)+⋯+(xn−yn) ∈ I1+⋯+In. Moreover, if r ∈ R then rx = rx1+⋯+rxn ∈ I1+⋯+In
and xr = x1r +⋯ + xnr ∈ I1 +⋯ + In and so I1 +⋯ + In is an ideal.

Proposition 3.9. Suppose that R is a ring and (Ii)i∈X is collection of ideals of R (with X

non-empty). Then ⋂i∈X Ii is an ideal.

Proof. The requirement that X be non-empty ensures that the intersection is well-defined.

Since Ii is an (additive) subgroup of R for all i ∈ X, we have 0R ∈ Ii and hence 0R ∈ ⋂i∈X Ii.
Now, suppose x, y ∈ ⋂i∈X Ii. Then x, y ∈ Ii for all i ∈ X, and hence x − y ∈ Ii for all i ∈ X,

and x − y ∈ ⋂i∈X Ii; we conclude that ⋂i∈X Ii is a subgroup by the subgroup test. Finally,

if x ∈ ⋂i∈X Ii and r ∈ R then x ∈ Ii for all i ∈ X, and hence xr, rx ∈ Ii for all i ∈ I so

xr, rx ∈ ⋂i∈X Ii. The result is proved.

Remark 3.10. Given a ring R and elements x1, . . . , xn ∈ R we define

⟨x1, . . . , xn⟩ ∶=⋂{I ∶ I is an ideal in R and x1, . . . , xn ∈ I}, (3.1)

which is an ideal by the preceding proposition (and Example 3.4 which ensures that R itself

is an ideal so that some ideal contains x1, . . . , xn). We call ⟨x1, . . . , xn⟩ the ideal generated

by x1, . . . , xn.

Remark 3.11. !△The ideal generated by an element depends on the ambient ring: for

example if N ∈ N∗ then ⟨N⟩ = NZ as an ideal in Z, while ⟨N⟩ = Q as an ideal in Q.

Proposition 3.12. Suppose that R is a commutative ring. Then ⟨x⟩ = Rx(= xR).

Proof. x ∈ ⟨x⟩ and ⟨x⟩ is an ideal so rx ∈ ⟨x⟩ for all r ∈ R, whence Rx is contained in ⟨x⟩. On

the other hand xR is the image of the additive group R under right multiplication by x. This

map is a homomorphism and so this image – Rx – is a subgroup of the additive group of R.

If y ∈ Rx then there is r ∈ R such that y = rx and so if s ∈ R then sy = s(rx) = (sr)x ∈ Rx,

and since R is commutative ys = sy ∈ Rx. It follows that Rx is an ideal and it contains x so

⟨x⟩ ⊂ Rx and the result is proved.

Example 3.13. !△This is another place where we make use of the fact that our rings

have multiplicative identities. The group R = 2Z with its usual addition and multiplication

satisfies the axioms of a ring except that it does not have a multiplicative identity. The set

I ∶= 6Z is a subgroup of R which is closed under multiplication by elements of R (on the left

and right), but there is no x ∈ R such that I = Rx.
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Example 3.14. Suppose that F is a field, R =M2(F) and

x ∶=
⎛
⎝

1 0

0 0

⎞
⎠

and p ∶=
⎛
⎝

0 1

1 0

⎞
⎠
.

The set Rx is a set of matrices all of which have rank at most 1. By calculation I, the 2x2

identity matrix, has I = x + pxp, and since ⟨x⟩ is an ideal it follows that I ∈ ⟨x⟩. But I has

rank 2 and so is not in Rx, and we conclude that Rx is not an ideal. It follows that the

commutativity hypothesis in Proposition 3.12 cannot be dropped.

Corollary 3.15. Suppose that R is a commutative ring. Then ⟨x1, . . . , xn⟩ = Rx1+⋯+Rxn.

Proof. By Propositions 3.8 & 3.12 Rx1 + ⋯ + Rxn is an ideal and it certainly contains

x1, . . . , xn, and hence ⟨x1, . . . , xn⟩. On the other hand if I is an ideal containing x1, . . . , xn

then Rxi ⊂ I and so Rx1 +⋯ +Rxn ⊂ I +⋯ + I = I and the result is proved.

Remark 3.16. An ideal generated by one element is called a principal ideal, and an integral

domain in which every ideal is principal is called a principal ideal domain or PID.

Example 3.17. Example 2.14 and (the second part of) Example 3.6 combine to say that

Z is a PID.

Proposition 3.18. Suppose that R is a ring and x ∈ R. If x ∈ U(R) then ⟨x⟩ = R; if R is

commutative and ⟨x⟩ = R then x ∈ U(R).

Proof. First, since x ∈ U(R) there is y ∈ R such that xy = 1 and so for all r ∈ R and any

ideal I containing x we have r = (xy)rx(yr) ∈ I, hence I = R and so ⟨x⟩ = R. On the other

hand, if R is commutative and R = ⟨x⟩ then R = xR by Proposition 3.12, and there is y ∈ R
such that xy = 1. Using commutativity again, x ∈ U(R).

Example 3.19. The ideal ⟨2,X⟩ in Z[X] is the set of polynomials with even constant

coefficient. Certainly the polynomials with even constant coefficient form an ideal in Z[X]
containing 2 and X, and conversely every such polynomial is in ⟨2,X⟩ since it can be written

in the form 2q +Xp(X) for some p ∈ Z[X] and constant polynomial q ∈ Z[X].
The ideal ⟨2,X⟩ is not principal, so Z[X] is not a PID. To see this, suppose that

p ∈ ⟨2,X⟩ were such that ⟨2,X⟩ = ⟨p⟩. By Proposition 3.12 ⟨p⟩ = p(X)Z[X], so there are

q, r ∈ Z[X] such that X = p(X)q(X) and 2 = p(X)r(X), and neither q nor r are the zero

polynomial since zero annihilates. Since Z is an integral domain, Proposition 2.22 (iii) tells

us that 0 = deg 2 = deg p + deg r, so deg p = 0; say p(X) = a for a ∈ Z. Apply the evaluation

homomorphism (Proposition 1.73) Z[X]→ Z taking X to 1 to both sides of the first equation

to get 1 = aq(1). Since Z is commutative, a ∈ U(Z) = {−1,1}, and so p has an odd constant

coefficient but this contradicts the fact that p ∈ ⟨2,X⟩.
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Kernels

Given a ring homomorphism φ ∶ R → S, the kernel of φ is its kernel as a homomorphism

of additive groups, that is the set of r ∈ R such that φ(r) = 0S.

Remark 3.20. A ring homomorphism φ ∶ R → S is injective if and only if kerφ = {0R}.

Proposition 3.21. Suppose that φ ∶ R → S is a ring homomorphism. Then kerφ is an

ideal.

Proof. Since φ is a group homomorphism the kernel is an additive subgroup of R. Now

suppose x ∈ kerφ and r ∈ R. Then φ(xr) = φ(x)φ(r) = 0φ(r) = 0 since zero annihilates, and

similarly φ(rx) = 0. It follows that xr, rx ∈ kerφ so that kerφ is an ideal.

Example 3.22 (Polynomials with common roots as ideals). For R a subring of a commu-

tative ring S and λ ∈ S, the set I ∶= {p ∈ R[X] ∶ p(λ) = 0} is an ideal since it is the kernel of

the evaluation homomorphism R[X]→ S;p↦ p(λ). We say that λ is a root of p if p ∈ I.

Theorem 3.23 (Factor Theorem). Suppose that R is a commutative ring and λ ∈ R. Then

{p ∈ R[X] ∶ p(λ) = 0} = ⟨X − λ⟩.

Proof. Call the left hand set I, and note X − λ ∈ I and I is an ideal, so ⟨X − λ⟩ ⊂ I by

definition. In the other direction, we require a familiar algebraic identity which follows from

the algebra for multiplying polynomials (Proposition 1.12), and the fact that sums of zeros

are zero and zeros annihilate:

(
n−1

∑
i=0

X iλn−1−i)(X − λ) = −λn +
n−1

∑
k=1

(λn−1−(k−1) + (−λ)λn−1−k)Xk +Xn =Xn − λn

for n ⩾ 1. Hence if p ∈ I, then by the above, associativity of multiplication, and the fact that

right multiplication by X − λ is a homomorphism, we have

p(X) = p(X) − p(λ) =
d

∑
n=0

an(Xn − λn)

= (
d

∑
n=1

an (
n−1

∑
i=0

X iλn−1−i))(X − λ) ∈ ⟨X − λ⟩.

The result is proved.

Proposition 3.24. Suppose that R is an integral domain and p ∈ R[X]∗ has degree d. Then

p has at most d roots in R.

Proof. We proceed by induction on d. If d = 0 then p is a non-zero constant and so has no

roots. Now, suppose that d > 0 and λ is a root of p. Then there is a polynomial q such that

p(X) = (X −λ)q(X), and since R is an integral domain Proposition 2.22 (iii) applies so that

deg q = d− 1 and so by induction q has at most d− 1 roots. Since R is an integral domain, if

λ′ ∈ R is a root of p then either λ′ − λ = 0 or q(λ′) = 0 so that λ′ is a root of q. We conclude

that p has at most 1 + (d − 1) = d roots as claimed.
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Remark 3.25. If R is a non-trivial commutative ring that is not an integral domain then

there are elements a, b ∈ R∗ with ab = 0. The polynomial aX ∈ R[X] then has degree 1 but

at least two roots: 0 and b.

Quotient rings and the isomorphism theorems

Theorem 3.26 (Quotient Rings). Suppose that R is a ring and I is an ideal. Then the

commutative group R/I may be endowed with a multiplication such that the quotient map

q ∶ R → R/I;x↦ x+I is a surjective ring homomorphism with kernel I. If R is commutative

then so is this multiplication.

Proof. I is a subgroup of a commutative group and so normal, and so by the quotient group

construction R/I is a commutative group and q is a surjective group homomorphism with

kernel I. The key is now to show that q(xy) = q(x′y′) whenever x+I = x′+I and y+I = y′+I.

By distributivity of multiplication and negation we have that xy−x′y′ = (x−x′)y+x′(y−y′).
But then x − x′ ∈ I and y − y′ ∈ I and so xy − x′y′ ∈ Iy + x′I ⊂ I since I is closed under

multiplication by any element of R (in this case y on the right and x′ on the left). We

conclude that q(xy) = q(x′y′) as required, and so we may define ×̂ on R/I: first, for u, v ∈ R/I
let x, y ∈ R be such that q(x) = u and q(y) = v. Then put u×̂v ∶= q(xy); this is well-defined

by the previous.

For u, v,w ∈ R/I, let x, y, z ∈ R be such that u = q(x), v = q(y) and w = q(z). Then

(u×̂v)×̂w = q((xy)z) = q(x(yz)) = u×̂(v×̂w) so that ×̂ is associative. q(1)q(x) = q(x) =
q(x)q(1) so q(1) is an identity for ×̂ since q is surjective. Finally, for q(x) ∈ R/I, we have

q(x)×̂(q(y) + q(z)) = q(x(y + z)) = q(xy + xz) = q(xy) + q(xz) = q(x)×̂q(y) + q(x)×̂q(z) and

since q is surjective it follows that left multiplication by q(x) is a homomorphism. So is

right multiplication by a similar argument, and hence (again since q is surjective) it follows

that ×̂ distributes over addition.

Finally, we have seen that q(1) is the identity; q is a homomorphism of the additive

group by definition of the quotient group; and q is multiplicative by definition. Thus q is

a ring homomorphism. Moreover, ×̂ is visibly commutative if the multiplication on R is

commutative. The result is proved.

Remark 3.27. Since the map q above is a surjective ring homomorphism the multiplication

on R/I is determined by q: 1R/I = 1 + I; (x + I) ×R/I (y + I) = (xy) + I for all x, y ∈ R; and if

x ∈ U(R) then x + I ∈ U(R/I) and (x + I)−1 = x−1 + I, where the first (⋅)−1 is multiplicative

inversion in R/I, and the second is in R.

By the ring R/I we mean this ring structure.

Example 3.28. For the ring Z and the ideal ⟨N⟩ = NZ we recover the ring ZN from

Example 3.1.
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Remark 3.29. In the light of this we generalise the notation for modular arithmetic: if R

is a ring and I is an ideal in R then we write x (mod I) in place of x + I or q(x) (where q

is as in Theorem 3.26). The intuition here is that quotient ring R/I is the ring R with the

elements of I ‘set to zero’.

Example 3.30. Suppose that F is a field and that I is an ideal in F. Then the map

q ∶ F → F/I is a ring homomorphism with kernel I and so by Proposition 1.41 either F/I is

trivial i.e. I = F; or this homomorphism is injective and so I = {0}. It follows that for fields

the only two ideals.
!△Not every ring with exactly two ideals is a field (see Exercise I.7), but every commu-

tative ring with this property is as we shall see later in Proposition 3.46.

Theorem 3.31 (First Isomorphism Theorem). Suppose that φ ∶ R → S is a ring homomor-

phism. Then Imφ is a subring of S; kerφ is an ideal in R; and the map

φ̃ ∶ R/kerφ→ S;x + kerφ↦ φ(x)

is a well-defined injective ring homomorphism. In particular, R/kerφ ≅ Imφ.

Proof. By the First Isomorphism Theorem for groups Imφ is an additive subgroup of S;

1S = φ(1R) ∈ Imφ; and if x, y ∈ Imφ then there are z,w ∈ R such that x = φ(z) and y = φ(w)
so xy = φ(zw) ∈ Imφ. The subring test gives the first conclusion. The second conclusion is

Proposition 3.21.

The map φ̃ is a well-defined injective group homomorphism by the First Isomorphism

Theorem for groups. In addition,

φ̃((x + kerφ)(y + kerφ)) = φ̃((xy) + kerφ)

= φ(xy) = φ(x)φ(y) = φ̃(x + kerφ)φ̃(y + kerφ),

and φ̃(1R + kerφ) = φ(1R) = 1S. The result is proved.

Sometimes it is useful not to quotient out by the whole kernel in the First Isomorphism

Theorem, for which purpose we have the following lemma.

Lemma 3.32. Suppose that R is a ring and I ⊂ J are both ideals of R. Then the map

R/I → R/J ;x + I ↦ x + J is a well-defined ring homomorphism.

Proof. Call the map π. First, π is well-defined since if x+I = x′+I then x−x′ ∈ I ⊂ J and so

x+ J = x′ + J . π((x+ I)(y + I)) = π(xy + I) = xy + J = (x+ J)(y + J) = π(x+ I)π(y + J) and

similarly π((x+I)+(y+I)) = π((x+y)+I) = (x+y)+J = (x+J)+(y+J) = π(x+I)+π(y+J).
Finally, π(1 + I) = 1 + J and the result is proved.

We turn to some consequences of the First Isomorphism Theorem.
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Example 3.33. The First Isomorphism Theorem applied to the ring homomorphism R →
R;x↦ x gives the isomorphism R/{0} ≅ R.

Example 3.34. For a commutative ring S with a subring R and an element λ ∈ S, the image

R[λ] (defined in Remark 1.74) is a subring by the First Isomorphism Theorem applied to

the evaluation homomorphism R[X] → S;p ↦ p(λ). If S = R then this homomorphism is

surjective and we get the isomorphism R/⟨X − λ⟩ ≅ R by Theorem 3.23.

Example 3.35. In Example 1.35 we saw that Z had no proper subrings. In the other direc-

tion, if R is a ring with no proper subrings then applying the First Isomorphism Theorem to

the ring homomorphism χR ∶ Z → R provided by Theorem 1.24, we see that the image is a

subring of R and so equal to R since R has no proper subrings, and this image is isomorphic

to a quotient of Z.

In Example 3.6 we saw every ideal of Z has the form ⟨N⟩ for N ∈ N0, so a ring with no

proper subrings must be isomorphic to Z ≅ Z/{0} (Example 3.33) or ZN for N ∈ N∗. (A

short check confirms that these rings really do not have any proper subrings.)

For a discussion of which (commutative) rings have exactly two proper subrings see

[Dob16].

Proposition 3.36. Suppose that R is an integral domain of characteristic p ≠ 0. Then p is

prime and there is a ring homomorphism Fp → R inducing an Fp-vector space structure on

the additive group of R in such a way that multiplication on R is bilinear.

Proof. Let χR ∶ Z→ R be the homomorphism provided by Theorem 1.24, and suppose that

R has characteristic p. If p = ab for a, b ⩾ 1 then 0R = χR(p) = χR(a)χR(b), and since R

is an integral domain we conclude that χR(a) = 0 or χR(b) = 0; say the former. Then by

definition a ⩾ p and so a = p and b = 1. We conclude that p is prime.

The kernel of χR contains p and is an ideal in Z. Since Z is a PID it has the form ⟨N⟩ for

some N ∈ N0, but then N ∣ p, whence N = 1 or N = p. If N = 1 then 1R = χR(1) = χR(0) = 0R

contradicting the non-triviality of R. We conclude that N = p and the ring Z/⟨p⟩ is the ring

Fp which is a field (Example 3.7). By the First Isomorphism Theorem there is then an

injective ring homomorphism Fp → R which induces an Fp-vector space structure on the

additive group of R in such a way that right multiplication is F-linear. Since multiplication

is commutative, it is F-bilinear.

Remark 3.37. For a finite field F the homomorphism χF ∶ Z → F (from Theorem 1.24)

cannot be injective and so the kernel contains a non-zero, and hence positive element so

the characteristic is non-zero and hence by the above prime. It follows from this that every

finite field has order pn for some prime p and n ∈ N∗. In fact it can be shown that there is a

field of order pn for every prime p and n ∈ N∗, and an accessible proof of this is in [Sou20].
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Given an ideal I in R we write IdealsI(R) for the set of ideals J in R with I ⊂ J , and

Ideals(R)(= Ideals{0}(R)) for the set of ideals of R.

Theorem 3.38 (Relationship between ideals in R and R/I). Suppose that R is a ring and

I is an ideal in R. Then the map

φ ∶ IdealsI(R)→ Ideals(R/I); I ′ ↦ {x + I ∶ x ∈ I ′}.

is a well-defined inclusion-preserving bijection.

Proof. First, we show the map is well-defined. I ′ is a subgroup of the additive group of R and

the quotient map is a homomorphism of groups so the image of I ′ under q – which is exactly

φ(I ′) – is a subgroup of the additive group of R/I. If x + I ∈ R/I and y + I ∈ φ(I ′) for some

y ∈ I ′ then xy, yx ∈ I ′ and so (x+I)(y+I) = (xy)+I ∈ φ(I ′) and (y+I)(x+I) = (yx)+I ∈ φ(I ′).
Thus φ(I ′) is genuinely an ideal in R/I.

φ is visibly inclusion-preserving. It is an injection since if I ′ is an ideal containing

I and x ∈ I ′ then x + I ⊂ I ′, hence φ(I ′) = φ(I ′′) implies I ′ = ⋃{x + I ∶ x + I ∈ φ(I ′)} =
⋃{x + I ∶ x + I ∈ φ(I ′′)} = I ′′.

Finally, if J ∈ Ideals(R/I) then put I ′ ∶= ⋃K∈JK. I ⊂ I ′ since I = 0R/I ∈ J . If x, y ∈ I ′

then x + I, y + I ∈ J and so (x + (−y)) + I ∈ J (since J is an additive group) and hence

x+ (−y) ∈ I ′. It follows that I ′ is an additive group by the subgroup test. If x ∈ R and y ∈ I ′

then (x + I)(y + I) ∈ J and so (xy) + I ∈ J and xy ∈ I ′, and similarly yx ∈ I ′ so we see that

I ′ is an ideal. Moreover φ(I ′) = J , and φ is a surjection.

Remark 3.39. This result also goes by the name of the Correspondence Theorem and some-

times the Fourth Isomorphism Theorem for rings.

Example 3.40. For N ∈ N∗, ZN is a ring in which every ideal is principal. To see this, let

φ ∶ IdealsNZ(Z) → Ideals(ZN) be the map from the Correspondence Theorem and suppose

J is an ideal in ZN . Since Z is a PID, φ−1(J) = ⟨M⟩ for some M ∈ N∗, and furthermore

⟨M⟩ ⊃ ⟨N⟩. Since φ is a bijection, J = φ(⟨M⟩) = {Mz +NZ ∶ z ∈ Z} = ⟨M +NZ⟩ is principal.
!△ZN is not a PID unless N is prime since it is not an integral domain.

Proper, prime, and maximal ideals

In Remark 2.15 we arranged non-trivial rings, integral domains, and fields in a hierarchy.

This hierarchy is also reflected in ideals. We say that an ideal I in R is proper if I ≠ R,

and have the following immediate fact.

Lemma 3.41. Suppose that R is a commutative ring and I is an ideal in R. Then I is

proper if and only if R/I is non-trivial.
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Remark 3.42. We say that an ideal I is prime if it is proper and whenever ab ∈ I we have

either a ∈ I or b ∈ I.

Proposition 3.43. Suppose that R is a commutative ring and I is an ideal in R. Then I

is prime if and only if R/I is an integral domain. In particular R is an integral domain if

and only if {0R} is prime.

Proof. For ‘only if’ we have (a+ I)(b+ I) = 0R/I = I, so ab ∈ I and therefore a ∈ I or b ∈ I by

primality. Consequently a + I = I = 0R/I or b + I = I = 0R/I i.e. R/I is an integral domain.

(R/I is non-trivial since I is proper.) In the other direction, I is proper since R/I is non-

trivial, and if ab ∈ I then (a + I)(b + I) = 0R/I , and a + I = 0R/I = I or b + I = 0R/I = I. We

conclude a ∈ I or b ∈ I as required.

Example 3.44. The ideal ⟨X⟩ is prime in R[X] when R is an integral domain. To see this,

suppose that p(X)q(X) ∈ ⟨X⟩. Then by the evaluation homomorphism p(0)q(0) = 0, and

hence p(0) = 0 or q(0) = 0 since R is an integral domain. It follows from the Factor Theorem

(Theorem 3.23) that p ∈ ⟨X⟩, or q ∈ ⟨X⟩.

Remark 3.45. We say that an ideal I is maximal if I is proper and whenever I ⊂ J ⊂ R for

some ideal J we have J = I or J = R.
!△Maximal here is maximal with respect to inclusion amongst proper ideals; all ideals

in R are contained in the ideal R.

Proposition 3.46. Suppose that R is a commutative ring and I is an ideal in R. Then I is

maximal if and only if R/I is a field. In particular R is a field if and only if {0} is maximal.

Proof. Suppose that R/I is a field. Then R/I is non-trivial and so I is proper; suppose J

is an ideal with I ⊊ J ⊂ R. Then there is x ∈ J ∖ I and since R/I is a field some y ∈ R such

that xy + I = 1 + I whence 1 ∈ xR + I ⊂ J and so J = R, whence I is maximal as claimed.

Conversely, if I is maximal and x ∈ R has x + I ≠ I then I + xR is an ideal properly

containing I and so by maximality equals R. It follows that there is some y ∈ R such that

1 ∈ xy+I whence (x+I)(y+I) = 1R/I so that U(R/I) = (R/I)∗ and R/I is a field as required.

(R/I is non-trivial as I is proper.)

Example 3.47. For p a prime number, ⟨p⟩ is maximal in Z since Z/⟨p⟩ is a field (Example

3.7).

Remark 3.48. Since every field is an integral domain, it follows immediately from this and

Proposition 3.43 that every maximal ideal is prime, but this can also be proved directly.

Remark 3.49. !△Although it will turn out that in PIDs all non-zero prime ideals are max-

imal ideals (essentially Proposition 4.20), this is not true in general e.g. ⟨X⟩ in Z[X] is

prime, and properly contained in the proper ideal ⟨2,X⟩.
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Theorem 3.50 (Krull’s Theorem). Suppose that R is a commutative ring and I is a proper

ideal in R. Then there is a maximal ideal J in R containing I.

Remark 3.51. It is possible to sketch an intuitive iterative argument for the above which

can be formalised through a transfinite induction, but the Theorem is more commonly

established via Zorn’s Lemma following [Zor35]. We shall not give a proof and in fact we

could take Theorem 3.50 to be an axiom since it is know to be equivalent to the Axiom of

Choice or Zorn’s Lemma [Hod79].

4 Divisibility

Principal ideals capture a notion of divisibility: we say that a divides b, or a is a divisor

or factor of b, or b is a multiple of a, and write a ∣ b, if b ∈ ⟨a⟩.

Remark 4.1. By definition of generation of ideals, a ∣ b if and only if ⟨b⟩ ⊂ ⟨a⟩.

Remark 4.2. When R is commutative, Proposition 3.12 tells us that a ∣ b if and only if there

is x ∈ R such that b = xa.
!△ If R =M2(F) and x ∈ R are as in Example 3.14, then x ∣ 1 but 1 ≠ xr for any r ∈ R

for reasons of rank.

Remark 4.3. The structure of ideals means that if a ∣ bi for all 1 ⩽ i ⩽ n, and r1, . . . , rn ∈ R
then a ∣ b1r1 +⋯ + bnrn.

We say that a and b are associates and write a ∼ b if ⟨a⟩ = ⟨b⟩.

Proposition 4.4. Suppose that R is a commutative ring. Then ∣ is reflexive and transitive,

and if x ∣ x′ and y ∣ y′ then xy ∣ x′y′. Hence ∼ is an equivalence relation, and if x ∼ x′

and y ∼ y′ then xy ∼ x′y′. Furthermore, 0 ∣ 0 if and only if x = 0, and x ∣ 1 if and only if

x ∈ U(R).

Proof. Reflexivity and transitivity follow immediately from the corresponding facts for sub-

set inclusion. If x ∣ x′ and y ∣ y′ then there are elements a, b ∈ R such that x′ = ax and

y′ = by so x′y′ = (ab)(xy), and xy ∣ x′y′.
Furthermore, 0 ∣ 0, and if 0 ∣ x then there is a ∈ R such that x = 0a = 0. x ∣ 1 if and only

if x ∈ U(R) is exactly Proposition 3.18.

Remark 4.5. !△ Ideals depend on the ambient ring and so do ∣ and ∼ e.g. 2 /∣ 3 in Z, but

2 ∣ 3 in Q.

Remark 4.6. !△Although it is true that if x = uy for a unit u ∈ U(R) then x ∼ y, the

converse is not in general true even in a commutative ring. (See Exercise II.1.)

Example 4.7. For r ∈ R and p(X) = a0 + a1X + ⋅ ⋅ ⋅ + adXd ∈ R[X] we have r∣p in R[X] if

and only if r ∣ ai in R for all 0 ⩽ i ⩽ d by equating coefficients.
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Remark 4.8. We say that c is a common divisor of a and b if c ∣ a and c ∣ b, and d is a

greatest common divisor (gcd) if it is a common divisor, and every common divisor of

a and b is a divisor of d. It follows immediately that if d and d′ are gcds of a and b then

d ∼ d′.
Similarly we say that m is a common multiple of a and b if a ∣m and b ∣m, and l is

a least common multiple (lcm) if it is a common multiple, and every common multiple

of a and b is a multiple of l. Again it follows immediately that if l and l′ are lcms of a and

b then l dim l′.

Remark 4.9. All of this terminology coincides with its usual meaning in Z.

Proposition 4.10. Suppose that R is commutative ring in which every ideal is principal.

Then every pair a, b ∈ R has a greatest common divisor d and ⟨a⟩ + ⟨b⟩ = ⟨d⟩.

Proof. Since every ideal in R is principal there is some d ∈ R such that ⟨a⟩+⟨b⟩ = ⟨a, b⟩ = ⟨d⟩,
and in particular d is a common divisor of a and b. Now if c is a common divisor of a and

b, then a, b ∈ ⟨c⟩ and so ⟨d⟩ = ⟨a, b⟩ = ⟨a⟩ + ⟨b⟩ ⊂ ⟨c⟩ + ⟨c⟩ = ⟨c⟩ as required.

Remark 4.11. We say that an element x ∈ R is prime if ⟨x⟩ is a prime ideal; in other

notation if x /∼ 1 and x ∣ ab implies x ∣ a or x ∣ b. In particular, if R is an integral domain

then Example 3.44 tells us that X is prime in R[X].

Remark 4.12. By induction, given a prime x and a finite list of elements (yi)i∈I such that

x ∣∏i∈I yi, there is some i ∈ I such that x ∣ yi.

Proposition 4.13. Suppose that R is an integral domain and r ∈ R is prime as an element

of R. Then r is also prime as an element of R[X].

Proof. First r /∼ 1 in R, so r /∈ U(R) = U(R[X]) and hence r /∼ 1 in R[X]. Suppose that

p(X) = a0 + a1X +⋯ + anXn and q(X) = b0 + b1X +⋯ + bmXm are such that r ∣ pq in R[X]
and r /∣ p in R[X] so that there is some minimal k ∈ N0 such that r /∣ ak in R. Suppose that

l ⩾ 0 and that we have shown r ∣ bj in R for all j < l. The coefficient of Xk+l in pq is

k+l

∑
j=0

ajbk+l−j =
k−1

∑
j=0

ajbk+l−j + akbl +
l−1

∑
j=0

ak+l−jbj.

r divides the left hand side (in R) by hypothesis; it divides the first summand on the right

(in R) since r ∣ ai in R for all 0 ⩽ i < k by minimality of k; and it divides the last summand

(in R) since r ∣ bj in R for all 0 ⩽ j < l by the inductive hypothesis. It follows that r ∣ akbl
in R. But r is prime in R and r /∣ ak in R by hypothesis, so we conclude r ∣ bl in R. Thus

by induction r ∣ bl in R for all l ∈ N0 so that r ∣ q in R[X] as required.

Remark 4.14. !△Note that primality is not in general preserved on passage from a subring

to a ring: every integral domain is a subring of a field and the only prime in a field is 0.
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Remark 4.15. We say that x ∈ R is irreducible if x /∼ 1 and whenever a ∣ x we have a ∼ x
or a ∼ 1. This is equivalent to saying that ⟨x⟩ is maximal amongst proper principal ideals.

!△ Irreducible elements can behave in unexpected ways, for example 3 is irreducible in

Z6 but 32 ≡ 3 mod 6. The next lemma is useful for showing that irreducible elements behave

better in integral domains.

Remark 4.16. !△There are many different definitions of irreducibility in the literature,

and they are largely equivalent in integral domains. See [AC11] for some examples and

discussion.

Lemma 4.17 (Cancellation). Suppose that R is an integral domain, w ∣ z (and z non-zero),

and xz ∣ yw. Then x ∣ y, and in particular, if z ∼ w (are both non-zero) then xz ∼ yw if and

only if x ∼ y.

Proof. Since w ∣ z and xz ∣ yw there are elements a and b such that z = aw and bxz = yw
so bxaw = yw and since w is not a zero-divisor right multiplication by w is injective and so

(ba)x = bxa = y and x ∣ y.

Proposition 4.18. Suppose that R is an integral domain and a, b ∈ R. If a and b have a

least common multiple l and ab ≠ 0 then a and b have a greatest common divisor d such that

ab = dl.

Proof. Since ab is a common multiple of a and b there is d such that ab = ld. Since a ∣ l,
ad ∣ ld = ab and so d ∣ b, similarly d ∣ a; d is a common divisor. Suppose that c ∣ a and a ∣ b
so a = gc and b = ch. Then a and b divide gch, and so l ∣ gch and lc ∣ gchc = ab = ld, whence

c ∣ d. Hence d is a greatest common divisor as claimed.

Remark 4.19. The assumption that the least common multiple exists is essential. See Ex-

ercise II.2 for an example of elements with a gcd but no lcm. It turns out, however, that

if every pair of elements has a greatest common divisor then every pair of elements has a

least common multiple. See, for example, [Cla10, Theorem 40].

Proposition 4.20. Suppose that R is an integral domain and x ∈ R∗ is prime. Then x is

irreducible.

Proof. Suppose that x ∈ R∗ is prime. First, x /∼ 1. Now suppose that a ∣ x. Then there is

b ∈ R such that x = ab. By primality either x ∣ a and so x ∼ a and we are done; or x ∣ b so

that ax ∣ ab = x, and by cancellation a ∣ 1 since x ∈ R∗, ensuring a ∼ 1.

Remark 4.21. Exercise II.2 gives examples to show that even in integral domains, irreducible

elements need not be prime.

Remark 4.22. Note that 0R is always prime in an integral domain R, but it is irreducible if

and only if ⟨x⟩ = R for all x ∈ R∗, which is true if and only if R is a field.
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Proposition 4.23. Suppose that R is an integral domain such that every pair of elements

has a greatest common divisor and x ∈ R is irreducible. Then x is prime.

Proof. Suppose x ∣ ab and x /∣ a. If b = 0 then x ∣ b as required, so we may suppose b ∈ R∗.

By hypothesis xb and ab have a gcd, call it c. Since b ∣ xb and b ∣ ab we have b ∣ c, so that

c = db for some d ∈ R. Since db = c ∣ xb and db = c ∣ ab, by cancellation we have d ∣ x and

d ∣ a. Irreducibility of x tells us that either d ∼ x or d ∼ 1; we cannot have the former since

d ∣ a, but d ∼ x /∣ a. Hence d ∼ 1 and so d ∈ U(R) and d−1c = b; in particular, c ∣ b. But then

x is a common factor of xb and ab and so x ∣ c ∣ b as required.

Remark 4.24. Usually a positive integer is said to be prime if it is irreducible in the sense of

this section. Since Z is a PID it follows by Propositions 4.10, 4.20 and 4.23 that a positive

integer is prime in the usual sense if and only if it is prime in the sense of this section, and

there is no conflict in nomenclature.

Primes are particularly important because they ensure a uniqueness of factorisation.

To be precise a (possibly empty) vector (x1, . . . , xr) is a factorisation of an element x if

x ∼ x1⋯xr; the xis are called the factors, and if all the factors are irreducible then we say

that x has a factorisation into irreducibles. We say that a factorisation (x1, . . . , xr) of

x into irreducibles is unique if whenever (y1, . . . , ys) is factorisation of x into irreducibles

there is a bijection π ∶ {1, . . . , r}→ {1, . . . , s} such that xi ∼ yπ(i) for all 1 ⩽ i ⩽ r.

Remark 4.25. !△ In particular, every unit has a unique factorisation into irreducibles.

Proposition 4.26. Suppose that R is an integral domain and x ∈ R∗ has a (possibly empty)

factorisation in which every factor is prime. Then x has a unique factorisation into irre-

ducibles.

Proof. Let (x1, . . . , xr) be a factorisation of x in which every factor is prime. Since x ∈ R∗,

we have x1, . . . , xr ∈ R∗, and so by Proposition 4.20 we have that x has a factorisation into

irreducibles. We shall prove that if (yi)i∈I are irreducible elements indexed by a finite set I

such that x ∼ ∏i∈I yi then there is a bijection π ∶ {1, . . . , r} → I such that xi ∼ yπ(i) for all

1 ⩽ i ⩽ r.
We proceed by induction on r. For r = 0 we have ∏i∈I yi ∼ 1 (by definition of the empty

product) and so there is u ∈ U(R) such that ∏i∈I yi = u. Hence for all j ∈ I, we have

yj (u−1∏i∈I∖{j} yi) = 1 and yj ∈ U(R). It follows that I is empty since no unit is irreducible,

and we have the base case.

Now, suppose that r > 0. Then xr is prime and xr ∣∏i∈I yi whence there is some j ∈ I such

that xr ∣ yj. But yj is irreducible and xr /∼ 1 and so xr ∼ yj. But then x1⋯xr−1 ∼ ∏i∈I∖{j} yi

by cancellation, and by the inductive hypothesis there is a bijection π̃ ∶ {1, . . . , r−1}→ I∖{j}
such that xi ∼ yπ̃(i) for all 1 ⩽ i ⩽ r − 1. Extend this to a bijection {1, . . . , r} → I by setting

π(r) = j and the result is proved.
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We turn now to the problem of finding factorisations into irreducibles (Proposition 4.23

will then turn these into factorisations in which every factor is prime for use in Proposition

4.26).

We say that a commutative ring R has the ascending chain condition on principal

ideals7 or ACCP if for every sequence (dn)∞n=0 of elements of R with dn+1 ∣ dn for all n ∈ N0,

there is some N ∈ N0 such that dn ∼ dN for all n ⩾ N . The idea this captures is that we

cannot ‘keep dividing indefinitely’.

Proposition 4.27. Suppose that R is a PID. Then R has the ACCP.

Proof. Suppose that (dn)∞n=0 has dn+1 ∣ dn for all n ∈ N0 and let

I ∶= {r ∈ R ∶ dn ∣ r for some n ∈ N0}.

This is an ideal: if r, s ∈ I then there are n,m ∈ N0 such that dm ∣ r and dn ∣ s, but

dm+n ∣ dn ∣ r and dn+m ∣ dm ∣ s so dn+m ∣ r − s and r − s ∈ I; if r ∈ I and s ∈ R then there is

n ∈ N0 such that dn ∣ r so dn ∣ rs and hence rs, sr ∈ I; and finally 0 ∈ I.

Since R is a PID there is some d ∈ I such that I = ⟨d⟩. Since d ∈ I there is some N ∈ N0

such that dN ∣ d, but then dn ∈ I for all n ∈ N0 and so dN ∣ d ∣ dn for all n ∈ N0 and hence

dn ∼ dN for all n ⩾ N . The result is proved.

Proposition 4.28. Suppose that R is an integral domain with the ACCP. Then every x ∈ R∗

has a factorisation into irreducibles.

Proof. Write F for the set of elements in R∗ that have factorisation into irreducibles so that

all units and irreducible elements are in F . F is closed under multiplication, by design and

since R is an integral domain.

Were F not to be the whole of R∗ then there would be some x0 ∈ R∗ ∖F . Now create a

chain iteratively: at step i suppose we have xi ∈ R∗ ∖F . Since xi is not irreducible and not

a unit there is yi ∣ xi with yi /∼ 1 and yi /∼ xi; let zi ∈ R∗ be such that xi = yizi. If zi ∼ xi,
then zi ∼ yizi and by cancellation 1 ∼ yi, a contradiction. We conclude yi, zi /∼ xi.

Since F is closed under multiplication we cannot have both yi and zi in F . Let xi+1 ∈
{yi, zi} such that xi+1 /∈ F ; by design xi+1 ∣ xi and xi+1 /∼ xi. This process produces a sequence

⋅ ⋅ ⋅ ∣ x2 ∣ x1 ∣ x0 in which xi /∼ xi+1 for all i ∈ N0 contradicting the ACCP.

Remark 4.29. Integral domains in which every non-zero element has a factorisation into

irreducibles are called factorisation domains or atomic domains. There are factorisation

domains not having the ACCP but these are not easy to construct; the first example was

given by Grams in [Gra74].

7The reason for the name is that it can also be formulated as saying if (Ii)i∈N0 is an ascending chain

(meaning Ii ⊂ Ii+1 for all i ∈ N0) of principal ideals then there is some N ∈ N0 such that In = IN for all

n ⩾ N .
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Finally, a unique factorisation domain or UFD is an integral domain in which every

x ∈ R∗ has a unique factorisation into irreducibles.

Theorem 4.30. Suppose that R is a PID. Then R is a UFD.

Proof. By Propositions 4.27 and 4.28 we have that every x ∈ R∗ has a factorisation into

irreducibles. But then every irreducible is prime by Propositions 4.10 and 4.23. The result

then follows by Proposition 4.26.

Remark 4.31. In particular, since Z is a PID the above gives the Fundamental Theorem of

Arithmetic.

Remark 4.32. Z[X] is an example of a UFD that is not a PID; see Exercise II.7 for details.

Proposition 4.33. Suppose that R is a UFD and a ∈ R∗. Then there is s ∈ N0 such that if

f1, . . . , fr /∼ 1 and f1⋯fr ∣ a then r ⩽ s.

Proof. Let p1⋯ps be a factorisation of a into irreducible elements. Since fi /∼ 1 and R is a

UFD there is a prime qi with qi ∣ fiand hence q1⋯qr ∣ a. Let b ∈ R be such that a = q1⋯qrb
and let qr+1, . . . , qt be primes such that qr+1⋯qt ∼ b. It follows that q1⋯qt ∼ a, and so again

since R is a UFD s = t ⩾ r. The result is proved.

The division algorithm and Euclidean domains

A Euclidean function on a ring R is a function f ∶ R∗ → N0 such that

• f(a) ⩽ f(b) whenever a ∣ b (both non-zero);

• and if a, b ∈ R∗ then either b ∣ a, or there are q ∈ R, r ∈ R∗ such that a = bq + r and

f(r) < f(b).

We say that an integral domain R is a Euclidean domain if R supports at least one

Euclidean function.

Remark 4.34. Keating [Kea98, p17] uses an even stronger definition of Euclidean function f

requiring that f(ab) = f(a)f(b) whenever a, b ∈ R∗. This is a genuinely stronger definition,

meaning there are Euclidean domains in our sense but not in the sense of Keating, though

this is a recent discovery: [CNT19, Theorem 1.3].

Example 4.35 (Fields are Euclidean domains). Suppose that F is a field and let f ∶ F∗ → N0

be the constant function 1. Since f(a) = f(b) for all a and b, and every two non-zero units

divide each other in a field, f is a Euclidean function for F and so F is a Euclidean domain.
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Example 4.36 (Z is a Euclidean domain). If a, b ∈ Z∗ and b /∣ a then let bq be (one of) the

multiple(s) of b nearest to a. Then r ∶= a− bq has ∣r∣ < ∣b∣, and ∣ ⋅ ∣ is a Euclidean function on

Z and Z is a Euclidean domain. (It certainly has ∣a∣ ⩽ ∣b∣ whenever a ∣ b.)
!△Note that there were two choices for bq and hence for r in the case that b /∣ a.

Example 4.37 (Polynomial rings over fields are Euclidean domains). Suppose that F is a

field and a, b ∈ F[X]∗. Let P ∶= {a + bq ∶ q ∈ F[X]}, and note that if b /∣ a then P does not

include the zero polynomial.

If b /∣ a, we let r ∈ P be a polynomial of minimal degree. If deg r ⩾ deg b, then we may let λ

be the ratio of the lead coefficient of r to that of b and note that r(X)−λXdeg r−deg bb(X) ∈ P
and has strictly smaller degree than r, a contradiction. It follows that deg r < deg b. Finally

deg p ⩽ deg q whenever p ∣ q by Proposition 2.22 (iii), and so deg is a Euclidean function

and F[X] is a Euclidean domain.

Remark 4.38. Suppose that f is a Euclidean function on an integral domain R such that

f(a) ⩽ f(ab) for all a, b ∈ R∗, and for all a, b ∈ R∗ either b ∣ a or there is a unique pair

(q, r) ∈ R ×R∗ with a = bq + r and f(r) < f(b). Then either R is itself a field or R = F[X]
for a field F. A short proof of this may be found in [Jod67]. In particular, since Z is neither

a field nor a polynomial ring over a field this explains why we had to make a choice in

Example 4.36.

Proposition 4.39. Suppose that R is a Euclidean domain. Then R is a PID.

Proof. Let f be a Euclidean function on R and suppose I is a non-zero ideal. Let x ∈ I
have f(x) minimal, and suppose that y ∈ I. If y /∈ ⟨x⟩ then there is q ∈ R and r ∈ R∗ with

y = qx + r and f(r) < f(x) so that r ∈ I, contradicting minimality of f(x).

Remark 4.40. In particular if F is a field then the ring F[X] is a PID.

Remark 4.41. There are examples of PIDs which are not Euclidean domains, for example

Z[θ] where θ2−θ+5 = 0 (a proof may be found in [Con, Theorem 5.13]), and R[X,Y ]/⟨X2+
Y 2 + 1⟩ (a proof may be found in [Con, Theorem 5.14]).

5 Fields and adjoining elements

A field K is an extension field of a field F if there is a ring homomorphism φ ∶ F → K.

Formally, φ is a field extension written K ∶ F.

Remark 5.1. !△The notation K ∶ F refers only to the domain and codomain of φ. The

actual map will often just be inclusion and indeed by relabelling the elements of F we can

always assume that F is a subfield of K because ring homomorphisms between fields are

injective (Proposition 1.41).
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Remark 5.2. The map φ induces an F-vector space structure on K such that multiplication

in K is bilinear. We call the F-dimension of K w.r.t. this vector space structure the degree

of the field extension and denote it ∣K ∶ F∣.

Theorem 5.3 (Tower Law). Suppose that φ ∶ K → L and ψ ∶ F → K are field extensions.

Then φ ○ ψ ∶ F → L is a field extension and if either ∣L ∶ F∣ < ∞ or ∣L ∶ K∣, ∣K ∶ F∣ < ∞ then

∣L ∶ F∣ = ∣L ∶ K∣∣K ∶ F∣.

Proof. First, the composition of homomorphisms is a homomorphism so that φ ○ψ is a field

extension. Since all ring homomorphisms between fields are injective (Proposition 1.41), by

relabelling we may assume that F is a subfield of K and K is a subfield of L. We do this to

make the notation simpler.

Let e1, . . . , en be a basis for L as a vector space over K, and let f1, . . . , fm be a basis

for K as a vector space over F. Now, for x ∈ L there are scalars λ1, . . . , λn ∈ K such that

x = λ1e1 + ⋯ + λnen, and since f1, . . . , fm is spanning, for each 1 ⩽ j ⩽ n there are scalars

µ1,j, . . . , µm,j ∈ F such that λj = µ1,jf1 +⋯ + µm,jfm. Hence x = ∑n
j=1∑m

i=1 µi,jfiej, so by have

that (fiej)m,ni=1,j=1 is an F-spanning subset of K. Now suppose µ1,1, . . . , µm,n ∈ F are such that

∑n
j=1∑m

i=1 µi,jfiej = 0L. Then ∑n
j=1 (∑m

i=1 µi,jfi) ej = 0L, but ∑m
i=1 µi,jfi ∈ K for each 1 ⩽ j ⩽ n

and since e1, . . . , en are K-linearly independent we have ∑m
i=1 µi,jfi = 0K for all 1 ⩽ j ⩽ n. But

now f1, . . . , fm are F-linearly independent and so µi,j = 0F for all 1 ⩽ i ⩽m and 1 ⩽ j ⩽ n. It

follows that (fiej)m,ni=1,j=1 is a basis for L as an F-vector space and the result follows.

Remark 5.4. If F is a finite field, and ∣K ∶ F∣ = n, ∣ L ∶ K∣ = m, and ∣ L ∶ F∣ = k then ∣K∣ = ∣F∣n,

∣ L∣ = ∣K∣m, and ∣ L∣ = ∣F∣k from which it follows that k = nm. The Tower Law extends this to

infinite fields.

Example 5.5. Suppose that L is a field of order 8, and K is a field of order 4. We

can use the Tower Law to show that there is no ring homomorphism φ ∶ K → L – in

words K is not isomorphic to a subfield of L. First ,since K has order 4, we know from

Proposition 3.36 that there is a ring homomorphism π ∶ F2 → K hence K ∶ F2 is a degree 2

field extension, and then φ ○ π ∶ F2 → L is a degree 3 field extension. By the Tower Law we

have ∣F8 ∶ F4∣ × 2 = ∣F8 ∶ F4∣∣F4 ∶ F2∣ = ∣F8 ∶ F2∣ = 3 which leads to a contradiction.

We shall see later (in Examples 5.12 & 5.13) that there actually are fields of order 4

and 8 respectively (a special case of Remark 3.37), and in fact they are unique up to ring

isomorphism.

Theorem 5.6. Suppose that F is a field and f ∈ F[X] is irreducible of degree d. Then

K ∶= F[X]/⟨f⟩ is an extension field of F by the map F → K;λ ↦ λ + ⟨f⟩, and writing

α ∶=X + ⟨f⟩, 1K, α, . . . , αd−1 is a basis for K in this F-vector space structure.
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Proof. F[X] is a PID (Remark 4.40) and hence the fact that ⟨f⟩ is maximal amongst proper

principal ideals means it is maximal amongst all proper ideals and Proposition 3.46 tells

us that K = F[X]/⟨f⟩ is a field. The given map is formed by composing the inclusion map

F → F[X] and the quotient map F[X] → F[X]/⟨f⟩ and so is a ring homomorphism, and

hence K an extension field of F by the given map.

The elements 1K, α, . . . , αd−1 are F-independent in K: indeed, suppose that a0, . . . , ad−1 ∈ F
have 0K = a0.1K + a1.α + ⋯ + ad−1.αd−1. This says exactly that f ∣ a0 + a1X + ⋯ + ad−1Xd−1.

If the right hand side is non-zero then it has degree strictly smaller than d; a contradiction.

Hence the right is 0F[X] and so a0, . . . , ad−1 = 0F as required.

On the other hand, if f(X) = a0 + a1X + ⋯ + adXd then every β ∈ K has a polynomial

p(X) = b0 + b1X +⋯ + bnXn ∈ F[X] such that β = p(X) + ⟨f⟩. By the division algorithm for

F[X] (Example 4.37), either p ∈ ⟨f⟩ (and so β = 0K) or there is some q ∈ F[X] and r ∈ F[X]∗

with deg r < deg f = d such that p(X) = q(X)f(X)+r(X). Then β = r(X)+⟨f⟩, and writing

r(X) = c0 + c1X + ⋯ + cd−1Xd−1 for c0, . . . , cd−1 ∈ F we have β = c0.1K + c1.α + ⋯ + cd−1.αd−1,
and hence 1K, α, . . . , αd−1 is a spanning set.

It follows that 1K, α, . . . , αd−1 is a basis and the result is proved.

In view of Theorem 5.6 it becomes important to identify irreducible polynomials in F[X].

Proposition 5.7. Suppose that F is a field and f ∈ F[X]. Then deg f = 1 if and only if f

is irreducible and has a root in F.

Proof. Suppose deg f = 1. Then f(X) = aX + b for a ∈ F∗ and so f has −b/a as a root. Since

deg f ≠ 0, f /∼ 1 and if g ∣ f then deg g ⩽ deg f = 1 so either deg g = 0 and g ∼ 1; or deg g = 1

and writing f = hg for some h ∈ F[X]∗ we have degh = 0 by Proposition 2.22 (iii), and so

h(X) = a ∈ U(F) and in particular g ∼ f .

Suppose that f is irreducible and has a root λ ∈ F. By the Factor Theorem X − λ ∣ f ,

and by irreducibility X − λ ∼ f whence deg f = 1.

Example 5.8. The irreducible polynomials in C[X] are exactly the degree 1 polynomials.

The Fundamental Theorem of Algebra tells us that every non-constant polynomial in C[X]
has a root in C, and the result follows by Proposition 5.7.

Lemma 5.9. Suppose that F is a field and f ∈ F[X] a non-constant polynomial with degree

at most 3 and no root in F. Then f is irreducible.

Proof. Suppose f is not irreducible. Since f is non-constant, f /∼ 1, and so for f not to

be irreducible there must be some g with g ∣ f , g /∼ 1 and g /∼ f . Write f = gh for some

h ∈ F[X]∗. Since g /∼ 1 we have that deg g ≠ 0 and since g /∼ f we have degh ≠ 0. Since

deg g + degh ⩽ 3 it follows that deg g = 1 or degh = 1; in the former case g has a root by

Proposition 5.7, and in the latter h does. In either case f = gh has a root leading to a

contradiction.
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Example 5.10. The polynomial (X2+1)2 in R[X] is a non-constant polynomial with degree

4 and no root in R which is not irreducible so the 3 in Lemma 5.9may not be increased.

Example 5.11. The evaluation polynomial φ ∶ R[X] → C;p ↦ p(i) is a surjective ring

homomorphism so by the First Isomorphism Theorem C ≅ R[X]/kerφ. Since R[X] is a

PID, kerφ = ⟨p⟩ for some p ∈ R[X]. Since i2+1 = 0 we have p ∣X2+1. By Lemma 5.9 X2+1

is irreducible over R, and hence either p ∼ 1 in which case kerφ = R[X], but C is not-trivial

so this is a contradiction; or else p ∼X2 + 1. It follows that C ≅ R[X]/⟨X2 + 1⟩.
Alternatively, we may construct C by defining it to be the ring R[X]/⟨X2+1⟩ and using

Theorem 5.6 to establish its properties as in Example 1.43.

Example 5.12. The polynomial X2 +X + 1 is irreducible in F2[X] by Lemma 5.9 since

neither 0 nor 1 are roots. On the other hand there are only four degree 2 polynomials in

F2[X], and the other three are X2, X2 +X and X2 + 1 which visibly have roots of 0, 0 (and

1), and 1 respectively. Hence none of these is irreducible.

By Theorem 5.6, the ring F2[X]/⟨X2 +X + 1⟩ is then a field of order 4 which is denoted

F4. !△This field is not equal to the ring Z4 – indeed the latter is not even an integral

domain since 22 ≡ 0 (mod 4) but 2 /≡ 0 (mod 4).

Example 5.13. The polynomial X3 +X + 1 is irreducible in F2[X] by Lemma 5.9 since

neither 0 nor 1 are roots. By Theorem 5.6, the ring F2[X]/⟨X3 +X + 1⟩ is then a field of

order 8 which is denoted F8.

Finding irreducible polynomials is little like finding primes in the integers, and there are

various tests for irreducibility which can help in this endeavour.

We say that f ∈ Z[X] is primitive if there is no prime dividing all the coefficients of f .

Remark 5.14. If f is primitive and of degree 0 then f is a unit in Z[X] since Z is a UFD

(and so every non-unit has a prime factor).

Theorem 5.15 (Gauss’ Lemma). Suppose that f ∈ Z[X]. Then f is non-constant and

irreducible in Z[X] if and only if f is primitive and irreducible in Q[X].

Proof. Suppose that f is irreducible in Z[X]. This immediately tells us that f is primitive

since if p were a prime dividing all the coefficients of f then p ∣ f in Z[X]. Since p /∼ 1

we conclude that p ∼ f (in Z[X]) by irreducibility of f , contradicting the fact that f is

non-constant.

Now, suppose that f = gh for g, h ∈ Q[X]. Then let λ ∈ N∗ be minimal such that there is

q ∈ Q∗ with λq−1g and qh both in Z[X]. Suppose that p ∈ Z is prime with p ∣ λ. Then p is

prime as a constant polynomial in Z[X] and since p ∣ λf = (λq−1g)(qh), we have p ∣ λq−1g
or p ∣ qh (both in Z[X]). The former contradicts minimality of λ directly, and the latter

once we note that (q/p)h ∈ Z[X] and (λ/p)(q/p)−1g = λq−1g ∈ Z[X]. We conclude that λ
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has no prime factors and hence (since Z is a UFD) is a unit. Thus q−1g ∣ f in Z[X] and so

by irreducibility of f in Z[X] we conclude that either q−1g ∼ 1 or q−1g ∼ f in Z[X]. Hence

either g ∼ 1 in Q[X] or g ∼ f in Q[X] and finally, since f is non-constant we have f /∼ 1 in

Q[X] and so f is irreducible in Q[X].
Conversely, suppose f ∈ Z[X] is primitive and irreducible in Q[X]. First, f /∼ 1 in Q[X]

and so f is non-constant. Suppose g ∣ f in Z[X]. By irreducibility of f in Q[X], either

g ∼ 1 in Q[X] so deg g = 0, and since f is primitive g ∼ 1 in Z[X]; or g ∼ f in Q[X], then

deg g = deg f and writing f = gh for h ∈ Z[X] we have degh = 0, and since f is primitive

h ∼ 1 in Z[X], whence g ∼ f in Z[X]. The result is proved.

Proposition 5.16 (Eisenstein’s Criterion). Suppose that f(X) = anXn +⋯ + a1X + a0 is a

primitive polynomial in Z[X] and p is a prime such that p ∣ ai for all 0 ⩽ i < n; p /∣ an; and

p2 /∣ a0. Then f is irreducible in Z[X].

Proof. Suppose that f = gh for g, h ∈ Z[X]. The quotient map Z → Fp is a homomorphism

so there is an evaluation homomorphism φ ∶ Z[X] → Fp[X] taking X to X. In particular,

note that

φ(f) = φ(g)φ(h) and deg q ⩾ degφ(q) whenever φ(q) ∈ Fp[X]∗.

Since p ∣ ai for all i < n and p /∣ an we have φ(f) ∼Xn.

Since X ∈ Fp[X] is prime it follows that φ(g) ∼X i and φ(h) ∼Xn−i (either by induction,

or because Fp[X] is a UFD). If i > 0 then φ(g) has zero constant coefficient and so p divides

the constant coefficient of g. a0 is the product of the constant coefficients of g and h and

since p2 /∣ a0 we conclude that p does not divide the constant coefficient of h i.e. i = n. But

then deg g ⩾ degφ(g) = n, and n = deg f = deg g + degh, so degh = 0. Since f is primitive, h

is then a unit and so g ∼ f . The case i = 0 is handled similarly and has g ∼ 1

Example 5.17. For n ∈ N∗, the polynomial Xn − 2 is irreducible in Z[X] by Eisenstein’s

Criterion with the prime 2 since it is visibly primitive (with the lead coefficient being 1).

It is non-constant and so by Gauss’ Lemma is irreducible in Q[X]. By Theorem 5.6,

Q[X]/⟨Xn − 2⟩ ∶ Q is a degree n field extension.
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6 Modules

Modules can be viewed in a variety of ways. First, we shall think of them as vector spaces

with the field replaced by a ring. Concretely, suppose that R is a ring. An R-module is

a commutative group called the additive group, with operation + and identity 0, and a

map . ∶ R ×M →M ; (r, x)↦ r.x called the scalar multiplication, such that

(M1) 1.x = x for all x ∈M ;

(M2) r.(s.x) = (rs).x for all r, s ∈ R and x ∈M ;

(M3) (r + s).x = (r.x) + (s.x) for all r, s ∈ R and x ∈M ;

(M4) r.(x + y) = (r.x) + (r.y) for all r ∈ R and x, y ∈M .

The elements of the additive group are called vectors, the elements of the ring are called

scalars, and M is sometimes said to be a module over R. We shall disambiguate between

multiple modules with subscripts writing, for example, +M or 0M instead of + and 0 above.

The operation + is the addition of the module and 0 is the zero of the module. For

each x ∈ M we write −x for the unique inverse of x, and the map M → M ;x ↦ −x is the

negation of the module.

Remark 6.1. Identities are self-inverse so −0 = 0; double inversion is the identity map so

−(−x) = x for all x ∈M ; and negation is a homomorphism. Since addition is an associative

and commutative binary operation with identity, for a finite set I, and elements xi ∈M for

all i ∈ I, we can give a definition of ∑i∈I xi such that if I is empty the sum is 0M ; if I is a

singleton the sum is xi; and for any partition P of I we have

∑
i∈I

xi = ∑
P ∈P

(∑
i∈P

xi).

We use the terminology ‘change of variables’ in the same way as for rings. (c.f. Remarks

1.3, 1.4, 1.5, 1.6, & 1.7.)

Remark 6.2. !△ If the scalar multiplication is clear we simply speak of the R-module M .

Remark 6.3. (M4) says exactly that for r ∈ R the map M → M ;x ↦ r.x is a group homo-

morphism of the additive group of M , so r.0M = 0M and r.(−x) = −(r.x) for all x ∈M . (M3)

says exactly that for x ∈ M the map R → M ; r ↦ r.x is a group homomorphism from the

additive group of R to the additive group of M , so 0R.x = 0M and (−r).x = −(r.x) for all

r ∈ R. (c.f. Remark 1.8.)

Example 6.4 (Vector spaces as modules). Given a field F, a vector space V is exactly an

F-module, with the two notions of scalar multiplication coinciding.
!△ In a vector space V , for v ≠ 0V the map F → V ;λ ↦ λ.v is injective, but in more

general modules it need not be.
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Example 6.5 (Zero module). For any ring R, the trivial group – usually denoted {0} in

this context – and the scalar multiplication defined by r.0 ∶= 0 for all r ∈ R is a module called

the zero (R-)module.

Proposition 6.6. Suppose that R is a ring. Then the ring multiplication of R is a scalar

multiplication of the ring R on the additive group of R.

Proof. (M1) follows since 1R is an identity of ring multiplication; (M2) by associativity of

ring multiplication; (M3) since all right multiplication maps on a ring are homomorphisms of

the additive group; (M4) since all left multiplication maps on a ring are homomorphisms.

Remark 6.7. We call the R-module structure of the above proposition the R-module R.

The additive group of R as a ring and of R as an R-module are the same.
!△ In general there can be multiple R-module structures on R. Indeed, in Example

1.44 we noted that complex conjugation is a ring homomorphism from C to itself and this

induces a C-vector space structure on the additive group of C. A C-vector space structure

is exactly a C-module structure (Example 6.4), and in this particular structure i.1 = i = −i,
whereas in the C-module C (using the definition at the start of the remark) we have i.1 = i.

Write ScalarR(M) for the set of functions . ∶ R ×M → M satisfying the axioms (M1)–

(M4); and RingHom(R,S) the set of ring homomorphisms R → S. !△Neither of these

pieces of notation is standard.

Theorem 6.8. Suppose that R is a ring and M is a commutative group. Then

C ∶ ScalarR(M)→ RingHom(R,Hom(M,M))

. ∶ R ×M →M ↦
C(.) ∶ R → Hom(M,M)

r ↦ (M →M ;x↦ r.x)

and

U ∶ RingHom(R,Hom(M,M))→ ScalarR(M)

φ ∶ R → Hom(M,M)↦
U(φ) ∶ R ×M → M

(r, x) ↦ φ(r)(x)

are well-defined and inverses of each other.

Proof. Suppose that . ∶ R ×M → M is a scalar multiplication. Then for r ∈ R the map

M →M ;x ↦ r.x is a group homomorphism by (M4), so C(.) maps into Hom(M,M). The

fact that C(.) is a ring homomorphism then follows from (M1)–(M3).

In the other direction, if φ ∶ R → Hom(M,M) is a ring homomorphism then the map

U(φ) ∶ R×M →M ; (r, x)↦ φ(r)(x) satisfies (M4) since φ(r) is a homomorphism of M , and

(M1)–(M3) since φ is a ring homomorphism. In other words U(φ) is a scalar multiplication.

Finally, rU(C(.))x = C(.)(r)(x) = r.x and C(U(φ))(r)(x) = φ(r)(x) for all r ∈ R and

x ∈M and so the maps C and U are inverses of each other.
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Remark 6.9. The map C is called currying and the map U is called uncurrying.

Remark 6.10. Currying the scalar multiplication of theR-moduleR gives the homomorphism

of Theorem 1.52.

Example 6.11 (Commutative groups as modules). Suppose thatM is a commutative group.

Then by Theorem 1.24 there is a homomorphism Z → Hom(M,M) which by uncurrying

endows M with the structure of a Z-module. The scalar multiplication here is familiar:

0.x = 0 (as always), and for n ∈ N∗, n.x is the n-fold sum of x with itself, and (−n).x is the

n-fold sum of −x with itself.

The fact that the homomorphism of Theorem 1.24 is unique and the currying and uncur-

rying maps are inverses of each other means that there is a unique way to make the group

M into a Z-module.

Example 6.12 (Polynomial rings as modules). Suppose that R is a commutative ring.

The scalar multiplication from the R[X]-module R[X] (as defined in Proposition 6.6) cur-

ries to give a homomorphism R[X] → Hom(R[X],R[X]), and since R is a subring of

R[X] this composes with the inclusion map R → R[X] to give a ring homomorphism

R → Hom(R[X],R[X]). This uncurries to a scalar multiplication of R on R[X] with

r.(a0 +⋯ + anXn) = (ra0) +⋯ + (ran)Xn.

Example 6.13 (Vector spaces with an endomorphism as modules). Suppose that V is an

F-vector space and T ∶ V → V is F-linear (this is the eponymous endomorphism). Then

by currying the vector space structure gives a homomorphism φ ∶ F → Hom(V,V ). Since

T is a group homomorphism of the additive group of V we have T ∈ Hom(V,V ), and since

T (λ.v) = λ.T (v) for all λ ∈ F and v ∈ V we have that T commutes with the image of φ and

so by Proposition 1.73 there is an evaluation homomorphism F[X] → Hom(V,V ) taking X

to T . By uncurrying this gives V the structure of an F[X]-module. Concretely the scalar

multiplication has

(a0 + a1X +⋯ + adXd).v = a0v + a1Tv +⋯adT dv for all p ∈ F[X] and v ∈ V.

The uniqueness of the homomorphism in Proposition 1.73 ensures that this is the only F[X]-
module structure on V extending the F-vector space structure on V and having X.v = Tv.

We call the F[X]-module V the endomorphism module associated to T

Changing the ring of scalars

Theorem 6.14 (Restriction of scalars). Suppose that M is an S-module and φ ∶ R → S is

a ring homomorphism. Then the map R ×M →M ; (r, x)↦ φ(r).x gives M the structure of

an R-module.
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Proof. Currying the S-module structure on M gives us a ring homomorphism ψ ∶ S →
Hom(M,M), and so ψ ○ φ is a ring homomorphism R → Hom(M,M) which uncurries to

give an R-module structure on M . In this structure r.x = ψ ○φ(r)(x) = ψ(φ(r))(x) = φ(r).x
as claimed.

Remark 6.15. The R-module structure above is the result of the restriction of the scalars

of (the S-module) M to R (along φ).

Remark 6.16. If R is a subring of S then restricting the scalars to R along the inclusion

map R → S corresponds to restricting the scalar multiplication map on S ×M → M to

R ×M → M , but in general φ need not be an inclusion map. Indeed, it may not even be

injective.

Example 6.17. Suppose that φ ∶ F→ R is a ring homomorphism from a field. The additive

group of R has an F-module structure induced by φ (Proposition 1.39). This F-module

structure is the same as that resulting from restricting the scalars of the R-module R to F
along φ.

Example 6.18. Suppose V is the F[X]-module described in Example 6.13. The inclusion

map j ∶ F→ F[X] is a ring homomorphism and the restriction of scalars on the F[X]-module

V to F along j yields the original F-vector space V .

Fields can arise both as subrings of a ring and as quotients of a ring. As a quotient a

field can also be used to endow a module with the structure of a vector space, but in this

case we have to take care to make sure the scalar multiplication is compatible.

Proposition 6.19. Suppose that M is an R-module, and I is an ideal in R such that

r.x = 0M for all r ∈ I and x ∈M . Then the additive group of M can be given the structure

of an R/I-module in such a way that the restriction of scalars to R along the quotient map

q ∶ R → R/I returns the original R-module structure.

Proof. The scalar multiplication onM curries to a ring homomorphism φ ∶ R → Hom(M,M).
By the First Isomorphism Theorem for rings (Theorem 3.31) φ induces a well-defined ring

homomorphism φ̃ ∶ R/kerφ → Hom(M,M). The zero of the ring Hom(M,M) is the map

M → M ;x ↦ 0M and so kerφ = {r ∈ R ∶ r.x = 0M for all x ∈ M} ⊃ I. Hence by Lemma

3.32 the map π ∶ R/I → R/kerφ;x + I ↦ x + kerφ is a well-defined ring homomorphism.

Uncurrying the ring homomorphism φ̃ ○π gives M the structure of an R/I-module with the

scalar multiplication (r + I).x = φ̃(π(r + I))(x) = φ̃(r + kerφ))(x) = φ(r)(x) = r.x. Given

this the restriction of scalars of the R/I-module M to R along q recovers the original scalar

multiplication on the R-module M as claimed. The result is proved.

Remark 6.20. Since the map q above is surjective the scalar multiplication of R/I on M is

uniquely determined by q: (r + I).x = r.x for all r ∈ R and x ∈ M where the first . is the

scalar multiplication in the R/I-module M , and the second in the R-module M .
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7 Linear maps

As with rings we shall be interested in the structure-preserving maps for modules: An R-

linear map between two R-modules M and N is a group homomorphism φ ∶M → N with

φ(r.x) = r.φ(x) for all x ∈M and r ∈ R.

Remark 7.1. !△The . on the left is the scalar multiplication on M and the . on the right is

the scalar multiplication on N .

Remark 7.2. If F is a field this has the same meaning as F-linear for vector spaces.

Remark 7.3. Since an R-linear map φ ∶M → N is a group homomorphism, φ(0M) = 0N and

φ(−x) = −φ(x) for all x ∈M .

Example 7.4. The identity map ιM ∶M →M ;x ↦ x and the zero map z ∶M → N ;x ↦ 0N

are R-linear. They are seen to be group homomorphisms in Theorem 1.51 and Lemma 1.48

respectivelly, and for linearity we then note that ιM(r.x) = r.x = r.ιM(x) and z(r.x) = 0N =
r.0N = r.z(x) (Remark 6.3) for all r ∈ R and x ∈M .

Example 7.5. In the R-module R the right multiplication maps are R-linear since multi-

plication is associative.

Example 7.6. For M an R-module and r ∈ R we write r.M for the image of the map

φ ∶ M → M ;x ↦ r.x. If R is commutative then φ is R-linear since φ(x + y) = r.(x + y) =
φ(x) + φ(y) and φ(s.x) = r.(s.x) = (rs).x = (sr).x = s.(r.x) = s.φ(x). This example is

extremely important and captures many of the ways in which we shall use commutativity.
!△This argument fails when R is not commutative.

Lemma 7.7. Suppose that φ,π ∶M → N and ψ ∶ N → P are R-linear. Then −φ, φ + π, and

ψ ○ φ are all R-linear.

Proof. The fact that all three maps are group homomorphisms is in Lemma 1.48. For

linearity it then suffices to note that (−φ)(r.x) = −(φ(r.x)) = −(r.φ(x)) = r.(−φ(x)) =
r.(−φ)(x) by Remark 6.3; (φ+π)(r.x) = φ(r.x)+π(r.x) = r.φ(x)+r.π(x) = r.(φ(x)+π(x)) =
r.(φ+π)(x) for all r ∈ R and x ∈M ; and (ψ ○φ)(r.x) = ψ(φ(r.x)) = ψ(r.φ(x)) = r.ψ(φ(x)) =
r.(ψ ○ φ)(x) for all r ∈ R and x ∈M .

Remark 7.8. Write EndR(M) for the set of R-linear maps M →M . By the subring test and

Example 7.4 and Lemma 7.7, EndR(M) is a subring of Hom(M,M).

Remark 7.9. The subgroup test and Lemma 7.7 ensure that the set L(M,N) of R-linear

maps M → N is a commutative group under addition, and as such it has the structure of a

Z-module (Example 6.11). !△ It does not, in general, have the structure of an R-module.

For φ ∈ L(M,N) define the function r.φ ∶M → N by (r.φ)(x) = r.(φ(x)) for all x ∈M .

When R is commutative the map r.φ is itself R-linear (as a composition of φ with a linear
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function Example 7.6) and . so-defined gives L(M,N) the structure of an R-module, but if

R is not commutative this argument does not work.

Lemma 7.10. Suppose that φ ∶ M → N is an S-linear map, and ψ ∶ R → S is a ring

homomorphism. Then φ is an R-linear map between the R-module M with scalars restricted

to R along ψ, and the R-module N with scalars restricted to R along ψ.

Proof. φ is a homomorphism of the groups so it suffices to note that φ(r.x) = φ(ψ(r).x) =
ψ(r).φ(x) = r.φ(x). !△All four scalar multiplications here are different: the first is the

scalar multiplication of R on M resulting from restricting the scalar multiplication of the

S-module M to R along ψ; the second is the scalar multiplication of S on M ; the third of

S on N ; and the fourth is the scalar multiplication of R on N resulting from restricting the

scalar multiplication of the S-module N to R along ψ.

Isomorphisms of modules

We say that φ ∶M → N is an R-linear isomorphism if it is an R-linear bijection.

Lemma 7.11. Suppose that φ ∶M → N is an R-linear isomorphism. Then φ−1 is R-linear,

and hence an R-linear isomorphism.

Proof. φ−1 is a group homomorphism since φ is a bijective group homomorphism. Hence

it is enough to note that φ−1(r.x) = φ−1(r.φ(φ−1(x))) = φ−1(φ(r.φ−1(x))) = r.φ−1(x) for all

x ∈M and r ∈ R by the R-linearity of φ and the fact that φ−1 is a left and right inverse for

φ.

We write M ≅ N if there is an R-linear isomorphism M → N .

Proposition 7.12. ≅ is an equivalence relation.

Proof. The identity map on an R-module is an R-linear isomorphism so ≅ is reflexive. ≅ is

symmetric in view of Lemma 7.11. Finally, ≅ is transitive since the composition of bijections

is a bijection, and composition of R-linear maps is R-linear – this is Lemma 7.7.

Example 7.13. Suppose that R is a ring and z ∈ U(R) then the map φ ∶ R → R;x↦ xz is an

R-linear isomorphism of the R-module R (to itself) - φ is a bijection since R → R;x↦ xz−1

is an inverse, and φ is R-linear as noted in Example 7.5.

Remark 7.14. The R-linear isomorphisms in Example 7.13 are not ring isomorphisms unless

z = 1. In the other direction, complex conjugation is a ring isomorphism from the ring C to

itself that is not C-linear as a map from the C-module C to itself.
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Submodules

An R-module N is a submodule of an R-module M if the map j ∶ N → M ;x ↦ x is a

well-defined R-linear map. We write N ⩽M and also say that N is proper if M ≠ N .

Remark 7.15. When R = F is a field so that M is a vector space (see Example 6.4), a

submodule of M is exactly a subspace of M .

Lemma 7.16 (Submodule test). Suppose that M is an R-module and ∅ ≠ N ⊂ M has

x + y ∈ N for all x, y ∈ N , and r.x ∈ N whenever x ∈ N and r ∈ R. Then addition on M

and scalar multiplication of R on M restrict to well-defined operations on N giving it the

structure of a submodule of M .

Proof. First, −1 ∈ R and (−1).x = −x for all x ∈M so that by the hypotheses, N is non-empty

and x − y ∈ N whenever x, y ∈ N . It follows that N with addition on M restricted to N ,

is a subgroup of M by the subgroup test. Since r.x ∈ N whenever r ∈ R and x ∈ N , scalar

multiplication of R on M restricts to a well-defined function R ×N → N which a fortiori

satisfies (M1)–(M4). Finally, the inclusion map is R-linear and the result is proved.

Remark 7.17. As with rings (Remark 1.33), given a subset satisfying the hypotheses of the

above lemma, we make the common abuse of calling it a submodule on the understanding

that we are referring to the induced operations.

Example 7.18. Given an R-module M , the zero R-module {0} and M itself are submodules

of M .

Proposition 7.19. Suppose that R is a ring. If I is an ideal in the ring R, then I is a

submodule of the R-module R. If R is commutative, then if I is a submodule of the R-module

R then it is an ideal in the ring R.

Proof. First, I is an ideal so it is non-empty and closed under addition. Moreover, if r ∈ R
and x ∈ I then r.x = rx ∈ I, again since I is an ideal and so I is a submodule by the

submodule test.

In the other direction, if I is a submodule of R then I is a subgroup of the additive

group of the R-module R which is the same as the additive group of the ring R. Moreover,

if r ∈ R and x ∈ I then rx = r.x ∈ I since I is a submodule of the R-module R. Finally, since

R is commutative xr = rx ∈ I and so I is an ideal.

Suppose that M is an R-module and N is a submodule. Then the annihilator of N is

the set

AnnR(N) ∶= {r ∈ R ∶ r.x = 0M for all x ∈ N}.

Remark 7.20. With this notation the hypothesis on I in Proposition 6.19 is just I ⊂
AnnR(M).
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Proposition 7.21. Suppose that M is an R-module and N is a submodule of M . Then

AnnR(N) is an ideal in the ring R.

Proof. First, 0R.x = 0M for all x ∈ M and so AnnR(N) is non-empty. Secondly, if r, s ∈
AnnR(N) and x ∈ N then (r − s).x = r.x − s.x = 0 − 0 = 0 so r − s ∈ AnnR(N), and

AnnR(N) is a subgroup of the additive group of R. Finally, if s ∈ AnnR(N) and r ∈ R then

(rs).x = r.(s.x) = r.0 = 0 for all x ∈ N so rs ∈ AnnR(N), and since N is a module r.x ∈ N
and so (sr).x = s.(r.x) = 0 for all x ∈ N so sr ∈ AnnR(N). The result is proved.

Quotients and the First Isomorphism Theorem

Theorem 7.22 (Quotient modules). Suppose that M is an R-module and N is a submodule

of M . Then the commutative group M/N may be endowed with the structure of an R-module

such that q ∶M →M/N ;x↦ x +N is an R-linear surjection with kernel N .

Proof. Since N is a commutative subgroup of M we have that M/N is a commutative group

and the map q is a surjective homomorphism with kernel N by definition of the quotient

group. Define a scalar multiplication of R on M/N by r.(x +N) ∶= r.x +N . This is well-

defined: if x +N = y +N then x + n = y + n′ for some n,n′ ∈ N , so r.x + r.n = r.y + r.n′, but

since N is a submodule r.n, r.n′ ∈ N and hence r.x +N = r.y +N as required.

(M1) follows since 1.(x +N) = (1.x) +N = x +N for all x ∈ M by (M1) for the scalar

multiplication on M . (M2) follows since r.(s.(x+N)) = r.(s.x+N) = (r.(s.x))+N = (rs).x+
N = (rs).(x+N) for all r, s ∈ R and x ∈M by (M2) for the scalar multiplication on M . (M3)

follows by (M3) for the scalar multiplication on M and the fact that q is a homomorphism so

(r+s).(x+N) = (r+s).x+N = ((r.x)+(s.x))+N = (r.x+N)+(s.x+N) = r.(x+N)+s.(x+N)
for all r, s ∈ R and x ∈ M . Finally, (M4) follows by (M4) for the scalar multiplication on

M and the fact that q is a homomorphism so r.((x + N) + (y + N)) = r.((x + y) + N) =
r.(x + y) +N = ((r.x) + (r.y)) +N = (r.x +N) + (r.y +N) for all r ∈ R and x, y ∈M .

Finally, it remains to note that q is R-linear by definition and the result is proved.

Remark 7.23. Since the map q above is a surjective R-linear map the scalar multiplication

on M/N is determined by q: r.(x+N) = r.x+N for all x ∈M and r ∈ R, where the first . is

scalar multiplication in M/N , and the second in M .

By the R-module M/N we mean the module structure of this theorem.

Remark 7.24. If R = F is a field then Theorem 7.22 is exactly the construction of quotient

spaces for vector spaces.

Given an R-linear map φ ∶M → N , its kernel is its kernel as a homomorphism of groups.
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Theorem 7.25 (First Isomorphism Theorem for modules). Suppose that φ ∶ M → N is

R-linear. Then kerφ is a submodule of M ; Imφ is a submodule of N ; and the map

φ̃ ∶M/kerφ→ N ;x + kerφ↦ φ(x)

is an injective R-linear map with image Imφ. In particular, Imφ ≅M/kerφ.

Proof. Both kerφ and Imφ are subgroups of the additive groups of M and N respectively by

the First Isomorphism Theorem for groups since φ is, in particular, a group homomorphism.

Therefore by the submodule test kerφ and Imφ are submodules since if x ∈ kerφ then

0N = r.0N = r.φ(x) = φ(r.x) and so r.x ∈ kerφ; and if x ∈ Imφ then there is y ∈M such that

x = φ(y) and so r.x = r.φ(y) = φ(r.y) ∈ Imφ.

By Theorem 7.22 M/kerφ is an R-module. φ̃ is an injective well-defined group homo-

morphism by the First Isomorphism Theorem for groups. It remains to check that it is

linear which follows since φ̃(r.(x+kerφ)) = φ̃((r.x)+kerφ) = φ(r.x) = r.φ(x) = r.φ̃(x+kerφ)
for all r ∈ R and x ∈M .

Remark 7.26. !△While kernels of ring homomorphisms need not be subrings, kernels of

linear maps are submodules.

As with rings (c.f. Lemma 3.32) it can be useful to be able to quotient by submodules

other than the whole kernel in the First Isomorphism Theorem.

Lemma 7.27. Suppose that M is an R-module and N ⊂ P are submodules of R. Then the

map R/N → R/P ;x +N ↦ x + P is a well-defined R-linear map.

Proof. Call the map π. First, π is well-defined since if x +N = x′ +N then x − x′ ∈ N ⊂ P
and so x+P = x′+P . π((x+N)+(y+N)) = π((x+y)+N) = (x+y)+P = (x+P )+(y+P ) =
π(x + N) + π(y + N), and π(r.(x + N)) = π(r.x + N) = r.x + P = r.(x + P ). The result is

proved.

Example 7.28. The First Isomorphism Theorem applied to the R-linear map M →M ;x↦
x gives the isomorphism M/{0} ≅M ; c.f. Example 3.33.

Example 7.29. The First Isomorphism Theorem applied to the R-linear map M → {0};x↦
0 gives the isomorphism M/M ≅ {0}.

It will be useful later to have a couple of more involved applications of the First Isomor-

phism Theorem:

Lemma 7.30. Suppose that R is a commutative ring, M is an R-module, and r ∈ R. Then

r.M is a submodule of M . Furthermore, if N is R-linearly isomorphic to M then r.N is

R-linearly isomorphic to r.M .
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Proof. r.M is the image of the mapM →M ;x↦ r.x which isR-linear sinceR is commutative

(Example 7.6), and hence by the First Isomorphism Theorem r.M is a submodule of M .

Let φ ∶ M → N be an R-linear isomorphism. The maps π ∶ M → r.M ;x ↦ r.x and

π′ ∶ N → r.N ;x ↦ r.x are R-linear surjections. φ is R-linear and surjective so π′ ○ φ is R-

linear and Imπ′○φ = r.N . x ∈ kerπ′○φ if and only if 0N = r.φ(x) = φ(r.x). φ is an injection so

0N = φ(r.x) if and only if r.x = 0M . In particular kerπ′ ○φ = kerπ. By the First Isomorphism

Theorem applied to π′○φ and π we have r.N = Imπ′○φ ≅M/kerπ′○φ =M/kerπ ≅ Imπ = r.M
as required.

Lemma 7.31. Suppose that R is a commutative ring, M is a submodule of the R-module R,

and x ∈ R. Then I ∶= {r ∈ R ∶ xr ∈M} is a submodule of the R-module R and x.(R/M) ≅ R/I.

Proof. The map R → x.(R/M); r ↦ x.(r+M) is the composition of two R-linear surjections

and so an R-linear surjection. The kernel of this map is exactly the set of r ∈ R such that

xr +M = x.(r +M) = 0R/M = M which is to say I, and the result follows by the First

Isomorphism Theorem.

Direct sums

We defined the direct product of a finite family of rings in Remark 1.56. Its additive group

is the direct product of the additive groups of the rings in the family, and the construction

extends to infinite families of rings. The direct sum and direct product of a finite family

of commutative groups is the same, but for an infinite family of rings there need not be a

ring whose additive group is the direct sum of the additive groups of the rings in the family

essentially because this set is too small to contain the multiplicative identity.

For modules one can define the direct product of a family of modules, but in this case the

additive group of the module is too large if the family is infinite. Here the right generalisation

for our interests is the direct sum, and this is why in this section we speak of the direct

sum of a finite family of commutative groups, while for rings we spoke of the direct product,

even though they are the same for the families we are considering.

Proposition 7.32. Suppose that R is a ring and M1, . . . ,Mn are R-modules. Then the

commutative group M1⊕⋯⊕Mn equipped with the map . defined by r.x ∶= (r.x1, . . . , r.xn) is

an R-module.

Proof. The proposed scalar product is well-defined (the . in the term r.xi refers to the scalar

product on Mi). (M1) follows from (M1) for each of the Mis since 1.x = (1.x1, . . . ,1.xn) = x.

(M2) follows from (M2) for each of the Mis since we have r.(s.x) = r.(s.x1, . . . , s.xn) =
(r.(s.x1), . . . , r.(s.xn)) = ((rs).x1, . . . , (rs).xn) = (rs).x. (M3) follows from (M3) for each of

the Mis and the fact that addition in the group M1⊕⋯⊕Mn is coordinatewise, so (r+s).x =
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((r + s).x1, . . . , (r + s).xn) = (r.x1 + s.x1, . . . , r.xn + s.xn) = (r.x1, . . . , r.xn)+ (s.x1, . . . , s.xn) =
r.x + s.x. Finally, (M4) follows from (M4) for each of the Mis and the fact that addition in

the group M1 ⊕ ⋯ ⊕Mn is coordinatewise, so r.(x + y) = r.(x1 + y1, . . . , xn + yn) = (r.(x1 +
y1), . . . , r.(xn+yn)) = (r.x1+r.y1, . . . , r.xn+r.yn) = (r.x1, . . . , r.xn)+(r.y1, . . . , r.yn) = r.x+r.y.

The result is proved.

Remark 7.33. The R-module denoted M1⊕⋯⊕Mn is the R-module above and is called the

direct sum of the Mis. We write Mn for the direct sum of n copies of M with itself.

Direct sums of modules share a number of formal similarities to addition in rings (or

modules):

Remark 7.34 (c.f. Remark 1.5). For each set I of size n fix a bijection σ ∶ {1, . . . , n}→ I. For

R-modules Mi for each i ∈ I, we put an n-module structure on the set ⊕i∈IMi ∶= {(xi)i∈I ∶
xi ∈Mi} via the bijection ⊕i∈IMi →Mσ(1) ⊕⋯⊕Mσ(n);x ↦ (xσ(1), . . . , xσ(n)). This is what

we mean by the R-module ⊕i∈IMi; if I is empty then ⊕i∈IMi is the zero module.

For any other bijection τ ∶ {1, . . . , n}→ I, Mσ(1) ⊕⋯⊕Mσ(n) is R-linearly isomorphic to

Mτ(1)⊕⋯⊕Mτ(n) via the well-defined R-linear bijection (xσ(1), . . . , xσ(n))↦ (xτ(1), . . . , xτ(n)),
so the particular choice of σ does not change the isomorphism class of ⊕i∈IMi.

Remark 7.35 (c.f. Remark 1.6). Suppose that I is a finite set and Mi is an R-module for each

i ∈ I. If J ⊂ I is such that Mi = {0Mi
} for all i ∈ I ∖ J then ⊕i∈IMi →⊕i∈JMi;x ↦ (xi)i∈J is

a well-defined R-linear isomorphism.

Remark 7.36 (c.f. Remark 1.7). If Mi is an R-module for every i ∈ I and P is a partition of

I then the map

⊕
i∈I

Mi → ⊕
P ∈P

(⊕
i∈P

Mi);x↦ ((xi)i∈P )P ∈P

is a well-defined R-linear isomorphism.

Remark 7.37. Given R-linear maps φi ∶ Mi → Ni for each i ∈ I, the map φ ∶ ⊕i∈IMi →
⊕i∈I Ni;x ↦ (φi(xi))i∈I is R-linear; if φi is an injection for all i ∈ I then φ is an injection; if

φi is a surjection for all i ∈ I then φ is a surjection.

Example 7.38. By the R-module Rn we mean direct sum of n copies of the R-module R

with the convention that it is the zero module if n = 0.

Example 7.39. The map R → Rn; r ↦ (r, . . . , r) is called the diagonal map and is an

R-linear injection from the R-module R to the R-module Rn.

The Chinese remainder theorem

Theorem 7.40 (Chinese remainder theorem). Suppose that R is a ring and M1, . . . ,Mn are

submodules of the R-module R with Mj +⋂i<jMi = R for all 1 < j ⩽ n. Then the map

φ ∶ R → (R/M1)⊕⋯⊕ (R/Mn); r ↦ (r +M1, . . . , r +Mn)
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is a surjective R-linear map with kernel ⋂i⩽nMi. In particular, R/⋂i⩽nMi ≅ (R/M1)⊕⋯⊕
(R/Mn).

Proof. For k ⩽ n let φk ∶ R → (R/M1)⊕⋯⊕ (R/Mk); r ↦ (r +M1, . . . , r +Mk). The quotient

maps qi ∶ R → R/Mi are R-linear by Theorem 7.22, so the map Rk → (R/M1)⊕⋯⊕ (R/Mk)
is R-linear (Remark 7.37), and φk is the result of composing this with the diagonal map

R → Rk (which is R-linear from Example 7.39), an hence φk is R-linear. A short check

confirms the kernel is Kk ∶= ⋂i⩽kMi. The First Isomorphism Theorem tells us that the map

ψk ∶ R/Kk → (R/M1)⊕⋯⊕ (R/Mk); r +Kk ↦ (r +M1, . . . , r +Mk) is a well-defined R-linear

isomorphism.

We show by induction for k ⩽ n then φk is a surjection; for k = 1 this is just a property

of the quotient map in Theorem 7.22. Assume it is proved for some k < n. By hypothesis

Mk+1 + Kk = R and so there is m ∈ Mk+1 and p ∈ Kk such that m + p = 1. Suppose

t1, . . . , tk+1 ∈ R, and since ψk is an isomorphism let s ∈ R be such that ψk+1(s + Kk) =
(t1+M1, . . . , tk+Mk). Then φk(sm+tk+1p) = (ψk(s+(tk+1−s)p+Kk), tk+1+(s−tk+1)m+Mk+1) =
(ψk(s +Kk), tk+1 +Mk+1) = (t1 +M1, . . . , tk+1 +Mk+1), and so the composition is surjective.

The induction is complete.

The very last part of the theorem follows since ψn is an R-linear isomorphism.

Remark 7.41. The history of this theorem is involved – see [She88] – but the starting point

is work of Sun Zi (孫子) from around 400AD in which an application of a method for solving

simultaneous congruences is given.

Remark 7.42. Ideals I and J in a ring R with I + J = R are said to be comaximal. If the

submodules Mi in Theorem 7.40 are in fact ideals (Proposition 7.19 tells us this implies that

they are submodules of the R-module R) then the hypothesis Mj +⋂i<jMi = R for 1 < j ⩽ n,

can be replaced by the more symmetric requirement that the Mis be pairwise comaximal.

Exercise III.6 asks for a proof of this.

Example 7.43. Suppose that p and q are coprime integers then by Bezout’s Theorem

⟨p⟩ + ⟨q⟩ = Z, and we may apply Theorem 7.40 to find that for any 1 ⩽ a ⩽ p and 1 ⩽ b ⩽ q
there is n ∈ Z such that n ≡ a (mod p) and n ≡ b (mod q).

8 Generation and bases

Bases are a crucial tool in vector spaces, and we shall be interested in understanding which

modules support an analogue.

Proposition 8.1. Suppose that M is an R-module and x1, . . . , xn ∈M . Then the map

Ψx ∶ Rn →M ; r ↦ r1.x1 +⋯ + rn.xn
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is R-linear from the R-module Rn.

Proof. It suffices to note that Ψx(r + s) = (r + s)1.x1 + ⋯ + (r + s)n.xn = (r1 + s1).x1 +
⋯ + (rn + sn).xn = (r1.x1 + s1.x1) + ⋯ + (rn.xn + sn.xn) = Ψx(r) + Ψx(s) for r, s ∈ Rn, and

Ψx(t.r) = (t.r)1.x1+⋯+(t.r)n.xn = (tr1).x1+⋯+(trn).xn = t.(r1.x1)+⋯+ t.(rn.xn) = t.Ψx(r)
for all t ∈ R and r ∈ Rn.

Remark 8.2. When n = 0, Ψx just maps 0 to 0M .

Remark 8.3. By the First Isomorphism Theorem the image of Ψx is a submodule of M . We

call it the submodule generated by x1, . . . , xn, and denote it ⟨x1, . . . , xn⟩. In particular

we write ⟨⟩ = {0M}.

Example 8.4. If V is a vector space and x1, . . . , xn ∈ V then the submodule generated by

x1, . . . , xn is the subspace spanned by x1, . . . , xn.

Remark 8.5. By Corollary 3.15, if R is commutative then the ideal ⟨x1, . . . , xn⟩ in the ring

R is the same set as the submodule ⟨x1, . . . , xn⟩ in the R-module R.
!△ In Example 3.14 we saw that there is a ring R and an element x such that the ideal

generated by x is not equal to Rx, but on the other hand the submodule of the R-module

generated by x is Rx.

Proposition 8.6. Suppose that M is an R-module and Λ ⊂M . Then

⟨Λ⟩ ∶=⋃{⟨x1, . . . , xn⟩ ∶ n ∈ N0, x1, . . . , xn ∈ Λ}

is a submodule of M .

Proof. Certainly 0M ∈ ⟨⟩ ⊂ ⟨Λ⟩ and so the right hand side is non-empty. If x, y ∈ ⟨Λ⟩ then

there are x1, . . . , xn, y1, . . . , ym ∈ Λ, and r1, . . . , rn, s1, . . . , sm ∈ R such that x = r1.x1 + ⋯ +
rn.xn and y = s1.y1 + ⋯ + sm.ym, but then x + y = r1.x1 + ⋯ + rn.xn + s1.y1 + ⋯ + sm.ym ∈
⟨x1, . . . , xn, y1, . . . , ym⟩ ⊂ ⟨Λ⟩. Moreover, if r ∈ R then r.x = r.(r1.x1 +⋯ + rn.xn) = (rr1).x1 +
⋯ + (rrn).xn ∈ ⟨x1, . . . , xn⟩ ⊂ ⟨Λ⟩ and the result follows by the submodule test.

Remark 8.7. We call the submodule of this proposition the module generated by Λ.

Remark 8.8. For x1, . . . , xn we have ⟨{x1, . . . , xn}⟩ = ⟨x1, . . . , xn⟩.

We say that x1, . . . , xn generate M if M = ⟨x1, . . . , xn⟩, and Λ is a generating set for

M if M = ⟨Λ⟩. If M has a finite generating set then M is said to be finitely generated.

Remark 8.9. x1, . . . , xn ∈ M generate M if and only if the map Ψx in Proposition 8.1 is

surjective.

Example 8.10. M is a generating set for the R-module M .
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Example 8.11. Let ei = (0R, . . . ,0R,1R,0R, . . . ,0R) be the element of the R-module Rn

with a 1R in the ith position and 0R elsewhere. e1, . . . , en generate the R-module Rn since

if r ∈ Rn then r = r1.e1 +⋯ + rn.en.

Remark 8.12. The generating set of Example 8.11 is a smallest generating set if R = F –

in other words the F-vector space Fn cannot be generated by strictly fewer than n vectors.

This can be bootstrapped to apply to any commutative ring R, but there are rings for which

it fails. (See Remark 10.7.)

Proposition 8.13. Suppose that φ ∶ M → N is a surjective R-linear map and x1, . . . , xn

generate M . Then φ(x1), . . . , φ(xn) generate N .

Proof. Ψ(φ(x1),...,φ(xn)) = φ ○ Ψx is a composition of surjective maps by hypothesis and so

surjective giving the result.

Remark 8.14. In particular, if M is finitely generated and N is a submodule of M then

M/N is finitely generated since the quotient map is a surjection.

Proposition 8.15. Suppose that φ ∶ R → S is a ring homomorphism, and x1, . . . , xn generate

the module arising from restricting the scalars of the S-module M to R along φ. Then

x1, . . . , xn generate the S-module M .

Proof. Since x1, . . . , xn are a generating set for the R-module arising from restricting the

scalars of the S-module M along φ, for any y ∈ M there are elements r1, . . . , rn ∈ R such

that y = r1.x1 + ⋯ + rn.xn. By definition ri.xi = φ(ri).xi for all i, and so setting si ∶= φ(ri),
we have y = s1.x1 +⋯ + sn.xn as required.

Remark 8.16. It is also true (and straightforward to prove) that if φ is surjective and

x1, . . . , xn generate the S-module M then they generate the R-module arising from restrict-

ing the scalars of the S-module M along φ. This is a natural analogue of Proposition 8.13,

but it is not the result we shall use later.

Proposition 8.17. Suppose that φ ∶M → N is R-linear with kerφ generated by a set of size

k and Imφ generated by a set of size n. Then M is generated by a set of size n + k.

Proof. Let x1, . . . , xn be a generating set for Imφ and y1, . . . , yk be a generating set for

kerφ. Since xi ∈ Imφ there is some zi ∈ M such that φ(zi) = xi. We shall show that

z1, . . . , zn, y1, . . . , yk is a generating set for M : if v ∈ M then φ(v) ∈ Imφ and so there are

r1, . . . , rk ∈ R such that

φ(v) = r1.x1 +⋯ + rn.xn = r1.φ(z1) +⋯ + rk.φ(zn) = φ(r1.z1 +⋯ + rn.zn).

Thus v− r1.z1 +⋯+ rn.zn ∈ kerφ and there are elements s1, . . . , sk ∈ kerφ such that v− r1.z1 +
⋯ + rn.zn = s1.y1 +⋯ + sk.yk. The result is proved.

Page 53



When a module is generated by a set of size 1 it is said to be cyclic.

Example 8.18. A commutative group M is cyclic if and only if the Z-module M (that is

M with the Z-module structure described in Example 6.11) is cyclic.

Example 8.19. Suppose that R is a ring and M is a submodule of the R-module R.

Then the R-module R/M is cyclic and generated by 1 +M : indeed, if r +M ∈ R/M then

r +M = r.(1 +M).

Example 8.20. 2Z and 3Z are ideals in the ring Z, and hence (by Proposition 7.19) are

submodule so that the quotient Z-modules Z/2Z and Z/3Z are cyclic Z-modules (Example

8.19). They are not isomorphic since they have different sizes.

Generating sets interact particularly well with linear maps.

Proposition 8.21. Suppose that M is an R-module, Λ generates M , and φ,ψ ∶M → N are

R-linear maps with φ(e) = ψ(e) for all e ∈ Λ. Then φ = ψ.

Proof. Since Λ generates M , for x ∈ M there are elements e1, . . . , en ∈ Λ and r1, . . . , rn ∈ R
such that x = r1.e1 +⋯ + rn.en, and so

φ(x) = r1.φ(e1) +⋯ + rn.φ(en) = r1.ψ(e1) +⋯ + rn.ψ(en) = ψ(x).

The result is proved.

We say that the x1, . . . , xn ∈M are R-linearly independent if whenever r1, . . . , rn ∈ R
have r1.x1 + ⋯ + rn.xn = 0M we have r1, . . . , rn = 0R; we say that a set Λ is R-linearly

independent if x1, . . . , xn is R-linearly independent for every n ∈ N0 and distinct elements

x1, . . . , xn ∈ Λ.

Remark 8.22. When R = F is a field our definition of linear independence agrees.

Example 8.23 (Example 8.11, cont.). e1, . . . , en are R-linearly independent: if r1, . . . , rn ∈ R
and r1.e1 +⋯ + rn.en = 0 then (r1, . . . , rn) = 0Rn which means r1, . . . , rn = 0.

Example 8.24. 1 and i are R-linearly independent in the R-module structure induced on

C by the inclusion R→ C (Example 1.43), but not C-linearly independent in the C-module

C since i.1 + (−1).i = 0.

Example 8.25. The Z-module Z/NZ does not contain any non-empty linearly independent

sets since N.x = 0 for all x ∈ Z/NZ.

Remark 8.26. x1, . . . , xn ∈ M are R-linearly independent if and only if the map Ψx from

Proposition 8.1 is injective.
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Remark 8.27. If Λ ⊂M both generates M and is R-linear independent then we say that Λ

is a basis for M . The module M is said to be free if it has a basis.

Remark 8.28. Every finitely generated vector space has a finite basis and, in particular, is

free. In fact assuming the Axiom of Choice, every vector space has a basis [Lan02, Theorem

5.1, Chapter III]. It turns out that the use of the Axiom of Choice is unavoidable in the

sense that if every vector space is assumed to have a basis then (in ZF) the Axiom of Choice

follows [Bla84, Theorem 1].

Example 8.29. In view of Examples 8.11 & 8.23, {e1, . . . , en} is a basis for the R-module

Rn, and so the R-module Rn is free.
!△An independent subset of the R-module Rn of size n need not be a basis: {2} is an

independent subset of the Z-module Z having size 1 but it is not a basis for Z.

Proposition 8.30. Suppose that M is a finitely generated free R-module. Then M has a

finite basis.

Proof. Let x1, . . . , xn generate M , and let E be a basis. For each i there is a finite Si ⊂ E
such that xi ∈ ⟨Si⟩, and hence x1, . . . , xn ∈ ⟨⋃ni=1 Si⟩. Since x1, . . . , xn generate M and E is

R-linearly independent we have E ⊂ ⋃ni=1 Si, and the latter is a finite union of finite sets and

so finite.

Example 8.31. The Z-module Z/2Z from Example 8.25 is not free since it is contains

non-zero elements, and so is not generated by the empty set, but any non-empty set is not

linearly independent.

Example 8.32. The additive group of Q with the Z-module structure afforded by Example

6.11 is not free (see Exercise III.4).

Example 8.33. Suppose that R is a commutative ring. As in Example 6.12, R[X] has the

structure of an R-module and in this structure (1.2) and (1.3) exactly say that {1,X,X2, . . .}
is a basis.

Remark 8.34. !△A subspace of an n-dimensional vector space is generated by a set of size

at most n. There are example of modules (see Exercise IV.3) with a basis of size 1 with

submodules that are not even finitely generated, but for PIDs we can recover the situation

in the following proposition.

Proposition 8.35. Suppose that R is a PID and M is a submodule of the R-module Rn.

Then M is generated by a set of size at most n.

Proof. We proceed by induction on n: for n = 1, M is a submodule of the R-module R. R is

commutative so by Proposition 7.19, M is an ideal in R. Since R is a PID, M is generated
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by some x ∈ R as an ideal in the ring R. Again since R is commutative, the ideal generated

by x in the ring R is the same set as the submodule generated by x in the R-module R.

Hence M is generated by a set of size 1, as required.

Now suppose the result is true for all submodules of the R-module Rn, and M is a

submodule of of the R-module Rn+1. The map φ ∶ M → Rn; (x1, . . . , xn+1) ↦ (x1, . . . , xn)
is R-linear, so by the First Isomorphism Theorem Imφ is a submodule of the R-module

Rn. By the inductive hypothesis Imφ is generated by a set of size at most n. The map

ψ ∶ kerφ → R;x ↦ xn+1 is an R-linear injection (since for x ∈ kerφ, x1, . . . , xn = 0), and so

by the First Isomorphism Theorem Imψ is a submodule of the R-module R. By the n = 1

case Imψ is generated by a set of size 1, and kerψ is generated by a set of size 0 (since ψ is

injective), so by Proposition 8.17 kerφ is generated by a set of size 1. Finally, since Imφ is

generated by a set of size at most n and kerφ is generated by a set of size 1, by Proposition

8.17 tells us that M is generated by a set of size n + 1.

Bases are important because they let us realise linear maps as matrices.

Proposition 8.36. Suppose that R is a ring. For every A ∈ Mn,m(R) the map LA ∶ Rn →
Rm; v ↦ vA is R-linear and conversely if Φ ∶ Rn → Rm is R-linear then there is A ∈Mn,m(R)
such that Φ = LA.

Proof. First, LA is R-linear since LA(v+w) = (vA)+(wA) = (v+w)A and LA(r.v) = (r.v)A =
(rv)A = r(vA) by Proposition 1.60. In the other direction let e1, . . . , en be the basis of the R-

module Rn defined in Example 8.11, and define Ai,1, . . . ,Ai,m ∈ R by Φ(ei) = (Ai,1, . . . ,Ai,m).
Then LA(ei) = Φ(ei) by design and so LA = Φ by Proposition 8.21.

Remark 8.37. A finite presentation of a module M is a matrix A ∈ Mn,m(R) and an

R-linear isomorphism Rm/ ImLA →M ; M is said to be finitely presented if it has a finite

presentation. A is said to be a presentation matrix for the module M .

Example 8.38. Any finitely generated free module is finitely presented. Indeed, by Propo-

sition 8.30, such a module M has a finite basis, say x1, . . . , xn, so the map Ψx ∶ Rn → M

is an R-linear isomorphism. Let A ∈ Mn(R) be the zero matrix so that ImLA = {0}, and

hence Rn/ ImLA ≅ Rn ≅M as claimed.

Proposition 8.39. Suppose that R is a PID and M is a finitely generated R-module. Then

M is finitely presented.

Proof. Since M is finitely generated, by Proposition 8.1 there is m ∈ N0 and an R-linear

surjection Ψ ∶ Rm → M . By the First Isomorphism Theorem this induces an R-linear

isomorphism Rm/ker Ψ → M and ker Ψ is a submodule of Rm. By Proposition 8.35 ker Ψ

is finitely generated, and so by Proposition 8.1 there is n ∈ N0 and an R-linear surjection
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Φ ∶ Rn → Rm such that Im Φ = ker Ψ. (We can ensure the codomain of Φ is Rm by composing

the map afforded by Proposition 8.1 with the inclusion map ker Ψ → Rm.) By Proposition

8.36 we have Φ = LA for some A ∈Mn,m(R) and we are done.

Remark 8.40. !△Exercise IV.3 gives an example of a finitely generated module that is not

finitely presented.

9 Elementary operations and the Smith normal form

There are three types of elementary column (resp. row) operation that can be applied

to matrices in Mn,m(R) – transvections, dilations, and interchanges – and these correspond

to right (resp. left) multiplication by matrices in Mm(R) and Mn(R) respectively.

Remark 9.1. Write En(i, j) for the matrix in Mn(R) with 0Rs everywhere except for row

i and column j where the entry is 1R. Then En(i, j)En(k, l) = En(i, l) if j = k and

En(i, j)En(k, l) = 0Mn(R) if j ≠ k.

Transvections

Given 1 ⩽ i, j ⩽m with i ≠ j and λ ∈ R put Tm(i, j;λ) = Im +λEm(i, j). Given A ∈Mn,m(R),
the matrix ATm(i, j;λ) is the matrix A with the ith column times λ added to the jth column.

We write this

A
cj↦cj+ciλÐÐÐÐÐ→ ATm(i, j;λ).

Similarly the matrix Tn(i, j;λ)A is the matrix A with λ times the jth row added to the ith

row; we write this

A
ri↦ri+λrjÐÐÐÐÐ→ Tn(i, j;λ)A.

Dilations

Given 1 ⩽ i ⩽ m and u ∈ U(R) let Dm(i;u) ∶= Im + (u − 1)Em(i, i) so that Dm(i;u) is the

matrix with 1s on the diagonal except for the ith element which is u, and 0s elsewhere. The

matrix ADm(i;u) is the matrix with the ith column replaced by the ith column times u and

as above we write

A
ci↦ciuÐÐÐ→ ADm(i;u) and A

ri↦uriÐÐÐ→Dn(i;u)A

for this and the corresponding row operation.

Interchanges

Given 1 ⩽ i, j ⩽ m let Sm(i, j) = Im + Em(i, j) + Em(j, i) − Em(i, i) − Em(j, j). The matrix

ASm(i, j) is the matrix A with columns i and j swapped and as above we write

A
ci↔cjÐÐÐ→ ASm(i, j) and A

ri↔rjÐÐÐ→ Sn(i, j)A
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for this and the corresponding row operation.

Remark 9.2. We write GLn(R) for the group U(Mn(R)).

Lemma 9.3. Suppose that R is a ring. The matrices Tn(i, j;λ), Dn(i;u) and Sn(i, j) for

1 ⩽ i, j ⩽ n, λ ∈ R and u ∈ U(R) together form an inverse-closed subset of GLn(R).

Proof. These are just calculations: Tn(i, j;λ)Tn(i, j;−λ) = In = Tn(i, j;−λ)Tn(i, j;λ), so the

inverse of a transvection is a transvection. Dn(i;u)Dn(i;u−1) = In = Dn(i;u−1)Dn(i;u), so

the inverse of a dilate is a dilate. Finally, Sn(i, j)2 = In so interchange is self-inverse.

Remark 9.4. We write GEn(R) for the subgroup of GLn(R) generated by the matrices in

this lemma.

Remark 9.5. In general GL2(R) ≠ GE2(R), though this can be hard to show. An example,

taken from [Coh66, p23], is the ring R ∶= Z[θ] where θ2 − θ + 5 = 0. Here the matrix

A ∶=
⎛
⎝

3 − θ 2 + θ
−3 − 2θ 5 − 2θ

⎞
⎠

is in GL2(R) but not in GE2(R). This R is a PID as noted in Remark 4.41, where we

also stated it is not a Euclidean domain. On the other hand it can be shown that every

Euclidean domain has GL2(R) = GE2(R) so to say that GL2(R) ≠ GE2(R) is a stronger

statement. It is an open problem [SZ14, (3), §7] whether every PID with GE2(R) = GL2(R)
is a Euclidean domain.

Remark 9.6. We say that A,B ∈Mn,m(R) are equivalent by elementary operations and

write A ∼E B if there is a sequence A =∶ A0 → A1 → ⋯ → Ak−1 → Ak ∶= B such that Ai+1 is

the result of an elementary row or column operation applied to Ai for all 0 ⩽ i < k.

In view of Proposition 1.60 and the definition of GEn(R) we have A ∼E B if and only if

there is P,Q ∈ GEn(R) such that A = PBQ.

Remark 9.7. We say that A,B ∈ Mn,m(R) are equivalent and write A ∼ B if there are

matrices S ∈ GLn(R) and T ∈ GLm(R) such that A = SBT .

Remark 9.8. !△Matrix similarity is a stronger relation than equivalence: First, it required

n = m; and secondly it requires Q = P −1. In other words two matrices A and B are similar

if A,B ∈ Mn(R) and there is P ∈ GLn(R) such that A = P −1BP . In particular any square

matrix is equivalent to a diagonal matrix (this is Theorem 9.13), but not every square matrix

is similar to a diagonal matrix.

Proposition 9.9. Suppose that R is a ring. Equivalence of matrices is an equivalence

relation, and so is equivalence by elementary operations, and the latter is a refinement of

the former meaning A ∼E B implies A ∼ B.
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Proof. Suppose that G ⩽ GLn(R) and H ⩽ GLm(R) then the group G×H acts on Mn,m(R)
via (P,Q) ∗ A ∶= PAQ−1. This is an action because the identity of G ×H is (In, Im) and

InAI−1m = A, and ((P,Q)(S,T )) ∗ A = (PS,QT ) ∗ A = (PS)A(QT )−1 = (PS)A(T −1Q−1) =
P (SAT −1)Q−1 = (P,Q) ∗ ((S,T ) ∗A) by Proposition 1.60 and the fact, since H is a group,

that (QT )−1 = T −1Q−1. The orbits of an action form a partition, and A and B are the

related in the induced equivalence relation if and only if there is P ∈ G and Q ∈ H with

A = PBQ−1. Again, since H is a group and so (Q−1)−1 = Q this is equivalent to there being

P ∈ G and Q ∈ H with A = PBQ. Taking G = GLn(R) and H = GLm(R) gives that ∼ is an

equivalence relation; taking G = GEn(R) and H = GEm(R) gives that ∼E is an equivalence

relation. The result is proved.

Equivalence of matrices is useful because of the important result:

Proposition 9.10. Suppose that R is a ring, A,B ∈ Mn,m(R), and P ∈ GLn(R), Q ∈
GLm(R) are such that A = PBQ. Then the map Rm/ ImLA → Rm/ ImLB;x + ImLA ↦
xQ−1 + ImLB is a well-defined R-linear isomorphism.

Proof. The map φ ∶ Rm → Rm/ ImLB;x ↦ xQ−1 + ImLB is the composition of the linear

map LQ−1 , which is surjective since LQ−1(xQ) = (xQ)Q−1 = x(QQ−1) = xI = x, and the

quotient map Rm → Rm/ ImLB which is an R-linear surjection. It follows that φ is an

R-linear surjection. Furthermore, kerφ = ImLA: if x ∈ kerφ then xQ−1 ∈ ImLB, which is to

say for which there is v ∈ Rm such that xQ−1 = vB, whence x = (vP −1)A and so x ∈ ImLA.

Conversely, if x ∈ ImLA then there is w ∈ Rm such that x = wA hence xQ−1 = wP −1B ∈ ImLB.

The result then follows by the First Isomorphism Theorem.

Remark 9.11. !△Rm/ ImLA ≅ Rm/ ImLB does not imply that A and B are equivalent. See

Exercise IV.4.

Remark 9.12. We say that A ∈Mn,m(R) is diagonal if Ai,j = 0 for all i ≠ j. !△The matrix

A need not be square to be diagonal.

Theorem 9.13. Suppose that R is a Euclidean domain. Then every A ∈Mn,m(R) is equiv-

alent by elementary operations to a diagonal matrix.

Proof. Let Ak be those matrices B ∼E A with the additional property that whenever i < k
and j ≠ i, or j < k and i ≠ j, we have Bi,j = 0. We shall show by induction that Ak is

non-empty for k ⩽ min{m,n}; A1 contains A and so is certainly non-empty.

Let f be a Euclidean function for R, and suppose that Ak ≠ ∅ and k < min{m,n}. Let

B ∈ Ak be a matrix with f(Bk,k) minimal. First we show that Bk,k ∣ Bk,i for all i > k: if not,

there is some i > k with Bk,i = qBk,k + r with f(r) < f(Bk,k) and we apply the elementary
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operations

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 ⋯ 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 ⋯ 0 ⋯ 0

0 ⋯ 0 Bk,k ⋯ Bk,i ⋯ Bk,m

...
...

...
...

...

0 ⋯ 0 Bn,k ⋯ Bn,i ⋯ Bn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ci↦ci−ckqÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 ⋯ 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 ⋯ 0 ⋯ 0

0 ⋯ 0 Bk,k ⋯ Bk,i −Bk,kq ⋯ Bk,m

...
...

...
...

...

0 ⋯ 0 Bn,k ⋯ Bn,i −Bn,kq ⋯ Bn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ck↔ciÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 ⋯ 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 ⋯ 0 ⋯ 0

0 ⋯ 0 Bk,i −Bk,kq ⋯ Bk,k ⋯ Bk,m

...
...

...
...

...

0 ⋯ 0 Bn,i −Bn,kq ⋯ Bn,k ⋯ Bn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∶ B′.

Then B′ ∈ Ak has B′
k,k = Bk,i − qBk,k = r, but f(B′

k,k) = f(r) < f(Bk,k) which contradicts

the minimality in our choice of B. Similarly, but with row operations in place of column

operations, Bk,k ∣ Bi,k for all i > k.

For k < i ⩽m let qi be such that Bk,i = Bk,kqi. Apply elementary column operations

B
ck+1↦ck+1−ckqk+1ÐÐÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 0 0 ⋯ 0

0
. . .

. . .
...

...
...

...
...

. . .
. . . 0 0 0 ⋯ 0

0 ⋯ 0 Bk,k 0 Bk,k+2 ⋯ Bk,m

0 ⋯ 0 Bk+1,k Bk+1,k+1 −Bk+1,kqk+1 Bk+1,k+2 ⋯ Bk+1,m

...
...

...
...

...
...

0 ⋯ 0 Bn,k Bn,k+1 −Bn,kqk+1 Bn,k+2 ⋯ Bn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

...
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cm↦cm−ckqmÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 ⋯ 0

0 ⋯ 0 Bk,k 0 ⋯ 0

0 ⋯ 0 Bk+1,k Bk+1,k+1 −Bk+1,kqk+1 ⋯ Bk+1,m −Bk+1,kqm
...

...
...

...
...

0 ⋯ 0 Bn,k Bn,k+1 −Bn,kqk+1 ⋯ Bn,m −Bn,kqm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∶ B′.

For k < i ⩽ n let pi be such that Bi,k = piBk,k. Apply elementary row operations

B′ rk+1↦rk+1−pk+1rkÐÐÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 ⋯ 0

0 ⋯ 0 Bk,k 0 ⋯ 0

0 ⋯ 0 0 B′
k+1,k+1 ⋯ B′

k+1,m

0 ⋯ 0 Bk+1,k B′
k+2,k+1 ⋯ B′

k+2,m

...
...

...
...

...

0 ⋯ 0 Bn,k B′
n,k+1 ⋯ B′

n,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rn↦rn−pnrkÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 ⋯ 0

0 ⋯ 0 Bk,k 0 ⋯ 0

0 ⋯ 0 0 B′
k+1,k+1 ⋯ B′

k+1,m

...
...

...
...

...

0 ⋯ 0 0 B′
n,k+1 ⋯ B′

n,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∶ B′′.

Then B′′ ∼E B′ ∼E B ∼E A and B′′ ∈ Ak+1. The inductive step is complete. It follows that

Amin{m,n} ≠ ∅; any B in this set is diagonal and equivalent to A.

Remark 9.14. It is not too hard to adapt the above argument to show that any matrix in

a PID is equivalent to a diagonal matrix, however it need not be equivalent by elementary

operations. To see this let R = Z[θ] and A be as in Remark 9.5. If there were a diagonal

matrix ∆ with A ∼E ∆, then there would be P,Q ∈ GE2(R) with ∆ = PAQ. The right hand

side is invertible so ∆ is invertible and therefore ∆ =D2(1;u1)D2(2;u2) for u1, u2 ∈ U(R) and

in particular ∆ ∈ GE2(R). But then A = P −1∆Q−1 ∈ GE2(R) which gives a contradiction.

Remark 9.15. We say that A ∈ Mn,m(R) is in Smith normal form if it is diagonal and

Ai,i ∣ Ai+1,i+1 for all 1 ⩽ i < min{n,m}.
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Proposition 9.16. Suppose that R is an integral domain in which every finitely generated

ideal is principal. Then every diagonal matrix A ∈ Mn,m(R) is equivalent by elementary

operations to a matrix in Smith normal form.

Proof. Let Ak be the set of diagonal matrices that are elementarily equivalent to A, and such

that if the diagonal entries are denoted a1, a2, . . . , amin{m,n}, then ai ∣ aj whenever 1 ⩽ i ⩽ j
and i ⩽ k. Certainly A ∈ A0 since the hypotheses on the entries is vacuous then, so there is

a maximal k ∈ N∗ with k − 1 ⩽ min{m,n} such that Ak−1 is non-empty.

We may assume that k ⩽ min{m,n} since otherwise we are done. By maximality of k for

each matrix in Ak−1 with diagonal entries a1, a2, . . . , amin{m,n} there is a minimal l ⩾ k with

ak /∣ al; let B ∈ Ak−1 have l maximal with this property.

Since every finitely generated ideal is principal, ⟨ak, al⟩ = ⟨a′k⟩ for some a′k. Let αk, αl ∈ R
be such that akαl + αkal = a′k; write ak = a′kqk, al = qla′k, and a′l = −qla′kqk. Now

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

ak
. . .

al
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

cl↦cl+ckαlÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

ak akαl
. . .

al
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rk↦rk+αkrlÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

ak a′k
. . .

al
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ck↦ck−clqkÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

0 a′k
. . .

a′l al
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rl↦rl−qlrkÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

0 a′k
. . .

a′l 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

cl↔ckÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

a′k
. . .

a′l
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∶ C

The matrix C is diagonal and elementarily equivalent toB, and hence toA; write a′1, . . . , a
′
min{m,n}

for its diagonal entries so that for i /∈ {k, l} we have a′i = ai. a′k and a′l are linear combinations

of ak and al and so for i ⩽ k − 1, a′i divides them both, and hence for 1 ⩽ i ⩽ j we have we

have a′i ∣ a′j. It follows that C ∈ Ak−1. Finally a′k ∣ ak and so a′k ∣ a′j for k ⩽ j < l, but also

a′k ∣ a′l contradicting maximality of l. The result is proved.

Theorem 9.17. Suppose that R is a Euclidean domain. Then every A ∈Mn,m(R) is equiv-

alent by elementary operations to a matrix in Smith normal form.
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Proof. Every Euclidean domain is a PID (Proposition 4.39), and in particular every finitely

generated ideal in a PID is principal (since they all are), so the hypotheses of Theorem 9.13

and Proposition 9.16 are satisfied and together they give the result.

Remark 9.18. Following the work of Kaplanksy [Kap49] an integral domain R for which

every A ∈Mn,m(R) is equivalent to a matrix in Smith normal form, is called an elementary

divisor domain, so in this language Theorem 9.17 shows that every Euclidean domain is

an elementary divisor domain.

Every finitely generated ideal in an elementary divisor domain is principal [LLS74, The-

orem 3.1], and it is an open problem [Lor12] (going back at least to [Hel43]) to decide which

of the integral domains in which every finitely generated ideal is principal are elementary

divisor rings.

10 The structure theorem for modules over Euclidean

domains

Theorem 10.1 (Structure of finitely generated modules over a Euclidean domain, invariant

factor form). Suppose that R is a Euclidean domain and M is a finitely generated R-module.

Then there are elements a1 ∣ a2 ∣ ⋯ ∣ an with ai /∼ 1 such that

M ≅ (R/⟨a1⟩)⊕⋯⊕ (R/⟨an⟩),

where ⟨ai⟩ denotes the submodule of the R-module R generated by ai.

Proof. Every Euclidean domain is a PID (Proposition 4.39), so by Proposition 8.39 there is

A ∈Mm,n(R) such that M ≅ Rn/ ImLA. If m < n then add n−m rows consisting of zeros to

the bottom of the matrix A. This does not change the image of LA, so even with A modified

like this we have M ≅ Rn/ ImLA.

By Theorem 9.17 there is a diagonal matrix B with entries a1 ∣ a2 ∣ ⋯ ∣ amax{m,n} = an
such that A ∼ B. By Proposition 9.10 we have M ≅ Rn/ ImLB. For 1 ⩽ i ⩽ n let Mi be the

submodule of the R-module R generated by ai. By Proposition 7.19 Mi is the same set as

the ideal generated by ai. Finally Theorem 7.22 ensures that the maps R → R/Mi; r ↦ r+Mi

are R-linear surjections and hence (by Remark 7.37) the map

Φ ∶ Rn → (R/M1)⊕⋯⊕ (R/Mn); r ↦ (r1 +M1, . . . , rn +Mn)

is anR-linear surjection. Now ker Φ =M1×⋯×Mn and x ∈ Rm has xB = (a1x1, . . . , anxn) since

B is diagonal and m ⩾ n, so ker Φ = ImLB. It follows by the First Isomorphism Theorem

(Theorem 7.25) that (R/M1)⊕⋯⊕ (R/Mn) ≅ Rn/ ImLB ≅ Rn/ ImLA ≅M . Finally, if ai ∼ 1

then R/Mi is the zero module (Example 7.29) and may be removed by Remark 7.37. The

result is proved.
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Theorem 10.2 (Structure of finitely generated modules over a Euclidean domain, primary

form). Suppose that R is a Euclidean domain and M is a finitely generated R-module. Then

there are some s, t ∈ N0, prime elements p1, . . . , pt ∈ R, and e1, . . . , et ∈ N∗, such that

M ≅ Rs ⊕ (R/⟨pe11 ⟩)⊕⋯⊕ (R/⟨pett ⟩).

Proof. Apply Theorem 10.1 to get a1 ∣ ⋯ ∣ ak such that M ≅ (R/⟨a1⟩)⊕⋯⊕(R/⟨ak⟩). Since

0 ∣ a if and only if a = 0, we make take l ∈ N0 maximal such that al ≠ 0, so that by Example

7.28 (and Remark 7.37) (R/⟨al+1⟩)⊕⋯⊕(R/⟨ak⟩) ≅ Rk−l. Since R is a UFD (by Proposition

4.39 and Theorem 4.30), we may apply Proposition 4.33 to get s ∈ N0 depending only on

a ∶= a1⋯al such that if f1, . . . , fr /∼ 1 and f1⋯fr∣a then r ⩽ s. Take r maximal such that there

are f1, . . . , fr /∼ 1 with f1⋯fr∣a and M ≅ R/⟨f1⟩ ⊕ ⋯ ⊕ R/⟨fr⟩ ⊕ Rk−l. Such fis exist since

a1, . . . , al certainly work.

Our aim is to show that for each i there is a prime pi and an ei ∈ N∗ such that fi ∼ peii . fi is

not a unit and R is a UFD, so it has a prime factor pi. By Proposition 4.33 there is a largest

ei ∈ N∗ such that pei ∣ fi. Let qi be such that fi = qipeii . If c ∣ peii then c ∼ pei , and if c also

divides qi then e = 0 by maximality of ei. It follows that c ∼ 1 and so peii and qi have a greatest

common factor and it is c. By Proposition 4.10 we have ⟨peii ⟩ + ⟨qi⟩ = R. Now ⟨peii ⟩ ∩ ⟨qi⟩ is

principal since R is a PID, say generated by l. By definition l is the lowest common multiple

of peii and qi and by Proposition 4.18 fi = peii qi ∼ cl ∼ l, hence ⟨peii ⟩∩⟨qi⟩ = ⟨fi⟩. Since ideals are

submodules in a commutative ring (Proposition 7.19) we can apply the Chinese remainder

theorem (Theorem 7.40) to get R/⟨fi⟩ ≅ (R/⟨peii ⟩)⊕ (R/⟨qi⟩). By maximality of r it follows

that either peii ∼ 1 or qi ∼ 1; the former cannot happen since pi is prime, hence we have the

latter and the fis have the claimed form.

Perhaps more important than the ‘canonical forms’ provided by Theorems 10.1 & 10.2

is that they enjoy some uniqueness:

Theorem 10.3. Suppose that R is a commutative ring, M is an R-module, and I1 ⊂ ⋯ ⊂ In
and J1 ⊂ ⋯ ⊂ Jm are proper submodules such that M ≅ (R/I1) ⊕ ⋯ ⊕ (R/In) and M ≅
(R/J1)⊕⋯⊕ (R/Jm). Then n =m and Jk = Ik for all 1 ⩽ k ⩽ n.

Remark 10.4. !△The submodules need to be proper: if I = R then R/I = {0R/I} and so by

Remark 7.35 (R/I)n ≅ (R/I)m for all n,m ∈ N0.

Lemma 10.5. Suppose that R is a commutative ring, and I1 ⊂ ⋯ ⊂ In are submodules of

the R-module R. Then (R/I1)⊕⋯⊕ (R/In) has a minimal generating set, and it has size k

where k ∈ N0 is the largest k such that Ik is proper (with k = 0 if no Ik is proper).

Proof. By Remark 7.37 and Example 7.29 we may assume that k = n. The map Rn →
(R/I1) ⊕⋯⊕ (R/In); (x1, . . . , xn) ↦ (x1 + I1, . . . , xn + In) is an R-linear surjection from the
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R-module Rn by Remark 7.37 and Theorem 7.22. Surjective R-linear maps take generating

sets to generating sets (Proposition 8.13), and the R-module Rn has a generating set of size

n (Example 8.11). This ensures the first part of the lemma.

Since R is commutative the submodule In is an ideal by Proposition 7.19, and so by

Theorem 3.50 there is a maximal ideal J ⊃ In (this is where we use that In is proper) and

hence J ⊃ Ik for all 1 ⩽ k ⩽ n. The ideal J is a submodule of the R-module R (Proposition

7.19 in the other direction) and so the map

(R/I1)⊕⋯⊕ (R/In)→ (R/J)n; (x1 + I1, . . . , xn + In)↦ (x1 + J, . . . , xn + J)

is a well-defined R-linear surjection by Lemma 7.27 and Remark 7.37. Suppose that the

R-module (R/I1)⊕⋯⊕(R/In) has a generating set of size t. Then by Proposition 8.13 then

so does the R-module (R/J)n.

If r ∈ J and (x1+J, . . . , xn+J) ∈ (R/J)n then r.(x1+J, . . . , xn+J) = (rx1+J, . . . , rxn+J) =
(0R/J , . . . ,0R/J) = 0 and so we may apply Proposition 6.19, (R/J)n has the structure of an

R/J-module in such a way that the R-module structure arising from restricting the scalars

to R along the quotient map q ∶ R → R/J is the original R-module structure. Hence

by Proposition 8.15 this R/J-module has a generating set of size t. Since J is maximal,

Proposition 3.46 tells us that R/J is a field, and hence the R/J-module (R/J)n is an R/J-

vector space with a generating set of size t; we conclude (Remark 8.12) that t ⩾ n as

required.

Proof of Theorem 10.3. Since R is commutative, r.M is an R-module for every R (that’s

the first part of Lemma 7.30). For r ∈ R write Nj(r) ∶= {s ∈ R ∶ rs ∈ Ij} for 1 ⩽ j ⩽ n which

are nested since the Ijs are nested, and note that

r.M

≅ r.((R/I1)⊕⋯⊕ (R/In))

= r.(R/I1)⊕⋯⊕ r.(R/In)

≅ (R/N1(r))⊕⋯⊕ (R/Nn(r)).

by Lemma 7.30 since M ≅ (R/I1)⊕⋯⊕ (R/In)
(and R is commutative)

by definition of scalar multiplication on direct sums

by Lemma 7.31 Nj(r) is a submodule and r.(R/Ij) ≅ R/Nj(r);
the isomorphism is then by Remark 7.37

It follows by Lemma 10.5 that r.M has a minimal generating set of size j(r) where j(r)
is maximal such that Nj(r)(r) ≠ R. If Nj(r) = R then r = r1R ∈ Ij; if Nj(r) ≠ R then r /∈ Ij.
By nesting of the Nj(r)s it follows that j(r) is the largest integer such that r /∈ Ij(r), and 0

if r ∈ I1. This function j determines the sets I1, . . . , In but is defined independently of them

so we could have just as easily have proceeded for the submodules J1, . . . , Jm, whence n =m
and Ik = Jk for all 1 ⩽ k ⩽ n. The result is proved.

Theorem 10.6. Suppose that R is a commutative ring and the R-modules Rn and Rm are

R-linearly isomorphic. Then n =m.
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Proof. This follows from Lemma 10.5, Example 7.28 and Remark 7.37.

Remark 10.7. For vector spaces this is sometimes called the Dimension Theorem. A ring

R for which Rn ≅ Rm implies n = m is said to have the invariant basis number (IBN)

property.

11 Applications

Rational canonical form

Given a field F and a monic polynomial f(X) =Xn + an−1Xn−1 +⋯+ a0 we define the n × n
matrix

C(f) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 ⋯ ⋯ 0 1

−a0 −a1 ⋯ −an−2 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

called the companion matrix of f .

Theorem 11.1 (Rational canonical form). Suppose that V is an n-dimensional vector space

over F and T ∶ V → V is linear and not identically 0. Then there are monic polynomials

f1 ∣ ⋯ ∣ fr of degree n1, . . . , nr respectively and with f1 non-constant, and a basis v1, . . . , vn

for V such that Ψ−1
v1,...,vn ○ T ○Ψv1,...,vn = LM where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

C(f1) 0n1×n2 ⋯ 0n1×nr

0n2×n1

. . .
. . .

...
...

. . .
. . . 0nr−1×nr

0nr×n1 ⋯ 0nr×nr−1 C(fr)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof. We regard V as an F[X]-module in the way described in Example 6.13. The restric-

tion of scalars of this module to F yields the original vector space structure on V (Example

6.18). Since V is finite dimensional as an F-space, this has a finite generating set and hence

by Proposition 8.15 the F[X]-module V is finitely generated. Since F[X] is a Euclidean

domain we may apply the Structure Theorem (Invariant Factor Form, Theorem 10.1). We

get polynomials f1 ∣ ⋯ ∣ fr with f1 /∼ 1 and

φ ∶ V → (F[X]/⟨f1⟩)⊕⋯⊕ (F[X]/⟨fr⟩)

an F[X]-linear bijection. By Lemma 7.10 the map φ is an F-linear bijection but V is finite-

dimensional and F[X]/⟨0⟩ is infinite dimensional so fi ∈ F[X]∗ for all 1 ⩽ i ⩽ r. Thus we
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may put ni ∶= deg fi and may suppose that each fi is monic (since multiplying by a unit

does not change the ideal).

For 1 ⩽ i ⩽ r we write Mi ∶= F[X]/⟨fi⟩ and let (ei,j)nij=1 be such that

φ(ei,j) = (0M1 , . . . ,0Mi−1
,Xj−1 + ⟨fi⟩,0Mi+1

, . . . ,0Mr).

Then φ(e1,1), . . . , φ(e1,n1), φ(e2,1), . . . , φ(er−1,nr−1), φ(er,1), . . . , φ(er,nr) is a basis for the F-

vector space M1 ⊕⋯⊕Mr and since φ is an F-linear isomorphism, the sequence of vectors

e1,1, . . . , e1,n1 , e2,1, . . . , er−1,nr−1 , er,1, . . . , er,nr (ordered in this way) is a basis for V as a vector

space over F.

Write fi(X) =Xni +a(i)ni−1Xni−1+⋯+a(i)1 X +a(i)0 for 1 ⩽ i ⩽ r. Then since φ is F[X]-linear

we have

φ(Tei,j) = φ(X.ei,j) =X.φ(ei,j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ(ei,j+1) if j < ni
−a(i)0 .φ(ei,1) −⋯ − a(i)ni−1.φ(ei,ni) if j = ni

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ(ei,j+1) if j < ni
φ(−a(i)0 .ei,1 −⋯ − a(i)ni−1.ei,ni) if j = ni

.

Since φ is an F-linear bijection we conclude that T has the required form.

Remark 11.2. The rational canonical form is also sometimes called the Frobenius normal

form.

Remark 11.3. The rational canonical form of a matrix A is the matrix M from the

theorem applied to the linear map LA.

Jordan normal form

For λ ∈ C and n ∈ N∗ define the n × n matrix

J(λ,n) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ 1 0 ⋯ 0

0 λ
.. .

. . .
...

...
. . .

. . .
. . . 0

...
. . . λ 1

0 ⋯ ⋯ 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

These matrices are called Jordan blocks.

Theorem 11.4 (Jordan normal form). Suppose that V is an n-dimensional vector space

over C and T ∶ V → V is linear. Then there is a basis v1, . . . , vn for V such that Ψ−1
v1,...,vn ○
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T ○Ψv1,...,vn = LM where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

J(λ1, n1) 0n1×n2 ⋯ 0n1×nt

0n2×n1

. . .
. . .

...
...

. . .
. . . 0nt−1×nt

0nt×n1 ⋯ 0nt×nt−1 J(λt, nt)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof. We regard V as an C[X]-module in the way described in Example 6.13. The restric-

tion of scalars of this module to C yields the original vector space structure on V (Example

6.18). Since V is finite dimensional as a C-space, this has a finite generating set and hence

by Proposition 8.15 the C[X]-module V is finitely generated. Since C[X] is a Euclidean

domain we may apply the Structure Theorem (Primary Form, Theorem 10.2) to V . We get

s, t ∈ N0, irreducible polynomials p1, . . . , pt ∈ C[X], and natural numbers n1, . . . , nt ∈ N∗ such

that

φ ∶ V → (C[X])s ⊕ (C[X]/⟨pn1
1 ⟩)⊕⋯⊕ (C[X]/⟨pntt ⟩)

is a C[X]-linear bijection. By Lemma 7.10 φ is a C-linear bijection but V is finite-

dimensional and C[X] is infinite dimensional so s = 0. The irreducible polynomials in C[X]
are all degree 1 (see Example 5.8) thus there are λ1, . . . , λt ∈ C such that ⟨pnii ⟩ = ⟨(X −λi)ni⟩;
write Mi ∶= C[X]/⟨(X − λi)ni⟩. For each 1 ⩽ i ⩽ t let (ei,j)nij=1 be such that

φ(ei,j) = (0M1 , . . . ,0Mi−1
, (X − λi)j−1 + ⟨(X − λi)ni⟩,0Mi+1

, . . . ,0Mt).

Then φ(e1,1), . . . , φ(e1,n1), φ(e2,1), . . . , φ(et−1,nt−1), φ(et,1), . . . , φ(et,nt) is a basis for the C-

vector space M1 ⊕ ⋯ ⊕Mt and since φ is a C-linear isomorphism, the sequence of vectors

e1,1, . . . , e1,n1 , e2,1, . . . , et−1,nt−1 , et,1, . . . , et,nt (ordered in this way) is a basis for V as a vector

space over C.

The map φ is C[X]-linear so

φ(Tei,j) = φ(X.ei,j) =X.φ(ei,j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ(ei,j+1) + λi.φ(ei,j) if j < ni
λi.φ(ei,j) if j = ni

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ(ei,j+1 + λi.ei,j) if j < ni
φ(λi.ei,j) if j = ni

.

Since φ is a C-linear bijection we conclude that T has the required form.

Remark 11.5. The fact that every polynomial with coefficients in C has a root in C is vital

to the Jordan normal form. We used this fact when we appealed to Example 5.8.
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Structure of commutative groups

Theorem 11.6 (Structure of finitely generated commutative groups). Suppose that G is

a finitely generated commutative group. Then there are unique (non-zero) natural numbers

1 ≠ dr ∣ dr−1 ∣ ⋯ ∣ d1 and s ∈ N0 such that

G ≅ Zs ⊕Zd1 ⊕⋯⊕Zdr .

Proof. G is a Z-module (Example 6.11), so we may apply the Invariant Factor Form of

Theorem 10.1 to get the desired structure, writing Zs for the s copies of Z/⟨0⟩ in the given

decomposition by Example 7.29 and Remark 7.37. Then uniqueness follows from the fact

that U(Z) = {−1,1} (Example 2.6) since we have restricted the dis to be naturals and

Theorem 10.3.

Computing the structure of a commutative group

Suppose that G is a commutative group with generators g1, g2, g3, g4, g5 subject to the rela-

tions

2.g1 + 6.g2 − 8.g3 = 0, g1 + g2 + g4 = 0, and 5.g1 + 5.g4 + 25.g5 = 0.

What we mean here is that these relations generate the kernel of the map Z5 → G; z ↦
z1.g1 +⋯ + z5.g5. Writing

R ∶=
⎛
⎜⎜⎜
⎝

2 6 −8 0 0

1 1 0 1 0

5 0 0 5 25

⎞
⎟⎟⎟
⎠
∈M3,5(Z),

the map

G→ Z5/ ImLR (11.1)

z1.g1 +⋯ + z5.g5 ↦ (z1, . . . , z5) + ImLR
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is a well-defined Z-linear isomorphism by the First Isomorphism Theorem. Our aim is to

apply Proposition 9.10 to give a clearer way of viewing G. First, we put R into SNF:

R
r1↔r2ÐÐÐ→

⎛
⎜⎜⎜
⎝

1 1 0 1 0

2 6 −8 0 0

5 0 0 5 25

⎞
⎟⎟⎟
⎠

c2↦c2−c1
c4↦c4−c1ÐÐÐÐÐ→

⎛
⎜⎜⎜
⎝

1 0 0 0 0

2 4 −8 −2 0

5 −5 0 0 25

⎞
⎟⎟⎟
⎠

r2↦r2−2r1
r3↦r3−5r1ÐÐÐÐÐ→

⎛
⎜⎜⎜
⎝

1 0 0 0 0

0 4 −8 −2 0

0 −5 0 0 25

⎞
⎟⎟⎟
⎠

r2↦r2+r3ÐÐÐÐÐ→
⎛
⎜⎜⎜
⎝

1 0 0 0 0

0 −1 −8 −2 25

0 −5 0 0 25

⎞
⎟⎟⎟
⎠

r3↦r3−5r2ÐÐÐÐÐ→
⎛
⎜⎜⎜
⎝

1 0 0 0 0

0 −1 −8 −2 25

0 0 40 10 −100

⎞
⎟⎟⎟
⎠

c3↦c3−8c2
c4↦c4−2c2
c5↦c5+25c2ÐÐÐÐÐÐ→

⎛
⎜⎜⎜
⎝

1 0 0 0 0

0 −1 0 0 0

0 0 40 10 −100

⎞
⎟⎟⎟
⎠

c3↔c4ÐÐÐ→
⎛
⎜⎜⎜
⎝

1 0 0 0 0

0 −1 0 0 0

0 0 10 40 −100

⎞
⎟⎟⎟
⎠

c4↦c4−4c3
c5↦c5+10c3ÐÐÐÐÐÐ→

⎛
⎜⎜⎜
⎝

1 0 0 0 0

0 −1 0 0 0

0 0 10 0 0

⎞
⎟⎟⎟
⎠
.

This tells us there are P ∈ GL3(Z) and Q ∈ GL5(Z) such that

P

⎛
⎜⎜⎜
⎝

2 6 −8 0 0

1 1 0 1 0

5 0 0 5 25

⎞
⎟⎟⎟
⎠
Q =

⎛
⎜⎜⎜
⎝

1 0 0 0 0

0 −1 0 0 0

0 0 10 0 0

⎞
⎟⎟⎟
⎠
=∶ S.

We can compute Q and R by applying the column (resp. row) operations to the identity

since application of column (resp. row) operations corresponds to multiplication by certain

matrices and matrix multiplication is associative. In particular, we shall need Q which is

just the column operations applied to the identity:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

c2↦c2−c1
c4↦c4−c1ÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 7 0

0 1 0 −8 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

c3↦c3−8c2
c4↦c4−2c2
c5↦c5+25c2ÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 8 1 −25

0 1 −8 −2 25

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

c3↔c4ÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 1 8 −25

0 1 −2 −8 25

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

c4↦c4−4c3
c5↦c5+10c3ÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 1 4 −15

0 1 −2 0 5

0 0 0 1 0

0 0 1 −4 10

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

By Proposition 9.10 the map

G→ Z5/ ImLS

z1.g1 +⋯ + z5.g5 ↦ zQ + ImLS
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is a well-defined Z-linear isomorphism. Since S is diagonal we view Z5/ ImLS as Z/⟨1⟩ ⊕
Z/⟨−1⟩ ⊕ Z/⟨10⟩ ⊕ Z/⟨0⟩ ⊕ Z/⟨0⟩. The first two factors are zero modules and so we get a

Z-linear isomorphism

G→ Z10 ⊕Z2

z1.g1 +⋯ + z5.g5 ↦ (z1 − 2z2 + z4 + 10Z,4z1 + z3 − 4z4,−15z1 + 5z2 + 10z4 + z5).
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