Numerical Analysis Hilary Term 2023

Lecture 1: Lagrange Interpolation

Numerical analysis is the study of computational algorithms for solving problems in scientific computing. It combines mathematical beauty, rigor and numerous applications; we hope you'll enjoy it! In this course we will cover the basics of three key fields in the subject:

- Approximation Theory (lectures 1, 9-11); recommended reading: L. N. Trefethen, Approximation Theory and Approximation Practice, and E. Süli and D. F. Mayers, An Introduction to Numerical Analysis.
- Numerical Linear Algebra (lectures 2-8); recommended reading: L. N. Trefethen and D. Bau, Numerical Linear Algebra.
- Numerical Solution of Differential Equations (lectures 12-16); recommended reading: E. Süli and D. F. Mayers, An Introduction to Numerical Analysis.

This first lecture comes from Chapter 6 of Süli and Mayers.
Notation: $\Pi_{n}=\{$ real polynomials of degree $\leq n\}$
Setup: Given data f_{i} at distinct $x_{i}, i=0,1, \ldots, n$, with $x_{0}<x_{1}<\cdots<x_{n}$, can we find a polynomial p_{n} such that $p_{n}\left(x_{i}\right)=f_{i}$? Such a polynomial is said to interpolate the data, and (as we shall see) can approximate f at other values of x if f is smooth enough. This is the most basic question in approximation theory.
E.g.:

$$
\text { constant } n=0 \quad \text { linear } n=1 \quad \text { quadratic } n=2
$$

Theorem. $\exists p_{n} \in \Pi_{n}$ such that $p_{n}\left(x_{i}\right)=f_{i}$ for $i=0,1, \ldots, n$.
Proof. Consider, for $k=0,1, \ldots, n$, the "cardinal polynomial"

$$
\begin{equation*}
L_{n, k}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)} \in \Pi_{n} . \tag{1}
\end{equation*}
$$

Then $L_{n, k}\left(x_{i}\right)=\delta_{i k}$, that is,

$$
L_{n, k}\left(x_{i}\right)=0 \text { for } i=0, \ldots, k-1, k+1, \ldots, n \text { and } L_{n, k}\left(x_{k}\right)=1 .
$$

So now define

$$
\begin{equation*}
p_{n}(x)=\sum_{k=0}^{n} f_{k} L_{n, k}(x) \in \Pi_{n} \tag{2}
\end{equation*}
$$

\Longrightarrow

$$
p_{n}\left(x_{i}\right)=\sum_{k=0}^{n} f_{k} L_{n, k}\left(x_{i}\right)=f_{i} \text { for } i=0,1, \ldots, n .
$$

The polynomial (2) is the Lagrange interpolating polynomial.
Theorem. The interpolating polynomial of degree $\leq n$ is unique.
Proof. Consider two interpolating polynomials $p_{n}, q_{n} \in \Pi_{n}$. Their difference $d_{n}=p_{n}-q_{n} \in$ Π_{n} satisfies $d_{n}\left(x_{k}\right)=0$ for $k=0,1, \ldots, n$. i.e., d_{n} is a polynomial of degree at most n but has at least $n+1$ distinct roots. Algebra $\Longrightarrow d_{n} \equiv 0 \Longrightarrow p_{n}=q_{n}$.

Matlab:

>> help lagrange
LAGRANGE Plots the Lagrange polynomial interpolant for the given DATA at the given KNOTS
>> lagrange([1, 1.2, 1.3,1.4], $[4,3.5,3,0])$;

>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);

Data from an underlying smooth function: Suppose that $f(x)$ has at least $n+1$ smooth derivatives in the interval $\left(x_{0}, x_{n}\right)$. Let $f_{k}=f\left(x_{k}\right)$ for $k=0,1, \ldots, n$, and let p_{n} be the Lagrange interpolating polynomial for the data $\left(x_{k}, f_{k}\right), k=0,1, \ldots, n$.
Error: How large can the error $f(x)-p_{n}(x)$ be on the interval $\left[x_{0}, x_{n}\right]$?
Theorem. For every $x \in\left[x_{0}, x_{n}\right]$ there exists $\xi=\xi(x) \in\left(x_{0}, x_{n}\right)$ such that

$$
\begin{equation*}
e(x) \stackrel{\text { def }}{=} f(x)-p_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \frac{f^{(n+1)}(\xi)}{(n+1)!} \tag{3}
\end{equation*}
$$

where $f^{(n+1)}$ is the $(n+1)$-st derivative of f.
Proof. Trivial for $x=x_{k}, k=0,1, \ldots, n$ as $e(x)=0$ by construction. So suppose $x \neq x_{k}$. Let

$$
\phi(t) \stackrel{\text { def }}{=} e(t)-\frac{e(x)}{\pi(x)} \pi(t),
$$

where

$$
\begin{aligned}
\pi(t) & \stackrel{\text { def }}{=}\left(t-x_{0}\right)\left(t-x_{1}\right) \cdots\left(t-x_{n}\right) \\
& =t^{n+1}-\left(\sum_{i=0}^{n} x_{i}\right) t^{n}+\cdots(-1)^{n+1} x_{0} x_{1} \cdots x_{n} \\
& \in \Pi_{n+1} .
\end{aligned}
$$

Now note that ϕ vanishes at $n+2$ points x and $x_{k}, k=0,1, \ldots, n . \Longrightarrow \phi^{\prime}$ vanishes at $n+1$ points ξ_{0}, \ldots, ξ_{n} between these points $\Longrightarrow \phi^{\prime \prime}$ vanishes at n points between these new points, and so on until $\phi^{(n+1)}$ vanishes at an (unknown) point ξ in $\left(x_{0}, x_{n}\right)$. But

$$
\phi^{(n+1)}(t)=e^{(n+1)}(t)-\frac{e(x)}{\pi(x)} \pi^{(n+1)}(t)=f^{(n+1)}(t)-\frac{e(x)}{\pi(x)}(n+1)!
$$

since $p_{n}^{(n+1)}(t) \equiv 0$ and because $\pi(t)$ is a monic polynomial of degree $n+1$. The result then follows immediately from this identity since $\phi^{(n+1)}(\xi)=0$.

Example: $f(x)=\log (1+x)$ on $[0,1]$. Here, $\left|f^{(n+1)}(\xi)\right|=n!/(1+\xi)^{n+1}<n!$ on $(0,1)$. So $|e(x)|<|\pi(x)| n!/(n+1)!\leq 1 /(n+1)$ since $\left|x-x_{k}\right| \leq 1$ for each $x, x_{k}, k=0,1, \ldots, n$, in
$[0,1] \Longrightarrow|\pi(x)| \leq 1$. This is probably pessimistic for many x, e.g. for $x=\frac{1}{2}, \pi\left(\frac{1}{2}\right) \leq 2^{-(n+1)}$ as $\left|\frac{1}{2}-x_{k}\right| \leq \frac{1}{2}$.

This shows the important fact that the error can be large at the end points when samples $\left\{x_{k}\right\}$ are equispaced points, an effect known as the "Runge phenomena" (Carl Runge, 1901), which we return to in lecture 4.
Generalisation: Given data f_{i} and g_{i} at distinct $x_{i}, i=0,1, \ldots, n$, with $x_{0}<x_{1}<$ $\cdots<x_{n}$, can we find a polynomial p such that $p\left(x_{i}\right)=f_{i}$ and $p^{\prime}\left(x_{i}\right)=g_{i}$? (i.e., interpolate derivatives in addition to values)
Theorem. There is a unique polynomial $p_{2 n+1} \in \Pi_{2 n+1}$ such that $p_{2 n+1}\left(x_{i}\right)=f_{i}$ and $p_{2 n+1}^{\prime}\left(x_{i}\right)=g_{i}$ for $i=0,1, \ldots, n$.
Construction: Given $L_{n, k}(x)$ in (1), let

$$
\begin{aligned}
H_{n, k}(x) & =\left[L_{n, k}(x)\right]^{2}\left(1-2\left(x-x_{k}\right) L_{n, k}^{\prime}\left(x_{k}\right)\right) \\
\text { and } K_{n, k}(x) & =\left[L_{n, k}(x)\right]^{2}\left(x-x_{k}\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
p_{2 n+1}(x)=\sum_{k=0}^{n}\left[f_{k} H_{n, k}(x)+g_{k} K_{n, k}(x)\right] \tag{4}
\end{equation*}
$$

interpolates the data as required. The polynomial (4) is called the Hermite interpolating polynomial. Note that $H_{n, k}\left(x_{i}\right)=\delta_{i k}$ and $H_{n, k}^{\prime}\left(x_{i}\right)=0$, and $K_{n, k}\left(x_{i}\right)=0, K_{n, k}^{\prime}\left(x_{i}\right)=\delta_{i k}$. Theorem. Let $p_{2 n+1}$ be the Hermite interpolating polynomial in the case where $f_{i}=f\left(x_{i}\right)$ and $g_{i}=f^{\prime}\left(x_{i}\right)$ and f has at least $2 n+2$ smooth derivatives. Then, for every $x \in\left[x_{0}, x_{n}\right]$,

$$
f(x)-p_{2 n+1}(x)=\left[\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)\right]^{2} \frac{f^{(2 n+2)}(\xi)}{(2 n+2)!},
$$

where $\xi \in\left(x_{0}, x_{n}\right)$ and $f^{(2 n+2)}$ is the $(2 n+2)$ nd derivative of f.
Proof (non-examinable): see Süli and Mayers, Theorem 6.4.
We note that as $x_{k} \rightarrow 0$ in (3), we essentialy recover Taylor's theorem with $p_{n}(x)$ equal to the first $n+1$ terms in Taylor's expansion. Taylor's theorem can be regarded as a special case of Lagrange interpolation where we interpolate high-order derivatives at a single point.

