Numerical Analysis Hilary Term 2023

Lectures 7-8: Computing eigenvalues: The Symmetric QR Algorithm

Direct vs. Iterative Methods: methods such as LU or QR factorisations and solving $A x=b$ using them are direct: they compute a certain number of operations and then finish with "the answer". Another class of methods are iterative:

- construct a sequence;
- truncate that sequence "after convergence";
- typically concerned with fast convergence rate (rather than operation count).

Note that unlike LU, QR or linear systems $A x=b$, algorithms for eigenvalues are necessarily iterative: By Galois theory, no finite algorithm can compute eigenvalues of $n \times n(\geq 5)$ matrices exactly in a finite number of operations. We still have an incredibly reliable algorithm to compute them, essentially to full accuracy (for symmetric matrices; for nonsymmetric matrices, in a "backward stable" manner; this is outside the scope).
Notation: for $x \in \mathbb{R}^{n},\|x\|=\sqrt{x^{\mathrm{T}} x}$ is the (Euclidean) length of x.
Notation: in iterative methods, x_{k} usually means the vector x at the k th iteration (rather than k th entry of vector $x)$. Some sources use x^{k} or $x^{(k)}$ instead.
Power Iteration: a simple method for calculating a single (largest) eigenvalue of a square matrix A (and its associated eigenvector). For arbitrary $y \in \mathbb{R}^{n}$, set $x_{0}=y /\|y\|$ to calculate an initial vector, and then for $k=0,1, \ldots$

Compute $y_{k}=A x_{k}$
and set $x_{k+1}=y_{k} /\left\|y_{k}\right\|$.
This is the Power Method or Power Iteration, and computes unit vectors in the direction of $x_{0}, A x_{0}, A^{2} x_{0}, A^{3} x_{0}, \ldots, A^{k} x_{0}$.
Suppose that A is diagonalizable so that there is a basis of eigenvectors of A :

$$
\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

with $A v_{i}=\lambda_{i} v_{i}$ and $\left\|v_{i}\right\|=1, i=1,2, \ldots, n$, and assume that

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

Then we can write

$$
x_{0}=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

for some $\alpha_{i} \in \mathbb{R}, i=1,2, \ldots, n$, so

$$
A^{k} x_{0}=A^{k} \sum_{i=1}^{n} \alpha_{i} v_{i}=\sum_{i=1}^{n} \alpha_{i} A^{k} v_{i}
$$

However, since $A v_{i}=\lambda_{i} v_{i} \Longrightarrow A^{2} v_{i}=A\left(A v_{i}\right)=\lambda_{i} A v_{i}=\lambda_{i}^{2} v_{i}$, inductively $A^{k} v_{i}=\lambda_{i}^{k} v_{i}$. So

$$
A^{k} x_{0}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} v_{i}=\lambda_{1}^{k}\left[\alpha_{1} v_{1}+\sum_{i=2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} v_{i}\right] .
$$

Since $\left(\lambda_{i} / \lambda_{1}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty, A^{k} x_{0}$ tends to look like $\lambda_{1}^{k} \alpha_{1} v_{1}$ as k gets large. The result is that by normalizing to be a unit vector

$$
\frac{A^{k} x_{0}}{\left\|A^{k} x_{0}\right\|} \rightarrow \pm v_{1} \text { and } \frac{\left\|A^{k} x_{0}\right\|}{\left\|A^{k-1} x_{0}\right\|} \approx\left|\frac{\lambda_{1}^{k} \alpha_{1}}{\lambda_{1}^{k-1} \alpha_{1}}\right|=\left|\lambda_{1}\right|
$$

as $k \rightarrow \infty$, and the sign of λ_{1} is identified by looking at, e.g., $\left(A^{k} x_{0}\right)_{1} /\left(A^{k-1} x_{0}\right)_{1}$.
Essentially the same argument works when we normalize at each step: the Power Iteration may be seen to compute $y_{k}=\beta_{k} A^{k} x_{0}$ for some β_{k}. Then, from the above,

$$
x_{k+1}=\frac{y_{k}}{\left\|y_{k}\right\|}=\frac{\beta_{k}}{\left|\beta_{k}\right|} \cdot \frac{A^{k} x_{0}}{\left\|A^{k} x_{0}\right\|} \rightarrow \pm v_{1} .
$$

Similarly, $y_{k-1}=\beta_{k-1} A^{k-1} x_{0}$ for some β_{k-1}. Thus

$$
x_{k}=\frac{\beta_{k-1}}{\left|\beta_{k-1}\right|} \cdot \frac{A^{k-1} x_{0}}{\left\|A^{k-1} x_{0}\right\|} \quad \text { and hence } \quad y_{k}=A x_{k}=\frac{\beta_{k-1}}{\left|\beta_{k-1}\right|} \cdot \frac{A^{k} x_{0}}{\left\|A^{k-1} x_{0}\right\|}
$$

Therefore, as above,

$$
\left\|y_{k}\right\|=\frac{\left\|A^{k} x_{0}\right\|}{\left\|A^{k-1} x_{0}\right\|} \approx\left|\lambda_{1}\right|
$$

and the sign of λ_{1} may be identified by looking at, e.g., $\left(x_{k+1}\right)_{1} /\left(x_{k}\right)_{1}$.
Hence the largest eigenvalue (and its eigenvector) can be found.
Note: it is unlikely but possible for a chosen vector x_{0} that $\alpha_{1}=0$, but rounding errors in the computation generally introduce a small component in v_{1}, so that in practice this is not a concern!
This simplified method for eigenvalue computation is the basis for effective methods, but the current state of the art is the QR Algorithm which was invented by John Francis in London in 1959/60. As we shall see, the mechanics of QR algorithm is very much related to the power method.
The QR algorithm: We now describe the QR algorithm, a magical algorithm that can solve eigenvalue problems $A x=\lambda x$.

For simplicity we consider the algorithm only in the case when A is symmetric, but it is applicable also to nonsymmetric matrices with minor modifications.
Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which $A=P^{-1} B P$. Similar matrices have the same eigenvalues, since if $A=P^{-1} B P$,

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(P^{-1}(B-\lambda I) P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P) \operatorname{det}(B-\lambda I)
$$

so $\operatorname{det}(A-\lambda I)=0$ if, and only if, $\operatorname{det}(B-\lambda I)=0$.
The basic $\mathbf{Q R}$ algorithm is:

```
Set \(A_{1}=A\).
for \(k=1,2, \ldots\)
    form the QR factorization \(A_{k}=Q_{k} R_{k}\)
    and set \(A_{k+1}=R_{k} Q_{k}\)
```

end
Proposition. The symmetric matrices $A_{1}, A_{2}, \ldots, A_{k}, \ldots$ are all similar and thus have the same eigenvalues.
Proof. Since

$$
A_{k+1}=R_{k} Q_{k}=\left(Q_{k}^{\mathrm{T}} Q_{k}\right) R_{k} Q_{k}=Q_{k}^{\mathrm{T}}\left(Q_{k} R_{k}\right) Q_{k}=Q_{k}^{\mathrm{T}} A_{k} Q_{k}=Q_{k}^{-1} A_{k} Q_{k}
$$

A_{k+1} is symmetric if A_{k} is, and is similar to A_{k}.
At least when A has eigenvalues of distinct modulus $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$, this basic QR algorithm can be shown to work (A_{k} converges to a diagonal matrix as $k \rightarrow \infty$, the diagonal entries of which are the eigenvalues). To see this, we make the following observations.

Lemma.

$$
\begin{equation*}
A_{k+1}=\left(Q^{(k)}\right)^{T} A Q^{(k)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{k}=\left(Q_{1} \cdots Q_{k}\right)\left(R_{k} \cdots R_{1}\right)=Q^{(k)} R^{(k)} \tag{2}
\end{equation*}
$$

is the QR factorization of A^{k}.
Proof. (1) follows from a repeated application of the above proposition.
We use induction for (2): $k=1$ trivial. Suppose $A^{k-1}=Q^{(k-1)} R^{(k-1)}$. Then $A_{k}=$ $R_{k-1} Q_{k-1}=\left(Q^{(k-1)}\right)^{T} A Q^{(k-1)}$, and

$$
\left(Q^{(k-1)}\right)^{T} A Q^{(k-1)}=Q_{k} R_{k} .
$$

Then $A Q^{(k-1)}=Q^{(k-1)} Q_{k} R_{k}$, and so

$$
A^{k}=A Q^{(k-1)} R^{(k-1)}=Q^{(k-1)} Q_{k} R_{k} R^{(k-1)}=Q^{(k)} R^{(k)}
$$

giving (2).
Let us now connect the above lemma with the power method.
Lemma. With $Q^{(k)}$ as in (2), let q_{1} be its first column, and let $e_{1}=[1,0, \ldots, 0]^{T}$. Then q_{1} is equal to either $\frac{A^{k} e_{1}}{\left\|A^{k}\right\|_{1} \|_{2}}$ or $-\frac{A^{k} e_{1}}{\left\|A^{k} e_{1}\right\|_{2}}$.
Proof. Right-multiplying e_{1} to (2) yields $A^{k} e_{1}=Q^{(k)} R^{(k)} e_{1}$. Since $R^{(k)}$ is upper triangular $R^{(k)} e_{1}=\left[R_{1,1}^{(k)}, 0, \ldots, 0\right]^{T}$, and so $Q^{(k)} R^{(k)} e_{1}$ is parallel to q_{1}, which has unit norm.

The results show in particular that the first column q_{1} of $Q^{(k)}$ is the result of power method applied k times to the initial vector $e_{1}=[1,0, \ldots, 0]^{T}$. It then follows that q_{1} converges to the dominant eigenvector. The second vector then starts converging to the 2nd dominant eigenvector, and so on. Once the columns of $Q^{(k)}$ converge to eigenvectors (note that they are orthogonal by design), (1) shows that A_{k} converge to a diagonal matrix of eigenvalues.

However, a really practical, fast algorithm is based on some refinements.
Reduction to tridiagonal form: the idea is to apply explicit similarity transformations $Q A Q^{-1}=Q A Q^{\mathrm{T}}$, with Q orthogonal, so that $Q A Q^{\mathrm{T}}$ is tridiagonal.
Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible.

If

$$
H(w) A=\left[\begin{array}{cccc}
\times & \times & \cdots & \times \\
0 & \times & \cdots & \times \\
\vdots & \vdots & \ddots & \vdots \\
0 & \times & \cdots & \times
\end{array}\right]
$$

then $H(w) A H(w)^{\mathrm{T}}$ is generally full, i.e., all zeros created by pre-multiplication are destroyed by the post-multiplication. However, if

$$
A=\left[\begin{array}{ll}
\gamma & u^{\mathrm{T}} \\
u & C
\end{array}\right]
$$

(as $A=A^{\mathrm{T}}$) and

$$
w=\left[\begin{array}{c}
0 \\
\hat{w}
\end{array}\right] \quad \text { where } H(\hat{w}) u=\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0
\end{array}\right]
$$

it follows that

$$
H(w) A=\left[\begin{array}{cccc}
\gamma & & u^{\mathrm{T}} & \\
\alpha & \times & \vdots & \times \\
\vdots & \vdots & \vdots & \vdots \\
0 & \times & \vdots & \times
\end{array}\right]
$$

i.e., the u^{T} part of the first row of A is unchanged. However, then

$$
H(w) A H(w)^{-1}=H(w) A H(w)^{\mathrm{T}}=H(w) A H(w)=\left[\begin{array}{c|cccc}
\gamma & \alpha & 0 & \cdots & 0 \\
\hline \alpha & & & \\
0 & & & \\
\vdots & & B & \\
0 & & & &
\end{array}\right]
$$

where $B=H(\hat{w}) C H^{\mathrm{T}}(\hat{w})$, as $u^{\mathrm{T}} H(\hat{w})^{\mathrm{T}}=\left(\begin{array}{lll}\alpha, & 0, & \cdots,\end{array}\right)$; note that $H(w) A H(w)^{\mathrm{T}}$ is symmetric as A is.
Now we inductively apply this to the smaller matrix B, as described for the QR factorization but using post- as well as pre-multiplications. The result of $n-2$ such Householder similarity transformations is the matrix

$$
H\left(w_{n-2}\right) \cdots H\left(w_{2}\right) H(w) A H(w) H\left(w_{2}\right) \cdots H\left(w_{n-2}\right)
$$

which is tridiagonal.
The QR factorization of a tridiagonal matrix can now easily be achieved with $n-1$ Givens rotations $J(i, j)$; these are orthogonal matrices that are I except for the four elements: the $(i, i),(i, j),(j, i),(j, j)$ entries with values $c, s,-s, c$ respectively, where $c^{2}+s^{2}=1$ (cosine and sine); one can choose c s.t. $\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}\sqrt{a^{2}+b^{2}} \\ 0\end{array}\right]$. (The operations below can be done with Householder matrices too, but Givens rotations are more straightforward).

Now if A is tridiagonal

$$
\underbrace{J(n-1, n) \cdots J(2,3) J(1,2)}_{Q^{\mathrm{T}}} A=R, \quad \text { upper triangular. }
$$

Precisely, R has a diagonal and 2 super-diagonals,

$$
R=\left[\begin{array}{cccccccc}
\times & \times & \times & 0 & 0 & 0 & \cdots & 0 \\
0 & \times & \times & \times & 0 & 0 & \cdots & 0 \\
0 & 0 & \times & \times & \times & 0 & \cdots & 0 \\
\vdots & \vdots & & & & & & \vdots \\
0 & 0 & 0 & 0 & \times & \times & \times & 0 \\
0 & 0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \times
\end{array}\right]
$$

(exercise: check!). In the QR algorithm, the next matrix in the sequence is $R Q$.
Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry and tridiagonal form are preserved when Givens rotations are used.
Proof. We have already shown that if $A_{k}=Q R$ is symmetric, then so is $A_{k+1}=R Q$. If $A_{k}=Q R=J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}} \cdots J(n-1, n)^{\mathrm{T}} R$ is tridiagonal, then $A_{k+1}=R Q=$ $R J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}} \cdots J(n-1, n)^{\mathrm{T}}$. Recall that post-multiplication of a matrix by $J(i, i+1)^{\mathrm{T}}$ replaces columns i and $i+1$ by linear combinations of the pair of columns, while leaving columns $j=1,2, \ldots, i-1, i+2, \ldots, n$ alone. Thus, since R is upper triangular, the only subdiagonal entry in $R J(1,2)^{\mathrm{T}}$ is in position $(2,1)$. Similarly, the only subdiagonal entries in $R J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}}=\left(R J(1,2)^{\mathrm{T}}\right) J(2,3)^{\mathrm{T}}$ are in positions $(2,1)$ and $(3,2)$. Inductively, the only subdiagonal entries in

$$
\begin{aligned}
& R J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}} \cdots J(i-2, i-1)^{\mathrm{T}} J(i-1, i)^{\mathrm{T}} \\
& \quad=\left(R J(1,2)^{\mathrm{T}} J(2,3)^{\mathrm{T}} \cdots J(i-2, i-1)^{\mathrm{T}}\right) J(i-1, i)^{\mathrm{T}}
\end{aligned}
$$

are in positions $(j, j-1), j=2, \ldots i$. So, the lower triangular part of A_{k+1} only has nonzeros on its first subdiagonal. However, then since A_{k+1} is symmetric, it must be tridiagonal.

Using shifts. One further and final step in making an efficient algorithm is the use of shifts:

```
    for \(k=1,2, \ldots\)
    form the QR factorization of \(A_{k}-\mu_{k} I=Q_{k} R_{k}\)
    and set \(A_{k+1}=R_{k} Q_{k}+\mu_{k} I\)
    end
```

For any chosen sequence of values of $\mu_{k} \in \mathbb{R},\left\{A_{k}\right\}_{k=1}^{\infty}$ are symmetric and tridiagonal if A_{1} has these properties, and similar to A_{1}.

The simplest shift to use is $a_{n, n}$, which leads rapidly in almost all cases to

$$
A_{k}=\left[\begin{array}{c|c}
T_{k} & 0 \\
\hline 0^{\mathrm{T}} & \lambda
\end{array}\right],
$$

where T_{k} is $n-1$ by $n-1$ and tridiagonal, and λ is an eigenvalue of A_{1}. Inductively, once this form has been found, the QR algorithm with shift $a_{n-1, n-1}$ can be concentrated only on the $n-1$ by $n-1$ leading submatrix T_{k}. This process is called deflation.

Why does introducing shifts help? To understand this we establish a connection between QR and the power method applied to the inverse (known as the inverse power method).
Lemma. With $Q^{(k)}$ as in (2), denote by q_{n} its last column, and let $e_{n}=[0,0, \ldots, 1]^{T}$. Then q_{n} is equal to either $\frac{A^{-k} e_{n}}{\left\|A^{-k} e_{1}\right\|_{2}}$ or $-\frac{A^{-k} e_{n}}{\left\|A^{-k} e_{1}\right\|_{2}}$.
Proof. Recall (2), and take the inverse:

$$
A^{-k}=\left(R^{(k)}\right)^{-1}\left(Q^{(k)}\right)^{T}
$$

and take the transpose:

$$
\left(A^{-k}\right)^{T}\left(=A^{-k}\right)=Q^{(k)}\left(R^{(k)}\right)^{-T}
$$

Now multiplying e_{n} gives

$$
A^{-k} e_{n}=Q^{(k)}\left(R^{(k)}\right)^{-T} e_{n}
$$

Since $\left(R^{(k)}\right)^{-T}$ is lower triangular, it follows that $Q^{(k)}\left(R^{(k)}\right)^{-T} e_{n}$ is parallel to q_{n}.
This shows that the final column of $Q^{(k)}$ is the result of power method applied to e_{n} now with the inverse A^{-1}. Thus the last column of $Q^{(k)}$ is converging to the eigenvector for the smallest eigenvalue λ_{n}, with convergence factor $\left|\frac{\lambda_{n}}{\lambda_{n-1}}\right| ; Q^{(k)}$ is converging not only from the first, but (more significantly) from the last column(s).

Now we see how the introduction of shift has a drastic effect on the convergence: it changes the factor to $\left|\frac{\lambda_{\sigma(n)}-\mu}{\lambda_{\sigma(n-1)}-\mu}\right|$, where σ is a permutation such that $\left|\lambda_{\sigma(1)}-\mu\right| \geq \mid \lambda_{\sigma(2)}-$ $\mu\left|\geq \cdots \geq\left|\lambda_{\sigma(n)}-\mu\right|\right.$. If μ is close to an eigenvalue, this implies (potentially extremely) fast convergence; in fact by choosing the shift $\mu_{k}=a_{n, n}$, it can be shown that (proof omitted and non-examinable) $a_{m, m-1}$ converges cubically: $\left|a_{m, m-1, k+1}\right|=O\left(\left|a_{m, m-1, k}\right|^{3}\right)$.
The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix:

```
reduce \(A\) to tridiagonal form by orthogonal
(Householder) similarity transformations.
for \(m=n, n-1, \ldots 2\)
    while \(a_{m-1, m}>\) tol
        \([Q, R]=\operatorname{qr}\left(A-a_{m, m} I\right)\)
        \(A=R Q+a_{m, m} I\)
        end while
    record eigenvalue \(\lambda_{m}=a_{m, m}\)
    \(A \leftarrow\) leading \(m-1\) by \(m-1\) submatrix of \(A\)
    end
record eigenvalue \(\lambda_{1}=a_{1,1}\)
```

Computing roots of polynomials via eigenvalues Let us describe a nice application of computing eigenvalues (by the QR algorithm). Let $p(x)=\sum_{i=0}^{n} c_{i} x^{i}$ be a degree- n polynomial so that $c_{n} \neq 0$, and suppose we want to find its roots, i.e., values of λ for which $p(\lambda)=0$; there are n of them in \mathbb{C}. For example, $p(x)$ might be an approximant to data, obtained by Lagrange interpolation from the first lecture. Why roots? For example, you might be interested in the minimum of p; this can be obtained by differentiating and setting to zero $p^{\prime}(x)=0$, which is again a polynomial rootfinding problem (for p^{\prime}).

How do we solve $p(x)=0$? Recall that eigenvalues of A are the roots of its characteristic polynomial. Here we take the opposite direction - construct a matrix whose characteristic polynomial is p.

Consider the following matrix, which is called the companion matrix (the blank elements are all 0) for the polynomial $p(x)=\sum_{i=0}^{n} c_{i} x^{i}$:

$$
C=\left[\begin{array}{ccccc}
-\frac{c_{n-1}}{c_{n}} & -\frac{c_{n-2}}{c_{n}} & \cdots & -\frac{c_{1}}{c_{n}} & -\frac{c_{0}}{c_{n}} \tag{3}\\
1 & 1 & & & \\
& & \ddots & & \\
& & & 1 & 0
\end{array}\right] .
$$

Then direct calculation shows that if $p(\lambda)=0$ then $C x=\lambda x$ with $x=\left[\lambda^{n-1}, \lambda^{n-2}, \ldots, \lambda, 1\right]^{T}$. Indeed one can show that the characteristic polynomial is $\operatorname{det}(\lambda I-C)=p(\lambda) / c_{n}$ (nonexaminable), so this implication is necessary and sufficient, so the eigenvalues of C are precisely the roots of p, counting multiplicities.

Thus to compute roots of polynomials, one can compute eigenvalues of the companion matrix via the QR algorithm - this turns out to be a very powerful idea!

