
Numerical Analysis Hilary Term 2023

Lecture 5: Singular Value Decomposition

We now introduce the Singular Value Decomposition (SVD), an extremely important

matrix decomposition applicable to any matrix, including nonsymmetric and rectangular

ones.

Theorem. (SVD) Every matrix A ∈ Rm×n with m ≥ n can be written as

A = UΣV T , (1)

where U ∈ Rm×n and V ∈ Rn×n are matrices with orthonormal columns, i.e., UTU = In
and V TV = In = V V T (V is square orthogonal; note that UUT ̸= Im), and

Σ =

σ1

. . .

σn

 (= diag(σ1, . . . , σn))

is a diagonal matrix with nonnegative diagonal entries. In short, the SVD is a decomposi-

tion of A into a product of ’orthonormal-diagonal-orthogonal’ matrices; when A is square

m = n, ’orthogonal-diagonal-orthogonal’.

One can think of orthogonal matrices as a length-preserving rotation, so the SVD

indicates that applying a matrix performs a rotation, followed by shrinkage or amplification

of the elements, followed by another (different) rotation.

σi are called the singular values and usually arranged in decreasing order σ1 ≥ σ2 ≥
· · · ≥ σn ≥ 0. The columns of U, V are called the (left and right) singular vectors of A.

The rank of a matrix A is the number of its positive singular values (this is equivalent e.g.

to the number of linearly independent columns or rows).

Proof. Let’s prove the existence of the SVD (1) by the following steps.

1. The matrix ATA ∈ Rn×n is symmetric. This is straightforward to verify, either by

direct calculations or from the general identity (XY )T = Y TXT .

2. The eigenvalues of ATA are all real and nonnegative (such matrices are called symmet-

ric positive definite). To see this, suppose ATAx = λx, x ̸= 0. Then xTATAx = λxTx,

so λ = xTATAx
xT x

= yT y
xT x

≥ 0, where y = Ax.

3. Let ATA = V D2V T be the symmetric eigenvalue decomposition, with V ∈ Rn×n

orthogonal and D diagonal. Then let B = AV . Now BTB = D2 is a diagonal

matrix, implying that the columns of B are pairwise orthogonal.

4. Let’s write BTB = D2 = diag(λ1, . . . , λr, 0, . . . , 0), where λr > 0.

(a) It is possible that r = n, and this is an important case (happens iff rank(A) = n)

where there is no 0 diagonal entry inD2. We then haveD−1 = diag(1/
√
λ1, . . . , 1/

√
λr).

Take U := BD−1 = AVD−1, which has orthonormal columns UTU = In. We

are then done, as taking Σ = D, A = UΣV T .
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(b) When r < n (the rank-deficient case), B has columns that are 0. Let Dr =

diag(λ1, . . . , λr). We still have B

[
D−1

r

In−r

]
= [U1, 0], and so

A = [U1, 0]

[
Dr

In−r

]
V T = [U1U2]

[
Dr

0

]
V T

for any U2; we take it to be orthonormal UT
2 U2 = In−r and UT

2 U1 = 0 (U2 is any

orthonormal matrix in the orthogonal complement of U1; its existence can be

verified e.g. using Householder reflectors). Taking U = [U1, U2] completes the

proof, again with Σ = D.

□

Some comments:

• Analogous to the full QR factorisation, there is a ’full SVD’ A = ŨΣ̃Ṽ T , where

Ũ = [U U⊥] ∈ Rm×m is orthogonal and Σ̃ ∈ Rm×n =

[
Σ

0(m−n)×n

]
and Ṽ = V . This

can be obtained by starting from (1) and finding an orthogonal complement U⊥ of U .

• Fat matrices: the assumption m ≥ n is just for convenience; if m < n, one still has

A = UΣV T where Σ ∈ Rm×m is diagonal, U ∈ Rm×m is orthogonal, and V ∈ Rn×m

has orthonormal columns. Below we continue with the assumption m ≥ n.

• The SVD extends directly to matrices with nonreal entries: A = UΣV ∗, where U, V

are unitary matrices and ∗ denotes the conjugate transpose.

Matrix spectral norm Let us briefly introduce the spectral norm1 for matrices A ∈
Rm×n: ∥A∥2 = σ1(A), i.e., the largest singular value. It is a nonnegative scalar that mea-

sures ’how large’ the matrix is. It has the equivalent characterisation ∥A∥2 = maxx ̸=0
∥Ax∥2
∥x∥2 ,

where the norms in the right-hand side are the standard Euclidean norm (length) for vec-

tors ∥x∥2 =
√

x2
1 + x2

2 + · · ·+ x2
n.

Low-rank approximation The SVD is useful for theoretical purposes, as it identifies

e.g. the range (column space), null space, rank, and many more. In applications, the

primary reason SVD is so important is that it gives the optimal low-rank approximation.

Let A = UΣV T be the SVD and write U = [u1, . . . , un], V = [v1, . . . , vn], and define the

“tall-skinny matrices” Uk = [u1, . . . , uk], Vk = [v1, . . . , vk], and Σk = diag(σ1, . . . , σk). Let

k be any integer k ≤ n. Then set

Ak = UkΣkV
T
k =

k∑
i=1

σiuiv
T
i .

Note that rank(Ar) = r. Also note that A =
∑n

i=1 σiuiv
T
i , which is another way of

expressing the SVD. Ar is called the truncated SVD of A, as Ar is obtained by truncating

the trailing components of the SVD of A.

1Also known as the 2-norm or the operator norm. We return to the topic of norms later in the course.
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We are now ready to state the result.

Theorem. Let r ≤ n be an integer. For any B ∈ Cm×n with rank(B) ≤ r,

∥A− Ar∥2 = σr+1 ≤ ∥A−B∥2. (2)

In other words, Ar is the best rank-r approximant to A in the spectral norm.

Proof. The first equality ∥A − Ar∥2 = σr+1 can be seen by noting that A − Ar =∑n
i=r+1 σiuiv

T
i with singular values σr+1, . . . , σn, along with r 0’s. For the inequality:

1. Since rank(B) ≤ r, we can write B = B1B
T
2 where B1, B2 have r columns. Therefore,

there exists an orthonormal null space W ∈ Cn×(n−r) s.t. BW = 0.

2. Then ∥A − B∥2 ≥ ∥(A − B)W∥2 = ∥AW∥2 = ∥UΣ(V TW )∥2. Now since W is

(n − r)-dimensional, there is an interesection between W and [v1, . . . , vr+1], the

(r + 1)-dimensional subspace spanned by the leading r + 1 left singular vectors

([W, v1, . . . , vr+1][x1, x2]
T = 0 has a solution; then Wx1 is such a vector).

3. Scale x1 to have unit norm, and by orthogonal invariance ∥UΣV TWx1∥2 = ∥ΣV TWx1∥2 =
∥Σr+1y1∥2, where ∥y1∥2 = 1 (b.c. Wx1 lies in span[v1, . . . , vr+1]) and Σr+1 is the lead-

ing r + 1 part of Σ.

4. Then ∥UΣr+1y1∥2 ≥ σr+1 can be verified by direct calculations.

□

In fact, more generally it is known that

∥A− Ar∥ ≤ ∥A−B∥ (3)

for any so-called unitarily invariant norm ∥ · ∥ (non-examinable).

In many applications σr+1 ≪ σ1 for some r ≪ n, in which case A ≈ UrΣrV
T
r . Now,

storing Ur,Σr, Vr requires ≈ (m + n + 1)r memory, as opposed to mn for the full A, so

when r ≪ min(m,n), this can be used for data compression; this fact is used everywhere

e.g. in data science!

Illustration of low-rank approximation: A traditional example to illustrate low-rank

approximation via the truncated SVD is image compression. A grayscale image can be

represented by a matrix A, with each entry representing the intensity of a pixel. One can

then approximate A by a truncated SVD, and use that to get a compressed image that

hopefully looks similar to the original image to human eyes. Images tend to have structure

that lends A to be approximately low-rank.

Below we take an image of the Oxford logo, represent it as a matrix A ∈ R589×589

and compute its SVD (just [U,S,V] = svd(A) in MATLAB). Using the truncated SVD

we then compute a rank-r approximation for different values of r. With a rank-1 matrix

the rows (and columns) are all parallel so the image is uninformative; but as r increases

the image becomes clear, and with rank 50 the image is almost indistinguishable from the

original, while still giving some data compression. For larger images, such savings can be
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Original 589× 589 rank 1 rank 5

rank 10 rank 20 rank 50

Figure 1: The Oxford logo and its low-rank approximations via the truncated SVD.

significant. (This is however not how images are usually compressed in practice; e.g. the

algorithm behind the jpg format is completely different).

The SVD A = UΣV T and symmetric eigenvalue decomposition A = V ΛV T have

many properties and results in common (e.g. Courant-Fisher min-max theorem; nonexam-

inable), stemming from the fact that they are both decompositions of the form “orthogonal-

diagonal-orthogonal”. In fact the SVD proof given above suggests an algorithm for com-

puting the SVD via a symmetric eigenvalue decomposition of ATA (this is not exactly how

the SVD is compute in practice, but this is outside the scope); we now turn to eigenvalue

problems Ax = λx and describe an algorithm for solving them.

Lecture 5 pg 4 of 4


