A9: Statistics

Sheet 4 - HT 2022

(Lectures 12-16, Notes section 4, HT21 videos 21-27)

1. Suppose X_{1}, \ldots, X_{n} are independent, each having a geometric distribution with probability mass function $f(x \mid \theta)=(1-\theta)^{x} \theta$ for $x=0,1, \ldots$. Suppose that the prior for θ is a $\operatorname{Beta}(a, b)$ density. Find the posterior distribution of θ.
2. Let $\theta>0$ be an unknown parameter and let $c>0$ be a known constant. Conditional on θ, suppose X_{1}, \ldots, X_{n} are independent each with probability density function

$$
f(x \mid \theta)=\theta c^{\theta} x^{-(\theta+1)}, \quad x \geqslant c
$$

and suppose the prior for θ is a $\operatorname{Gamma}(\alpha, \beta)$ density. Find the posterior distribution of θ.
3. Let $r \geqslant 1$ be a known integer and let $\theta \in[0,1]$ be an unknown parameter. The negative binomial distribution with index r and parameter θ has probability mass function

$$
f(x \mid \theta)=\binom{x+r-1}{x}(1-\theta)^{x} \theta^{r} \quad \text { for } x=0,1, \ldots
$$

Let θ have a $\operatorname{Beta}(a, b)$ prior density and suppose, given θ, that X_{1}, \ldots, X_{n} are independent each with the above negative binomial distribution.
(a) Show that the posterior density is also a Beta density.
(b) Explain how to construct a $100(1-\alpha) \%$ equal-tailed credible interval for θ. Will this interval be a highest posterior density interval?
4. Suppose that X has a $N(\theta, \phi)$ distribution, where ϕ is known, Suppose also that the prior distribution for θ is $N\left(\theta_{0}, \phi_{0}\right)$, where θ_{0} and ϕ_{0} are known.
(a) Find the posterior distribution of θ given $X=x$.
(b) Show that the posterior mean of θ always lies between the prior mean and the observed value x.
(c) Construct a $100(1-\alpha) \%$ highest posterior density interval for θ.
(d) Let $\phi=2, \theta_{0}=0$ and $\phi_{0}=2$.
(i) Suppose the observed value is $x=4$. What are the mean and variance of the resulting posterior distribution? Sketch the prior, likelihood, and posterior on a single set of coordinate axes.
(ii) Repeat (i) assuming $\phi_{0}=18$. Explain any resulting differences. Which of these two priors would likely have more appeal for a frequentist statistician?
5. Let X be the number of heads when a coin with probability θ of heads is flipped n times.
(a) When the prior is $\pi(\theta)$, the prior predictive distribution for X (the predictive distribution before observing any data) is given by

$$
P(X=k)=\int_{0}^{1} P(X=k \mid \theta) \pi(\theta) d \theta, \quad k=0,1, \ldots, n .
$$

Find the prior predictive distribution when $\pi(\theta)$ is uniform on $(0,1)$.
(b) Suppose you assign a $\operatorname{Beta}(a, b)$ prior for θ, and then you observe x heads out of n flips. Show that the posterior mean of θ is always lies between your prior mean, $a /(a+b)$, and the observed relative frequency of heads, x / n.
(c) Show that, if the prior distribution on θ is uniform, then the posterior variance is always less than the prior variance.
(d) Give an example of a $\operatorname{Beta}(a, b)$ prior distribution and values of x, n for which the posterior variance is larger than the prior variance. ($\operatorname{Try} x=n=1$.)
6. A coin, with probability θ of heads, is flipped n times and r heads are observed.
(a) If the prior for θ is a uniform distribution on $(0,1)$, what is the probability that the next flip is a head?
(b) Can you generalise to the case where θ has a $\operatorname{Beta}(a, b)$ prior and where we wish to find the probability of getting k heads from m further flips?
7. (a) Let $X \sim N\left(\theta, \sigma_{0}^{2}\right)$, where σ_{0}^{2} is known. Find the Jeffreys' prior for θ.
(b) Let $X \sim N\left(\mu_{0}, \sigma^{2}\right)$, where μ_{0} is known. Find the Jeffreys' prior for σ.
(c) Let X be Poisson with parameter λ. Find the Jeffreys' prior for λ. Check that the posterior distribution of λ given $X=x$ is proper, but that the Jeffreys' prior is not.
8. Suppose X is the number of successes in a binomial experiment with n trials and probability of success θ. Either $H_{0}: \theta=\frac{1}{2}$ or $H_{1}: \theta=\frac{3}{4}$ is true. Show that the posterior probability that H_{0} is true is greater than the prior probability for H_{0} if and only if

$$
x \log 3<n \log 2 .
$$

9. Let $X \sim \operatorname{Binomial}(n, \theta)$, where the prior for θ is uniform on $(0,1)$. Suppose that we wish to compare the hypotheses $H_{0}: \theta \leqslant \frac{1}{2}$ and $H_{1}: \theta>\frac{1}{2}$.
What are the prior odds of H_{0} relative to H_{1} ?
Find an expression for the posterior odds of H_{0} relative to H_{1}.
If we observe $X=n$, find the Bayes factor B of H_{0} relative to H_{1}.
Check that $B \rightarrow 0$ as $n \rightarrow \infty$. Why is this expected?
10. Suppose we have a random sample X_{1}, \ldots, X_{n} from a Poisson distribution with mean θ. Suppose we wish to test the hypothesis $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \neq \theta_{0}$ and that, under H_{1}, the prior distribution $\pi\left(\theta \mid H_{1}\right)$ for θ is given by

$$
\pi\left(\theta \mid H_{1}\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}, \quad \theta>0
$$

Calculate the Bayes factor of H_{0} relative to H_{1}.
When $n=6, \sum x_{i}=19, \theta_{0}=2$, find the numerical value of the Bayes factor (i) when $\alpha=4$ and $\beta=\frac{2}{3}$, and (ii) when $\alpha=36$ and $\beta=6$. Compare and interpret the values of the Bayes factor in cases (i) and (ii).

