Problem Sheet 1

Problem 1. Consider the following four functions on \mathbb{R} :

$$
f_{1}(x)=\mathrm{e}^{-x^{2}+2 x}, \quad f_{2}(x)=\mathrm{e}^{-x} H(x), \quad f_{3}(x)=\mathrm{e}^{-|x|}, \quad f_{4}(x)=\frac{1}{x^{2}+1},
$$

where H is Heaviside's function.
(i) Verify that these functions all belong to $\mathrm{L}^{1}(\mathbb{R})$. Which of them belong to $\mathscr{S}(\mathbb{R})$ and which to $\mathrm{L}^{2}(\mathbb{R})$?
(ii) Calculate the Fourier transforms of these functions. Deduce Laplace's integral

$$
\int_{0}^{\infty} \frac{\cos (x \xi)}{1+x^{2}} \mathrm{~d} x=\frac{\pi}{2} \mathrm{e}^{-|\xi|} \quad(\xi \in \mathbb{R})
$$

(iii) For each of the Fourier transforms \hat{f}_{j}, determine whether it is a function in $\mathscr{S}(\mathbb{R})$, in $\mathrm{L}^{1}(\mathbb{R})$, or in $L^{2}(\mathbb{R})$.

Problem 2. Let $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{n}\right)$ and denote by $\left(\mathbf{e}_{j}\right)_{j=1}^{n}$ the standard basis for \mathbb{R}^{n}. For $\xi \in \mathbb{R}^{n}$ we write $\xi=\xi_{1} \mathbf{e}_{1}+\cdots+\xi_{n} \mathbf{e}_{n}$. Show that if $\xi_{j} \neq 0$, then

$$
\hat{f}(\xi)=-\int_{\mathbb{R}^{n}} f\left(x+\frac{\pi}{\xi_{j}} \mathbf{e}_{j}\right) \mathrm{e}^{-i x \cdot \xi} \mathrm{~d} x
$$

and conclude that

$$
|\hat{f}(\xi)| \leq \frac{1}{2} \int_{\mathbb{R}^{n}}\left|f(x)-f\left(x+\frac{\pi}{\xi_{j}} \mathbf{e}_{j}\right)\right| \mathrm{d} x .
$$

Using that $\mathscr{D}\left(\mathbb{R}^{n}\right)$ is dense in $\mathrm{L}^{1}\left(\mathbb{R}^{n}\right)$ deduce the Riemann-Lebesgue Lemma: \hat{f} is continuous and $\hat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.

Problem 3. Let $t>0$ and put $G_{t}(x)=\mathrm{e}^{-t|x|^{2}}$ for $x \in \mathbb{R}^{n}$. Use the Fourier transform to find a formula for the convolution $G_{s} * G_{t}$ for all $s, t>0$.

Problem 4. Let $a>0$ and $b, c \in \mathbb{R}$. Put $g(x)=\mathrm{e}^{-a x^{2}+b x+c}, x \in \mathbb{R}$. Calculate \hat{g}.
Problem 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function satisfying $|f(x)| \leq \mathrm{e}^{-|x|}$ for almost all $x \in \mathbb{R}$. Prove that the Fourier transform \hat{f} cannot have compact support unless $f(x)=0$ for almost all $x \in \mathbb{R}$. (Hint: Use a Differentiation Rule to see that \hat{f} is C^{∞} and consider a suitable Taylor expansion.)

Problem 6. (Optional) Let $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. Prove one of the following assertions and then derive the other:
(i) If $\phi(0)=0$, then we may write $\phi=\sum_{j=1}^{n} x_{j} \phi_{j}$ with $\phi_{j} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.
(ii) If $\int_{\mathbb{R}^{n}} \phi \mathrm{~d} x=0$, then we may write $\phi=\sum_{j=1}^{n} \partial_{j} \phi_{j}$ with $\phi_{j} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.

Problem 7. (Optional) Let $f(x)=\mathrm{e}^{-|x|}, x \in \mathbb{R}^{n}$.
(a) Compute the Fourier transform $\hat{f}(\xi)$ when $n=1$. Deduce for $\lambda \geq 0$ the identity

$$
\mathrm{e}^{-\lambda}=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+|\xi|^{2}} \mathrm{e}^{i \lambda \xi} \mathrm{~d} \xi .
$$

(b) Using $\frac{1}{1+|\xi|^{2}}=\int_{0}^{\infty} \mathrm{e}^{-\left(1+|\xi|^{2}\right) t} \mathrm{~d} t$ and (a) show that for each $\lambda \geq 0$ the identity

$$
\mathrm{e}^{-\lambda}=\int_{0}^{\infty} \frac{1}{\sqrt{\pi t}} \mathrm{e}^{-t-\frac{\lambda^{2}}{4 t}} \mathrm{~d} t
$$

holds.
(c) Compute the Fourier transform $\hat{f}(\xi)$ in the general n-dimensional case, for instance by use of the formula from (b) with $\lambda=|x|$.

