


































Boxplots
A boxplot, or box-and-whisker plot, is a convenient way of summarising
data, particularly when the data is made up of several groups.
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The box extends from one quartile to the other, and the central line in
the box is the median.

The whiskers are drawn from the box to the most extreme observations
that are no more than 1.5×IQR from the box. (Alternatively r×IQR can
be used for other values of r .)

Observations which are more extreme than this are shown separately.



Gross national income per capita for 50 “sovereign states in Europe.”
http://en.wikipedia.org/wiki/List_of_sovereign_states_in_Europe_by_GNI_

(nominal)_per_capita
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Now for 182 countries worldwide (including Europe).
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Parallel boxplots are often useful to show the differences between
subgroups of the data. Below: InsectSprays data from R.
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Comparative boxplots of transformed GCSE scores by A-level chemistry
exam score (0 = worst, 2, 4, 6, 8, 10 = best) and gender.
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Comparing N(0, 1) and t distributions
A t-distribution with r degrees of freedom has pdf

f (x) ∝ 1

(1 + x2/r)(r+1)/2
, −∞ < x <∞.

[More on t-distributions later.] Consider r = 5.
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Suppose we simulate data (x1, . . . , x250) from a t5 distribution.

Using Q-Q plots we can consider the questions:

I is it reasonable to assume (x1, . . . , x250) is from a N(0, 1)?

I is it reasonable to assume (x1, . . . , x250) is from a t5?
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A N(0, 1) assumption is not good – as expected.
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A t5 assumption is ok – as expected.











Normal Q-Q plots
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20 observations from each experiment. Is a N(µ, σ2) distribution
plausible for these 100 observations?
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From the plot a normal distribution seems reasonable.



Below: precip data from R – average precipitation for 70 US cities.
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A normal assumption doesn’t look good – problems in the lower tail.



Below: Newcomb’s (1882) speed of light data – measurements are the
time (in deviations from 24800 nanoseconds) to travel about 7400m.
The currently accepted time (on this scale) is 33.

Histogram of Newcomb's data
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This time the problems are different – two (very small) outlying
observations. If these are removed, a normal assumption looks ok.
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Example: Danish fire data (Davison, 2003)
Data on the times, and amounts, of major insurance claims due to fire in
Denmark 1980–90.
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Following Davison, let’s consider the 254 largest claim amounts, and the
interarrival times between these claims.



Is it reasonable to assume exponential interarrival times? See below –
inter-arrivals look fairly close to exponential.
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Is it reasonable to assume exponential claim amounts? See below – an
exponential assumption is not reasonable.
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Is it reasonable to assume Pareto claim amounts? See below – the Pareto
fits fairly well.
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Chi-squared pdfs
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t distribution pdfs
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Student’s Sleep data

“Student” = W.S. Gosset

Below is half of Student’s sleep data (1908):

0.7, −1.6, −0.2, −1.2, −0.1, 3.4, 3.7, 0.8, 0.0, 2.0.

The data give the number of hours of sleep gained, by 10 patients,
following a low dose of a drug.

[The other half of the data give the sleep gained following a normal dose
of the drug.]

A point estimate of the sleep gained is x = 0.75 hours.
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Treating the sample as iid N(µ, σ2), with µ and σ2 unknown, a 95% CI
for µ is (

x ± tn−1(
α
2 )

s√
n

)
= (−0.53, 2.03)

using x = 0.75, s2 = 3.2, n = 10, α = 0.05, t9(0.025) = 2.262.

The value of t9(0.025) comes from statistical tables, or from R.



Here, it would be incorrect to use a N(0, 1) distribution instead of a t9.

E.g. Suppose we “assume” σ2 = s2 = 3.2 (the sample variance) and
calculate the interval(

x ± 1.96

√
3.2

10

)
= (−0.36, 1.86).

The interval (−0.53, 2.03) obtained using the t9 distribution is wider than
the interval (−0.36, 1.86).

The interval from the t9 distribution is the correct one here. Since σ2 is
unknown, we need to estimate it (our estimate is s2). Since we are
estimating σ2, there is more uncertainty than if σ2 were known, and the
t9 distribution correctly takes this uncertainty into account.



Sleep data (low dose)

Number of hours of sleep gained, by 10 patients:

0.7, −1.6, −0.2, −1.2, −0.1, 3.4, 3.7, 0.8, 0.0, 2.0.

Do the data support the conclusion that a low dose of the drug makes
people sleep more, or not?

I We will start from the default position that the drug has no effect,

I and we will only reject this default position if the data contain
“sufficient evidence” for us to reject it.



So we would like to consider

(i) the “null hypothesis” that the drug has no effect, and

(ii) the “alternative hypothesis” that the drug makes people sleep more.

We will denote the “null hypothesis” by H0, and the “alternative
hypothesis” by H1.



Sleep data (normal dose)

The other half of the sleep data is the number of hours of sleep gained,
by the same 10 patients, following a normal dose of the drug:

1.9, 0.8, 1.1, 0.1, −0.1, 4.4, 5.5, 1.6, 4.6, 3.4.

Is there evidence that a normal dose of the drug makes people sleep more
than not taking a drug at all, or not?































t-test (one sample)

[Example from Dalgaard (2008).] Data on the daily energy intake (in kJ)
of 11 women:

5260, 5470, 5640, 6180, 6390, 6515,

6805, 7515, 7515, 8230, 8770.

Do these values deviate from a recommended value of 7725 kJ?

We consider testing H0 : µ = µ0 against H1 : µ 6= µ0, where µ0 = 7725,
and we make the standard assumptions for a t-test.

We have tobs = x−µ0

s/
√
n

= −2.821.

The p-value is p = 2P(t10 > |tobs|) = 0.018. So we conclude that there
is good evidence to reject the null hypothesis that the mean intake is
7725 kJ.



Testing H0 : µ = 7725 against H−1 : µ < 7725,

the p-value is p− = P(t10 6 tobs) = 0.009.

Conclusion: there is good evidence to reject H0 in favour of H−1 .

Testing H0 : µ = 7725 against H+
1 : µ > 7725,

the p-value is p+ = P(t10 > tobs) = 0.991.

Conclusion: there is no evidence to reject H0 in favour of H+
1 .



t-test (two sample)

Darwin’s Zea mays data – heights of young maize plants.

Height (eights of an inch)
Crossed Self-fertilized

188 146 139 132
96 173 163 144

168 186 160 130
176 168 160 144
153 177 147 102
172 184 149 124
177 96 149 144
163 122

Are the heights of the two types of plant the same?

[In fact, the plants were in pairs – one cross- and one self-fertilized in
each pair – we ignore this pairing for now. We’ll see how to deal with
pairing later.]
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Assume we have two independent samples X1, . . . ,Xm
iid∼ N(µX , σ

2), and

Y1, . . . ,Yn
iid∼ N(µY , σ

2), where σ2 is unknown.

Suppose we would like to test H0 : µX = µY against H1 : µX 6= µY .

Let

T =
X − Y

S
√

1
m + 1

n

where S2 = 1
m+n−2 [

∑
(Xi − X )2 +

∑
(Yi − Y )2].

Assuming H0 is true, we have T ∼ tm+n−2.



For the maize data, the observed value of T is

t =
x − y

s
√

1
m + 1

n

= 2.437.

The alternative hypothesis (µX 6= µY ) is two-sided, so the p-value of this
test is

p = 2P(t28 > 2.437) = 0.021.

Conclusion: there is good evidence to reject the null hypothesis µX = µY .



t-test (paired)

Suppose we have pairs of RVs (Xi ,Yi ), i = 1 . . . , n. Let Di = Xi − Yi .

Suppose D1, . . . ,Dn
iid∼ N(µ, σ2), with σ2 unknown, and that we want to

test a hypothesis about µ. We can use the test statistic

D − µ0

SD/
√
n

which has a tn−1 distribution under H0 : µ = µ0. (Here, S2
D is the sample

variance of the Di .)

The kind of situation where a paired test is used is when there are two
measurements on the same “experimental unit”, e.g. in the sleep data,
low and normal doses were given to the same 10 patients.



Two sample t and paired t

Is the amount of sleep gained with a low dose the same as the amount
gained with a high dose?

low (X) 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0

normal (Y) 1.9 0.8 1.1 0.1 -0.1 4.4 5.5 1.6 4.6 3.4

difference (D) 1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

I Two sample t-test of H0 : µX = µY against H1 : µX 6= µY : the
p-value is 0.079.

I Paired t-test (of µ0 = 0), based on the differences Di : the p-value is
0.0028.

The paired test uses the information that the observations are paired: i.e.
we have one low and one high dose observation per patient. The two
sample test ignores this information. Prefer the paired test here.

Could consider one-sided alternatives here.



Hypothesis testing and confidence intervals

For the maize data:

I the 95% (equal tail) confidence interval for µX − µY is (3.34, 38.53)
(see Sheet 2, Question 5)

I when testing µx = µY against µx 6= µY , the p-value is 0.021.

So, observe that

(i) the p-value less than 0.05

(ii) the 95% confidence interval does not contain 0 (= the value of
µX − µY under H0).

(i) and (ii) both being true is not a coincidence – there is a connection
between hypothesis tests and confidence intervals.

















































Insect traps

33 insect traps were set out across sand dunes and the numbers of
insects caught in a fixed time were counted (Gilchrist, 1984). The
number of traps containing various numbers of the taxa Staphylinoidea
were as follows.

Count 0 1 2 3 4 5 6 > 7
Frequency 10 9 5 5 1 2 1 0

Suppose X1, . . . ,X33
iid∼ Poisson(λ).

Consider testing H0 : λ = 1 against H1 : λ = λ1, where λ1 > 1.

The NP lemma leads to a test of the form

reject H0 ⇐⇒
∑

xi > c .



If the test has size α, then α = P(
∑

Xi > c |H0).

Under H0, we have
∑

Xi ∼ Poisson(33) exactly. However, instead of
using this we can use a normal approximation:

α = P

(∑
Xi − 33√

33
>

c − 33√
33

∣∣∣∣H0

)

and, by the CLT, if H0 is true then
∑

Xi−33√
33

D
≈ N(0, 1), so

α ≈ 1− Φ

(
c − 33√

33

)
.

Hence c−33√
33
≈ zα, so c ≈ 33 + zα

√
33.



So we have a critical region

C = {x :
∑

xi > 33 + zα
√

33}.

Note that C does not depend on which value of λ1 > 1 we are
considering, so we actually have a UMP test of λ = 1 against λ > 1.

If α = 0.01 then c ≈ 47; if α = 0.001 then c ≈ 51.

The observed value of
∑

xi is 54.

So in both cases the observed value of 54 is > c , so in both cases we’d
reject H0.



An alternative way of thinking about this is to calculate the p-value:

p = P(we observe a value at least as extreme as 54 |H0)

= P(
∑

Xi > 54 |H0)

≈ 0.0005

which is very strong evidence for rejecting H0.

Note that a test of size α rejects H0 if and only if α > p. That is, the
p-value is the smallest value of α for which H0 would be rejected. (This
is true generally, not just in this particular example.)

In practice, no-one tells us a value of α, we have to judge the situation
for ourselves. Our conclusion here is that there is very strong evidence for
rejecting H0.



























Hardy–Weinberg equilibrium

In a sample from the Chinese population of Hong Kong, blood types
occurred with the following frequencies (Rice, 1995):

Blood type

M MN N Total

Frequency 342 500 187 1029

If gene frequencies are in Hardy–Weinberg equilibrium, then the
probability of an individual having blood type M, MN, or N should be

P(M) = (1− θ)2

P(MN) = 2θ(1− θ)

P(N) = θ2.
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probability of an individual having blood type M, MN, or N should be

P(M) = (1− θ)2
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The observed frequencies are (n1, n2, n3) = (342, 500, 187), with total
n = n1 + n2 + n3 = 1029.

The likelihood is

L(θ) ∝ [(1− θ)2]n1 × [θ(1− θ)]n2 × [θ2]n3

so the log-likelihood is

`(θ) = (2n1 + n2) log(1− θ) + (n2 + 2n3) log θ + constant

from which we obtain

θ̂ =
n2 + 2n3

2n
= 0.425.



So π1(θ̂) = (1− θ̂)2, π2(θ̂) = 2θ̂(1− θ̂), π3(θ̂) = θ̂2 and

Λ = 2
∑
i

ni log

(
ni

nπi (θ̂)

)
= 0.032.

We compare Λ to a χ2
p where p = dim Θ− dim Θ0 = (3− 1)− 1 = 1.

The value Λ = 0.032 is much less than E (χ2
1) = 1. The p-value is

P(χ2
1 > 0.032) = 0.86, so there is no reason to doubt the

Hardy–Weinberg model.

Pearson’s chi-squared statistic leads to the same conclusion

P =
∑ [ni − nπi (θ̂)]2

nπi (θ̂)
= 0.0319.



Insect counts (Bliss and Fisher, 1953)

[Example from Rice (1995).] From each of 6 apple trees in an orchard
that had been sprayed, 25 leaves were selected. On each of the leaves,
the number of adult female red mites was counted.

Number per leaf 0 1 2 3 4 5 6 7 8+
Observed frequency 70 38 17 10 9 3 2 1 0

Does a Poisson(θ) model fit these data?

As usual for a Poisson, θ̂ = x = 1.147, and

πi (θ̂) = θ̂ie−θ̂/i !, i = 0, 1, . . . , 7

π8(θ̂) = 1−
7∑

i=0

πi (θ̂).

The expected frequency in cell i is nπi (θ̂).



Some expected frequencies are very small:

# per leaf 0 1 2 3 4 5 6 7 8+
Observed 70 38 17 10 9 3 2 1 0
Expected 47.7 54.6 31.3 12.0 3.4 0.8 0.2 0.02 0.004

The χ2 approximation for the distribution of Λ applies when there are
large counts.

The usual rule-of-thumb is that the χ2 approximation is good when the
expected frequency in each cell is at least 5.

To ensure this, we should pool some cells before calculating Λ or P.



After pooling cells > 3:

# per leaf 0 1 2 > 3
Observed 70 38 17 25
Expected 47.7 54.6 31.3 16.4

Then Λ = 2
∑

Oi log
(
Oi

Ei

)
= 26.60, and P =

∑
(Oi − Ei )

2/Ei = 26.65.

These are to be compared with a χ2 with (4− 1)− 1 = 2 degrees of
freedom.

The p-value is p = P(χ2
2 > 26.6) ≈ 10−6, so there is clear evidence that

a Poisson model is not suitable.





Hair and Eye Colour

The hair and eye colour of 592 statistics students at the University of
Delaware were recorded (Snee, 1974) – dataset HairEyeColor in R.

Eye colour

Hair colour Brown Blue Hazel Green

Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

Are hair colour and eye colour independent?
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Relation between hair and eye colour

Eye

H
ai

r

Brown Blue Hazel Green

B
la

ck
B

ro
w

n
R

ed
B

lo
nd



Λ = 2
r∑

i=1

c∑
j=1

nij log

(
nijn

ni+n+j

)
= 146.4

dimH1 = 16− 1 = 15

dimH0 = (4− 1) + (4− 1) = 6

Hence we compare Λ to a χ2
p where p = 15− 6 = 9.

The p-value is P(χ2
9 > 146.4) ≈ 0.

So there is overwhelming evidence of an association between hair colour
and eye colour (i.e. overwhelming evidence that they are not
independent).

[Pearson’s chi-squared statistic is P = 138.3.]





Bayesian Inference

So far we have followed the frequentist approach:

I we have treated unknown parameters as a fixed constants, and

I we have imagined repeated sampling from our model in order to
evaluate properties of estimators, interpret confidence intervals,
calculate p-values, etc.

We now take a different approach: in Bayesian inference, unknown
parameters are treated as random variables.



In subjective Bayesian inference, probability is a measure of the strength
of belief.

Before any data are available, there is uncertainty about the parameter θ.
Suppose uncertainty about θ is expressed as a “prior” pdf (of pmf) for θ.

Then, once data are available, we can use Bayes’ theorem to combine our
prior beliefs with the data to obtain an updated “posterior” assessment
of our beliefs about θ.



Example

Suppose we have a coin which we think might be a bit biased.

Let θ be the probability of getting a head when we flip it.



Prior: Beta(5, 5). Data: 7 heads from 10 flips.
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Example (MRSA)

[Example from www.scholarpedia.org.]

Let θ denote the number of MRSA infections per 10,000 bed-days in a
hospital.

Suppose we observe y = 20 infections in 40,000 bed-days, i.e. in 10,000N
bed-days where N = 4.

I A simple estimate of θ is y/N = 5 infections per 10,000 bed-days.

I The MLE of θ is also θ̂ = 5 if we assume that y is an observation
from a Poisson distribution with mean θN, so

f (y | θ) = (θN)ye−θN/y ! .

www.scholarpedia.org


However, other evidence about θ may exist.

Suppose this other information, on its own, suggests plausible values of θ
of about 10 per 10,000, with 95% of the support for θ lying between 5
and 17.

We can use a prior distribution to describe this. A Gamma pdf is
convenient here:

π(θ) =
βα

Γ(α)
θα−1e−βθ for θ > 0.

Taking α = 10, β = 1 gives approximately the properties above.

I The posterior combines the evidence from the data (i.e. the
likelihood) and the other (i.e. prior) evidence. We can think of the
posterior as a compromise between the likelihood and the prior.

I Calculated on board in lectures: the posterior is another Gamma.
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Example

[Example from Carlin and Louis (2008).]

Product P0 – old, standard.

Product P1 – newer, more expensive.

Assumptions:

I the probability θ that a customer prefers P1 has prior π(θ) which is
Beta(a, b)

I the number of customers X (out of n) that prefer P1 is
X ∼ Binomial(n, θ).

Let’s say θ > 0.6 means that P1 is a substantial improvement over P0.
So take

H0 : θ > 0.6 and H1 : θ < 0.6.



We consider 3 possibile priors:

I Jeffreys’ prior: θ ∼ Beta(0.5, 0.5).

I Uniform prior: θ ∼ Beta(1, 1).

I Sceptical prior: θ ∼ Beta(2, 2), i.e. favours values of θ near 1
2 .



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

theta

pr
io

r 
de

ns
ity

Jeffreys prior
Uniform prior
Sceptical prior



Prior odds = P(H0)/P(H1) where

P(H0) =

∫ 1

0.6

1

B(a, b)
θa−1(1− θ)b−1 dθ

P(H1) =

∫ 0.6

0

1

B(a, b)
θa−1(1− θ)b−1 dθ.



Suppose we have x = 13 “successes” from n = 16 customers.

Then (Section 4.1) the posterior π(θ | x) is Beta(x + a, n − x + b) with
x = 13 and n = 16.

Posterior odds = P(H0 | x)/P(H1 | x) where

P(H0 | x) =

∫ 1

0.6

1

B(x + a, n − x + b)
θx+a−1(1− θ)n−x+b−1 dθ

P(H1 | x) =

∫ 0.6

0

1

B(x + a, n − x + b)
θx+a−1(1− θ)n−x+b−1 dθ.



0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

theta

po
st

er
io

r 
de

ns
ity

Beta(13.5, 3.5)
Beta(14, 4)
Beta(15, 5)



Prior Prior odds Posterior odds Bayes factor

Beta(0.5, 0.5) 0.773 26.6 34.4
Beta(1, 1) 0.667 20.5 30.8
Beta(2, 2) 0.543 13.4 24.6

Conclusion: strong evidence for H0.











Normal approx to posterior (1)

Prior θ ∼ U(0, 1).

Bernoulli likelihood: x = 13 successes out of n = 16 trials.
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Normal approx to posterior (2)

Prior θ ∼ U(0, 1).

Bernoulli likelihood: x = 130 successes out of n = 160 trials.
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