Numerical Analysis Hilary Term 2023
Lecture 1: Lagrange Interpolation

Numerical analysis is the study of computational algorithms for solving problems in sci-
entific computing. It combines mathematical beauty, rigor and numerous applications; we
hope you’ll enjoy it! In this course we will cover the basics of three key fields in the subject:

e Approximation Theory (lectures 1, 9-11); recommended reading: L. N. Trefethen,
Approximation Theory and Approximation Practice, and E. Siili and D. F. Mayers,
An Introduction to Numerical Analysis.

e Numerical Linear Algebra (lectures 2-8); recommended reading: L. N. Trefethen and
D. Bau, Numerical Linear Algebra.

e Numerical Solution of Differential Equations (lectures 12-16); recommended reading:
E. Siili and D. F. Mayers, An Introduction to Numerical Analysis.

This first lecture comes from Chapter 6 of Siili and Mayers.

Notation: II, = {real polynomials of degree < n}

Setup: Given data f; at distinct x;, 1 = 0,1,...,n, with ¢ < z; < --- < x,, can we
find a polynomial p, such that p,(x;) = f;? Such a polynomial is said to interpolate the
data, and (as we shall see) can approximate f at other values of x if f is smooth enough.
This is the most basic question in approximation theory.

E.g.:

constant n = 0 linear n =1 quadratic n = 2

Theorem. dp, € 11, such that p,(x;) = f; fori =0,1,...,n.

Proof. Consider, for k =0,1,...,n, the “cardinal polynomial”

_ (@—m) (@ —mn) (@ — ki) - (2 — @)
b = o = 0) (o — w1k — we) e (an — ) @

Then L, ;(x;) = i1, that is,
Lpi(x;)=0 for i=0,....,k—1,k+1,...,n and L,x(x) = 1.
So now define

pole) = 3 filusle) €1, 2)
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pnlx;) = Z JxLng(x;) = fi for i=0,1,...,n. 0
k=0

The polynomial (2) is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree < n is unique.

Proof. Consider two interpolating polynomials p,,, g, € II,,. Their difference d,, = p,—q. €

I1,, satisfies d,,(zx) = 0 for k =0,1,...,n. i.e., d, is a polynomial of degree at most n but
has at least n + 1 distinct roots. Algebra = d,, =0 = p, = q,. d
Matlab:

>> help lagrange
LAGRANGE Plots the Lagrange polynomial interpolant for the
given DATA at the given KNOTS

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);

1 1 1 1 1 1
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]1);
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Data from an underlying smooth function: Suppose that f(x) has at least n + 1
smooth derivatives in the interval (xg,x,). Let fr, = f(zx) for k = 0,1,...,n, and let p,
be the Lagrange interpolating polynomial for the data (zy, f), k =0,1,... n.

Error: How large can the error f(z) — p,(z) be on the interval [xq, x,]?
Theorem. For every = € [xg, x,] there exists £ = &(x) € (xo, z,) such that

F0(E)

o) & (@) = pule) = (0 o) (r —20) - (& = ) [

(3)

where f("*1 is the (n + 1)-st derivative of f.

Proof. Trivial for z =z, k =0, 1,...,n as e(x) = 0 by construction. So suppose x # xy.
Let ()
def e\r
t) = e(t) — (1),
o) 2 eft) - £t
where ot
T(t) = (t—xo)(t —x1) - (t — 1)
— tn+1 _ (Z:EZ) t”—l—-~-(—1)n+1$0x1---xn
i=0
S 1_[n+1'
Now note that ¢ vanishes at n + 2 points x and x, &k = 0,1,...,n. = ¢’ vanishes at
n + 1 points &, ..., &, between these points = ¢” vanishes at n points between these

new points, and so on until ¢ vanishes at an (unknown) point £ in (g, z,). But

$ () = e () - ST ) = ) - S )

since p("*1)(t) = 0 and because 7(t) is a monic polynomial of degree n+ 1. The result then

follows immediately from this identity since ¢+ (¢) = 0.
O

Example: f(z) =log(1+x) on [0,1]. Here, |f™*D(&)| = n!/(1+ &)™ < n!on (0,1). So
le(z)| < |m(z)[n!/(n+ 1)! < 1/(n+ 1) since |z — x| < 1 for each z, 24, k =0,1,...,n, in
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5om(3) <270

[0,1] = |7 (x)| < 1. This is probably pessimistic for many z, e.g. for x =
as 3 — x| < 3.

This shows the important fact that the error can be large at the end points when
samples {x;} are equispaced points, an effect known as the “Runge phenomena” (Carl
Runge, 1901), which we return to in lecture 4.

Generalisation: Given data f; and g; at distinct z;, « = 0,1,...,n, with g < 77 <
-+« < xp, can we find a polynomial p such that p(z;) = f; and p/(x;) = ¢;? (i.e., interpolate
derivatives in addition to values)
Theorem. There is a unique polynomial po,,1 € Ilo, 41 such that po,i1(x;) = f; and
Popir (@) = gi for i =0,1,...,n.

Construction: Given L, ;(z) in (1), let

Hygo(x) = [Log(2)*(1 = 2(z — zx) Ly, . (1))
and K, () = [Lyg(2)]*(x — x1).

Then .
Pont1(2) = D _[fuHn(@) + 91Ky ()] (4)

k=0

interpolates the data as required. The polynomial (4) is called the Hermite interpolating
polynomial. Note that H, y(z;) = 6y and H), ;. (2;) = 0, and K, x(7;) = 0, K}, ; (2;) = ..
Theorem. Let py, 1 be the Hermite interpolating polynomial in the case where f; = f(x;)
and ¢g; = f'(x;) and f has at least 2n+2 smooth derivatives. Then, for every = € [zg, z,],

2 (8
f(@) = ponsa () = [(x — xo)(x — 1) - - (2 — )] ©@n+2)’
where ¢ € (29, z,) and f®"*?) is the (2n + 2)nd derivative of f.
Proof (non-examinable): see Siili and Mayers, Theorem 6.4. O

We note that as zx — 0 in (3), we essentialy recover Taylor’s theorem with p, ()
equal to the first n + 1 terms in Taylor’s expansion. Taylor’s theorem can be regarded as
a special case of Lagrange interpolation where we interpolate high-order derivatives at a
single point.
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