
Numerical Analysis Hilary Term 2023

Lecture 9: Best Approximation in Inner-Product Spaces

Best approximation of functions: given a function f on [a, b], find the “closest”

polynomial/piecewise polynomial (see later sections)/ trigonometric polynomial (truncated

Fourier series).

Norms: are used to measure the size of/distance between elements of a vector space.

Given a vector space V over the field R of real numbers, the mapping ∥ · ∥ : V → R is a

norm on V if it satisfies the following axioms:

(i) ∥f∥ ≥ 0 for all f ∈ V , with ∥f∥ = 0 if, and only if, f = 0 ∈ V ;

(ii) ∥λf∥ = |λ|∥f∥ for all λ ∈ R and all f ∈ V ; and

(iii) ∥f + g∥ ≤ ∥f∥+ ∥g∥ for all f, g ∈ V (the triangle inequality).

Examples: 1. For vectors x ∈ Rn, with x = (x1, x2, . . . , xn)
T,

∥x∥ ≡ ∥x∥2 = (x2
1 + x2

2 + · · ·+ x2
n)

1
2 =

√
xTx

is the ℓ2- or vector two-norm.

2. For continuous functions on [a, b],

∥f∥ ≡ ∥f∥∞ = max
x∈[a,b]

|f(x)|

is the L∞- or ∞-norm.

3. For integrable functions on (a, b),

∥f∥ ≡ ∥f∥1 =
∫ b

a

|f(x)| dx

is the L1- or one-norm.

4. For functions in

V = L2
w(a, b) ≡ {f : [a, b] → R |

∫ b

a

w(x)[f(x)]2 dx < ∞}

for some given weight function w(x) > 0 (this certainly includes continuous functions on

[a, b], and piecewise continuous functions on [a, b] with a finite number of jump-discontinuities),

∥f∥ ≡ ∥f∥2 =
(∫ b

a

w(x)[f(x)]2 dx

) 1
2

is the L2- or two-norm—the space L2(a, b) is a common abbreviation for L2
w(a, b) for the

case w(x) ≡ 1.

Note: ∥f∥2 = 0 =⇒ f = 0 almost everywhere on [a, b]. We say that a certain property P holds

almost everywhere (a.e.) on [a, b] if property P holds at each point of [a, b] except perhaps on a

subset S ⊂ [a, b] of zero measure. We say that a set S ⊂ R has zero measure (or that it is of

measure zero) if for any ε > 0 there exists a sequence {(αi, βi)}∞i=1 of subintervals of R such that
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S ⊂ ∪∞
i=1(αi, βi) and

∑∞
i=1(βi − αi) < ε. Trivially, the empty set ∅(⊂ R) has zero measure. Any

finite subset of R has zero measure. Any countable subset of R, such as the set of all natural

numbers N, the set of all integers Z, or the set of all rational numbers Q, is of measure zero.

Least-squares polynomial approximation: aim to find the best polynomial approxi-

mation to f ∈ L2
w(a, b), i.e., find pn ∈ Πn for which

∥f − pn∥2 ≤ ∥f − q∥2 ∀q ∈ Πn.

Seeking pn in the form pn(x) =
n∑

k=0

αkx
k then results in the minimization problem

min
(α0,...,αn)

∫ b

a

w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx.

The unique minimizer can be found from the (linear) system

∂

∂αj

∫ b

a

w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx = 0 for each j = 0, 1, . . . , n,

but there is important additional structure here.

Inner-product spaces: a real inner-product space is a vector space V over R with a

mapping ⟨·, ·⟩ : V × V → R (the inner product) for which

(i) ⟨v, v⟩ ≥ 0 for all v ∈ V and ⟨v, v⟩ = 0 if, and only if v = 0;

(ii) ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ V ; and

(iii) ⟨αu+ βv, z⟩ = α⟨u, z⟩+ β⟨v, z⟩ for all u, v, z ∈ V and all α, β ∈ R.

Examples: 1. V = Rn,

⟨x, y⟩ = xTy =
n∑

i=1

xiyi,

where x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T.

2. V = L2
w(a, b) = {f : (a, b) → R |

∫ b

a

w(x)[f(x)]2 dx < ∞},

⟨f, g⟩ =
∫ b

a

w(x)f(x)g(x) dx,

where f, g ∈ L2
w(a, b) and w is a weight-function, defined, positive and integrable on (a, b).

Notes: 1. Suppose that V is an inner product space, with inner product ⟨·, ·⟩. Then

⟨v, v⟩ 1
2 defines a norm on V (see the final paragraph on the last page for a proof). In

Example 2 above, the norm defined by the inner product is the (weighted) L2-norm.

2. Suppose that V is an inner product space, with inner product ⟨·, ·⟩, and let ∥ · ∥ denote

the norm defined by the inner product via ∥v∥ = ⟨v, v⟩ 1
2 , for v ∈ V . The angle θ between

u, v ∈ V is

θ = cos−1

(
⟨u, v⟩
∥u∥∥v∥

)
.
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Thus u and v are orthogonal in V ⇐⇒ ⟨u, v⟩ = 0.

E.g., x2 and 3
4
− x are orthogonal in L2(0, 1) with inner product ⟨f, g⟩ =

∫ 1

0

f(x)g(x) dx

as ∫ 1

0

x2
(
3
4
− x
)
dx = 1

4
− 1

4
= 0.

3. Pythagoras Theorem: Suppose that V is an inner-product space with inner product

⟨·, ·⟩ and norm ∥ · ∥ defined by this inner product. For any u, v ∈ V such that ⟨u, v⟩ = 0

we have

∥u± v∥2 = ∥u∥2 + ∥v∥2.
Proof.

∥u± v∥2 = ⟨u± v, u± v⟩ = ⟨u, u± v⟩ ± ⟨v, u± v⟩ [axiom (iii)]

= ⟨u, u± v⟩ ± ⟨u± v, v⟩ [axiom (ii)]

= ⟨u, u⟩ ± ⟨u, v⟩ ± ⟨u, v⟩+ ⟨v, v⟩
= ⟨u, u⟩+ ⟨v, v⟩ [orthogonality]

= ∥u∥2 + ∥v∥2.

4. The Cauchy–Schwarz inequality: Suppose that V is an inner-product space with

inner product ⟨·, ·⟩ and norm ∥ · ∥ defined by this inner product. For any u, v ∈ V ,

|⟨u, v⟩| ≤ ∥u∥∥v∥.
Proof. For every λ ∈ R,

0 ≤ ⟨u− λv, u− λv⟩ = ∥u∥2 − 2λ⟨u, v⟩+ λ2∥v∥2 = ϕ(λ),

which is a quadratic in λ. The minimizer of ϕ is at λ∗ = ⟨u, v⟩/∥v∥2, and thus since

ϕ(λ∗) ≥ 0, ∥u∥2 − ⟨u, v⟩2/∥v∥2 ≥ 0, which gives the required inequality. 2

5. The triangle inequality: Suppose that V is an inner-product space with inner product

⟨·, ·⟩ and norm ∥ · ∥ defined by this inner product. For any u, v ∈ V ,

∥u+ v∥ ≤ ∥u∥+ ∥v∥.
Proof. Note that

∥u+ v∥2 = ⟨u+ v, u+ v⟩ = ∥u∥2 + 2⟨u, v⟩+ ∥v∥2.

Hence, by the Cauchy–Schwarz inequality,

∥u+ v∥2 ≤ ∥u∥2 + 2∥u∥∥v∥+ ∥v∥2 = (∥u∥+ ∥v∥)2 .

Taking square-roots yields

∥u+ v∥ ≤ ∥u∥+ ∥v∥.

2

Note: The function ∥ · ∥ : V → R defined by ∥v∥ := ⟨v, v⟩ 1
2 on the inner-product space

V , with inner product ⟨·, ·⟩, trivially satisfies the first two axioms of norm on V ; this is a
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consequence of ⟨·, ·⟩ being an inner product on V . Result 5 above implies that ∥ · ∥ also

satisfies the third axiom of norm, the triangle inequality.

Least-Squares Approximation

For the problem of least-squares approximation, ⟨f, g⟩ =
∫ b

a

w(x)f(x)g(x) dx and ∥f∥22 =

⟨f, f⟩ where w(x) > 0 on (a, b).

Theorem. If f ∈ L2
w(a, b) and pn ∈ Πn is such that

⟨f − pn, r⟩ = 0 ∀r ∈ Πn, (1)

then

∥f − pn∥2 ≤ ∥f − r∥2 ∀r ∈ Πn,

i.e., pn is a best (weighted) least-squares approximation to f on [a, b].

Proof.

∥f − pn∥22 = ⟨f − pn, f − pn⟩
= ⟨f − pn, f − r⟩+ ⟨f − pn, r − pn⟩ ∀r ∈ Πn

Since r − pn ∈ Πn the assumption (1) implies that

= ⟨f − pn, f − r⟩
≤ ∥f − pn∥2∥f − r∥2 by the Cauchy–Schwarz inequality.

Dividing both sides by ∥f − pn∥2 gives the required result. 2

Remark: the converse is true too (see problem sheet 3).

This gives a direct way to calculate a best approximation: we want to find pn(x) =
n∑

k=0

αkx
k

such that ∫ b

a

w(x)

(
f −

n∑
k=0

αkx
k

)
xi dx = 0 for i = 0, 1, . . . , n. (2)

[Note that (2) holds if, and only if,∫ b

a

w(x)

(
f −

n∑
k=0

αkx
k

)(
n∑

i=0

βix
i

)
dx = 0 ∀q =

n∑
i=0

βix
i ∈ Πn.]

However, (2) implies that

n∑
k=0

(∫ b

a

w(x)xk+i dx

)
αk =

∫ b

a

w(x)f(x)xi dx for i = 0, 1, . . . , n

which is the component-wise statement of a matrix equation

Aα = φ, (3)

to determine the coefficients α = (α0, α1, . . . , αn)
T, where A = {ai,k, i, k = 0, 1, . . . , n},

φ = (f0, f1, . . . , fn)
T,

ai,k =

∫ b

a

w(x)xk+i dx and fi =

∫ b

a

w(x)f(x)xi dx.
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The system (3) are called the normal equations.

Example: the best least-squares approximation to ex on [0, 1] from Π1 in ⟨f, g⟩ =∫ b

a

f(x)g(x) dx. We want

∫ 1

0

[ex − (α01 + α1x)]1 dx = 0 and

∫ 1

0

[ex − (α01 + α1x)]x dx = 0.

⇐⇒
α0

∫ 1

0

dx+ α1

∫ 1

0

x dx =

∫ 1

0

ex dx

α0

∫ 1

0

x dx+ α1

∫ 1

0

x2 dx =

∫ 1

0

exx dx

i.e., [
1 1

2

1
2

1
3

] [
α0

α1

]
=

[
e− 1

1

]
=⇒ α0 = 4e − 10 and α1 = 18 − 6e, so p1(x) := (18 − 6e)x + (4e − 10) is the best

approximation.

Proof that the coefficient matrix A is nonsingular will now establish existence and unique-

ness of (weighted) ∥ · ∥2 best-approximation.

Theorem. The coefficient matrix A is nonsingular.

Proof. Suppose not =⇒ ∃α ̸= 0 with Aα = 0 =⇒ αTAα = 0

⇐⇒
n∑

i=0

αi(Aα)i = 0 ⇐⇒
n∑

i=0

αi

n∑
k=0

aikαk = 0,

and using the definition aik =

∫ b

a

w(x)xkxi dx ,

⇐⇒
n∑

i=0

αi

n∑
k=0

(∫ b

a

w(x)xkxi dx

)
αk = 0.

Rearranging gives∫ b

a

w(x)

(
n∑

i=0

αix
i

)(
n∑

k=0

αkx
k

)
dx = 0 or

∫ b

a

w(x)

(
n∑

i=0

αix
i

)2

dx = 0

which implies that
n∑

i=0

αix
i = 0 and thus αi = 0 for i = 0, 1, . . . , n. This contradicts the

initial supposition, and thus A is nonsingular. 2

Remark:
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• Note in the simplest least-squares approximation problem minx ∥Ax − b∥2 that we

dealt with in lecture 4, the theorem gives the solution AT (Ax − b) = 0, that is,

x = (ATA)−1AT b. This coincides with the QR-based solution derived in lecture 4.

• The above theorem does not imply that the normal equations are usable in practice:

the method would need to be stable with respect to small perturbations. In fact,

difficulties arise from the “ill-conditioning” of the matrix A as n increases. The next

lecture looks at a fix.
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