Numerical Analysis Hilary Term 2023 Lecture 9: Best Approximation in Inner-Product Spaces

Best approximation of functions: given a function f on [a, b], find the "closest" polynomial/piecewise polynomial (see later sections)/ trigonometric polynomial (truncated Fourier series).

Norms: are used to measure the size of/distance between elements of a vector space. Given a vector space V over the field \mathbb{R} of real numbers, the mapping $\|\cdot\|: V \to \mathbb{R}$ is a **norm** on V if it satisfies the following axioms:

(i) $||f|| \ge 0$ for all $f \in V$, with ||f|| = 0 if, and only if, $f = 0 \in V$;

(ii) $\|\lambda f\| = |\lambda| \|f\|$ for all $\lambda \in \mathbb{R}$ and all $f \in V$; and

(iii) $||f + g|| \le ||f|| + ||g||$ for all $f, g \in V$ (the triangle inequality).

Examples: 1. For vectors $x \in \mathbb{R}^n$, with $x = (x_1, x_2, \dots, x_n)^T$,

$$||x|| \equiv ||x||_2 = (x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}} = \sqrt{x^{\mathrm{T}}x}$$

is the ℓ^2 - or vector two-norm.

2. For continuous functions on [a, b],

$$||f|| \equiv ||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

is the L^{∞} - or ∞ -norm.

3. For integrable functions on (a, b),

$$||f|| \equiv ||f||_1 = \int_a^b |f(x)| \, \mathrm{d}x$$

is the L¹- or one-norm. 4. For functions in

$$V = \mathcal{L}^2_w(a, b) \equiv \{ f : [a, b] \to \mathbb{R} \mid \int_a^b w(x) [f(x)]^2 \, \mathrm{d}x < \infty \}$$

for some given weight function w(x) > 0 (this certainly includes continuous functions on [a, b], and piecewise continuous functions on [a, b] with a finite number of jump-discontinuities),

$$||f|| \equiv ||f||_2 = \left(\int_a^b w(x)[f(x)]^2 \,\mathrm{d}x\right)^{\frac{1}{2}}$$

is the L²- or two-norm—the space $L^2(a, b)$ is a common abbreviation for $L^2_w(a, b)$ for the case $w(x) \equiv 1$.

Note: $||f||_2 = 0 \implies f = 0$ almost everywhere on [a, b]. We say that a certain property P holds almost everywhere (a.e.) on [a, b] if property P holds at each point of [a, b] except perhaps on a subset $S \subset [a, b]$ of zero measure. We say that a set $S \subset \mathbb{R}$ has zero measure (or that it is of measure zero) if for any $\varepsilon > 0$ there exists a sequence $\{(\alpha_i, \beta_i)\}_{i=1}^{\infty}$ of subintervals of \mathbb{R} such that

 $S \subset \bigcup_{i=1}^{\infty} (\alpha_i, \beta_i)$ and $\sum_{i=1}^{\infty} (\beta_i - \alpha_i) < \varepsilon$. Trivially, the empty set $\emptyset (\subset \mathbb{R})$ has zero measure. Any finite subset of \mathbb{R} has zero measure. Any countable subset of \mathbb{R} , such as the set of all natural numbers \mathbb{N} , the set of all integers \mathbb{Z} , or the set of all rational numbers \mathbb{Q} , is of measure zero.

Least-squares polynomial approximation: aim to find the best polynomial approximation to $f \in L^2_w(a, b)$, i.e., find $p_n \in \Pi_n$ for which

$$||f - p_n||_2 \le ||f - q||_2 \qquad \forall q \in \Pi_n.$$

Seeking p_n in the form $p_n(x) = \sum_{k=0}^n \alpha_k x^k$ then results in the minimization problem

$$\min_{(\alpha_0,\dots,\alpha_n)} \int_a^b w(x) \left[f(x) - \sum_{k=0}^n \alpha_k x^k \right]^2 \, \mathrm{d}x.$$

The unique minimizer can be found from the (linear) system

$$\frac{\partial}{\partial \alpha_j} \int_a^b w(x) \left[f(x) - \sum_{k=0}^n \alpha_k x^k \right]^2 dx = 0 \text{ for each } j = 0, 1, \dots, n,$$

but there is important additional structure here.

Inner-product spaces: a real **inner-product space** is a vector space V over \mathbb{R} with a mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ (the **inner product**) for which

- (i) $\langle v, v \rangle \ge 0$ for all $v \in V$ and $\langle v, v \rangle = 0$ if, and only if v = 0;
- (ii) $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$; and

(iii) $\langle \alpha u + \beta v, z \rangle = \alpha \langle u, z \rangle + \beta \langle v, z \rangle$ for all $u, v, z \in V$ and all $\alpha, \beta \in \mathbb{R}$.

Examples: 1. $V = \mathbb{R}^n$,

$$\langle x, y \rangle = x^{\mathrm{T}} y = \sum_{i=1}^{n} x_i y_i,$$

where $x = (x_1, \dots, x_n)^{\mathrm{T}}$ and $y = (y_1, \dots, y_n)^{\mathrm{T}}$. **2.** $V = \mathrm{L}^2_w(a, b) = \{f : (a, b) \to \mathbb{R} \mid \int_a^b w(x) [f(x)]^2 \, \mathrm{d}x < \infty\},$ $\langle f, g \rangle = \int_a^b w(x) f(x) g(x) \, \mathrm{d}x,$

where $f, g \in L^2_w(a, b)$ and w is a weight-function, defined, positive and integrable on (a, b). **Notes:** 1. Suppose that V is an inner product space, with inner product $\langle \cdot, \cdot \rangle$. Then $\langle v, v \rangle^{\frac{1}{2}}$ defines a norm on V (see the final paragraph on the last page for a proof). In Example 2 above, the norm defined by the inner product is the (weighted) L²-norm.

2. Suppose that V is an inner product space, with inner product $\langle \cdot, \cdot \rangle$, and let $\|\cdot\|$ denote the norm defined by the inner product via $\|v\| = \langle v, v \rangle^{\frac{1}{2}}$, for $v \in V$. The angle θ between $u, v \in V$ is

$$\theta = \cos^{-1}\left(\frac{\langle u, v \rangle}{\|u\| \|v\|}\right).$$

Thus u and v are orthogonal in $V \iff \langle u, v \rangle = 0$. E.g., x^2 and $\frac{3}{4} - x$ are orthogonal in $L^2(0, 1)$ with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x) dx$ as

$$\int_0^1 x^2 \left(\frac{3}{4} - x\right) \, \mathrm{d}x = \frac{1}{4} - \frac{1}{4} = 0.$$

3. Pythagoras Theorem: Suppose that V is an inner-product space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$ defined by this inner product. For any $u, v \in V$ such that $\langle u, v \rangle = 0$ we have

Proof.

$$||u \pm v||^2 = ||u||^2 + ||v||^2.$$

$$\begin{split} \|u \pm v\|^2 &= \langle u \pm v, u \pm v \rangle = \langle u, u \pm v \rangle \pm \langle v, u \pm v \rangle \qquad [\text{axiom (iii)}] \\ &= \langle u, u \pm v \rangle \pm \langle u \pm v, v \rangle \qquad [\text{axiom (iii)}] \\ &= \langle u, u \rangle \pm \langle u, v \rangle \pm \langle u, v \rangle + \langle v, v \rangle \\ &= \langle u, u \rangle + \langle v, v \rangle \qquad [\text{orthogonality}] \\ &= \|u\|^2 + \|v\|^2. \end{split}$$

4. The **Cauchy–Schwarz inequality**: Suppose that V is an inner-product space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$ defined by this inner product. For any $u, v \in V$,

$$|\langle u, v \rangle| \le ||u|| ||v||.$$

Proof. For every $\lambda \in \mathbb{R}$,

$$0 \le \langle u - \lambda v, u - \lambda v \rangle = ||u||^2 - 2\lambda \langle u, v \rangle + \lambda^2 ||v||^2 = \phi(\lambda),$$

which is a quadratic in λ . The minimizer of ϕ is at $\lambda_* = \langle u, v \rangle / \|v\|^2$, and thus since $\phi(\lambda_*) \ge 0$, $\|u\|^2 - \langle u, v \rangle^2 / \|v\|^2 \ge 0$, which gives the required inequality. \Box

5. The triangle inequality: Suppose that V is an inner-product space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$ defined by this inner product. For any $u, v \in V$,

$$||u + v|| \le ||u|| + ||v||$$

Proof. Note that

$$||u + v||^{2} = \langle u + v, u + v \rangle = ||u||^{2} + 2\langle u, v \rangle + ||v||^{2}.$$

Hence, by the Cauchy-Schwarz inequality,

$$||u+v||^2 \le ||u||^2 + 2||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2.$$

Taking square-roots yields

$$||u + v|| \le ||u|| + ||v||.$$

Note: The function $\|\cdot\| : V \to \mathbb{R}$ defined by $\|v\| := \langle v, v \rangle^{\frac{1}{2}}$ on the inner-product space V, with inner product $\langle \cdot, \cdot \rangle$, trivially satisfies the first two axioms of norm on V; this is a

consequence of $\langle \cdot, \cdot \rangle$ being an inner product on V. Result 5 above implies that $\|\cdot\|$ also satisfies the third axiom of norm, the triangle inequality.

Least-Squares Approximation

For the problem of least-squares approximation, $\langle f, g \rangle = \int_{a}^{b} w(x) f(x) g(x) \, dx$ and $||f||_{2}^{2} = \langle f, f \rangle$ where w(x) > 0 on (a, b).

Theorem. If $f \in L^2_w(a, b)$ and $p_n \in \Pi_n$ is such that

$$\langle f - p_n, r \rangle = 0 \qquad \forall r \in \Pi_n,$$
 (1)

then

$$||f - p_n||_2 \le ||f - r||_2 \qquad \forall r \in \Pi_n,$$

i.e., p_n is a best (weighted) least-squares approximation to f on [a, b]. **Proof.**

$$\begin{split} \|f - p_n\|_2^2 &= \langle f - p_n, f - p_n \rangle \\ &= \langle f - p_n, f - r \rangle + \langle f - p_n, r - p_n \rangle \quad \forall r \in \Pi_n \\ \text{Since } r - p_n \in \Pi_n \text{ the assumption (1) implies that} \\ &= \langle f - p_n, f - r \rangle \\ &\leq \|f - p_n\|_2 \|f - r\|_2 \text{ by the Cauchy-Schwarz inequality.} \end{split}$$

Dividing both sides by $||f - p_n||_2$ gives the required result.

Remark: the converse is true too (see problem sheet 3).

This gives a direct way to calculate a best approximation: we want to find $p_n(x) = \sum_{k=0}^n \alpha_k x^k$ such that

$$\int_{a}^{b} w(x) \left(f - \sum_{k=0}^{n} \alpha_k x^k \right) x^i \, \mathrm{d}x = 0 \quad \text{for} \quad i = 0, 1, \dots, n.$$

$$\tag{2}$$

[Note that (2) holds if, and only if,

$$\int_{a}^{b} w(x) \left(f - \sum_{k=0}^{n} \alpha_{k} x^{k} \right) \left(\sum_{i=0}^{n} \beta_{i} x^{i} \right) \, \mathrm{d}x = 0 \qquad \forall q = \sum_{i=0}^{n} \beta_{i} x^{i} \in \Pi_{n}.]$$

However, (2) implies that

$$\sum_{k=0}^{n} \left(\int_{a}^{b} w(x) x^{k+i} \, \mathrm{d}x \right) \alpha_{k} = \int_{a}^{b} w(x) f(x) x^{i} \, \mathrm{d}x \text{ for } i = 0, 1, \dots, n$$

which is the component-wise statement of a matrix equation

$$A\alpha = \varphi, \tag{3}$$

to determine the coefficients $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n)^{\mathrm{T}}$, where $A = \{a_{i,k}, i, k = 0, 1, \dots, n\}, \varphi = (f_0, f_1, \dots, f_n)^{\mathrm{T}},$

$$a_{i,k} = \int_a^b w(x) x^{k+i} \, \mathrm{d}x$$
 and $f_i = \int_a^b w(x) f(x) x^i \, \mathrm{d}x$.

Lecture 9 pg 4 of 6

The system (3) are called the **normal equations**.

Example: the best least-squares approximation to e^x on [0,1] from Π_1 in $\langle f,g \rangle = \int_a^b f(x)g(x) \, dx$. We want $\int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] 1 \, dx = 0 \text{ and } \int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] x \, dx = 0.$

$$\alpha_0 \int_0^1 dx + \alpha_1 \int_0^1 x \, dx = \int_0^1 e^x \, dx$$
$$\alpha_0 \int_0^1 x \, dx + \alpha_1 \int_0^1 x^2 \, dx = \int_0^1 e^x x \, dx$$

i.e.,

 \Leftrightarrow

$$\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = \begin{bmatrix} e-1 \\ 1 \end{bmatrix}$$

 $\implies \alpha_0 = 4e - 10$ and $\alpha_1 = 18 - 6e$, so $p_1(x) := (18 - 6e)x + (4e - 10)$ is the best approximation.

Proof that the coefficient matrix A is nonsingular will now establish existence and uniqueness of (weighted) $\|\cdot\|_2$ best-approximation.

Theorem. The coefficient matrix A is nonsingular.

Proof. Suppose not $\implies \exists \alpha \neq 0$ with $A\alpha = 0 \implies \alpha^{\mathrm{T}} A\alpha = 0$

$$\iff \sum_{i=0}^{n} \alpha_i (A\alpha)_i = 0 \iff \sum_{i=0}^{n} \alpha_i \sum_{k=0}^{n} a_{ik} \alpha_k = 0,$$

and using the definition $a_{ik} = \int_a^b w(x) x^k x^i \, \mathrm{d}x$,

$$\iff \sum_{i=0}^{n} \alpha_i \sum_{k=0}^{n} \left(\int_a^b w(x) x^k x^i \, \mathrm{d}x \right) \alpha_k = 0.$$

Rearranging gives

$$\int_{a}^{b} w(x) \left(\sum_{i=0}^{n} \alpha_{i} x^{i}\right) \left(\sum_{k=0}^{n} \alpha_{k} x^{k}\right) dx = 0 \text{ or } \int_{a}^{b} w(x) \left(\sum_{i=0}^{n} \alpha_{i} x^{i}\right)^{2} dx = 0$$

which implies that $\sum_{i=0}^{n} \alpha_i x^i = 0$ and thus $\alpha_i = 0$ for i = 0, 1, ..., n. This contradicts the initial supposition, and thus A is nonsingular.

Remark:

- Note in the simplest least-squares approximation problem $\min_x ||Ax b||_2$ that we dealt with in lecture 4, the theorem gives the solution $A^T(Ax b) = 0$, that is, $x = (A^T A)^{-1} A^T b$. This coincides with the QR-based solution derived in lecture 4.
- The above theorem does not imply that the normal equations are usable in practice: the method would need to be stable with respect to small perturbations. In fact, difficulties arise from the "ill-conditioning" of the matrix A as n increases. The next lecture looks at a fix.