
Numerical Analysis Hilary Term 2023

Lecture 10: Orthogonal Polynomials

Gram–Schmidt orthogonalization procedure: the solution of the normal equations

Aα = φ for best least-squares polynomial approximation would be easy if A were diagonal.

Instead of {1, x, x2, . . . , xn} as a basis for Πn, suppose we have a basis {ϕ0, ϕ1, . . . , ϕn}.

Then pn(x) =
n∑

k=0

βkϕk(x), and the normal equations become

∫ b

a

w(x)

(
f(x)−

n∑
k=0

βkϕk(x)

)
ϕi(x) dx = 0 for i = 0, 1, . . . , n,

or equivalently

n∑
k=0

(∫ b

a

w(x)ϕk(x)ϕi(x) dx

)
βk =

∫ b

a

w(x)f(x)ϕi(x) dx, i = 0, . . . , n, i.e.,

Aβ = φ, (1)

where β = (β0, β1, . . . , βn)
T, φ = (f1, f2, . . . , fn)

T and now

ai,k =

∫ b

a

w(x)ϕk(x)ϕi(x) dx and fi =

∫ b

a

w(x)f(x)ϕi(x) dx.

So A is diagonal if

⟨ϕi, ϕk⟩ =
∫ b

a

w(x)ϕi(x)ϕk(x) dx

{
= 0 i ̸= k and

̸= 0 i = k.

We can create such a set of orthogonal polynomials

{ϕ0, ϕ1, . . . , ϕn, . . .},

with ϕi ∈ Πi for each i, by the Gram–Schmidt procedure, which is based on the following

lemma.

Lemma. Suppose that ϕ0, . . . , ϕk, with ϕi ∈ Πi for each i, are orthogonal with respect to

the inner product ⟨f, g⟩ =
∫ b

a

w(x)f(x)g(x) dx. Then,

ϕk+1(x) = xk+1 −
k∑

i=0

λiϕi(x)

satisfies

⟨ϕk+1, ϕj⟩ =
∫ b

a

w(x)ϕk+1(x)ϕj(x) dx = 0, j = 0, 1, . . . , k, with

λj =
⟨xk+1, ϕj⟩
⟨ϕj, ϕj⟩

, j = 0, 1, . . . , k.
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Proof. For any j, 0 ≤ j ≤ k,

⟨ϕk+1, ϕj⟩ = ⟨xk+1, ϕj⟩ −
k∑

i=0

λi⟨ϕi, ϕj⟩

= ⟨xk+1, ϕj⟩ − λj⟨ϕj, ϕj⟩
by the orthogonality of ϕi and ϕj, i ̸= j,

= 0 by definition of λj. 2

Notes: 1. The G–S procedure does this successively for k = 0, 1, . . . , n.

2. ϕk is always of exact degree k, so {ϕ0, . . . , ϕℓ} is a basis for Πℓ ∀ℓ ≥ 0.

3. ϕk can be normalised to satisfy ⟨ϕk, ϕk⟩ = 1 or to be monic, or . . .

Examples: 1. The inner product ⟨f, g⟩ =
∫ 1

−1

f(x)g(x) dx

gives orthogonal polynomials called the Legendre polynomials,

ϕ0(x) ≡ 1, ϕ1(x) = x, ϕ2(x) = x2 − 1
3
, ϕ3(x) = x3 − 3

5
x, . . .

2. The inner product ⟨f, g⟩ =
∫ 1

−1

f(x)g(x)√
1− x2

dx

gives orthogonal polynomials called the Chebyshev polynomials,

ϕ0(x) ≡ 1, ϕ1(x) = x, ϕ2(x) = 2x2 − 1, ϕ3(x) = 4x3 − 3x, . . .

3. The inner product ⟨f, g⟩ =
∫ ∞

0

e−xf(x)g(x) dx

gives orthogonal polynomials called the Laguerre polynomials,

ϕ0(x) ≡ 1, ϕ1(x) = 1− x, ϕ2(x) = 2− 4x+ x2,

ϕ3(x) = 6− 18x+ 9x2 − x3, . . .

Lemma. Suppose that {ϕ0, ϕ1, . . . , ϕk, . . .} are orthogonal polynomials for a given inner

product ⟨·, ·⟩. Then, ⟨ϕk, q⟩ = 0 whenever q ∈ Πk−1.

Proof. This follows since if q ∈ Πk−1, then q(x) =
k−1∑
i=0

σiϕi(x) for some σi ∈ R, i =

0, 1, . . . , k − 1, so

⟨ϕk, q⟩ =
k−1∑
i=0

σi⟨ϕk, ϕi⟩ = 0.
2

Remark: note from the above argument that if q(x) =
k∑

i=0

σiϕi(x) is of exact degree k

(so σk ̸= 0), then ⟨ϕk, q⟩ = σk⟨ϕk, ϕk⟩ ≠ 0.

Theorem. Suppose that {ϕ0, ϕ1, . . . , ϕn, . . .} is a set of orthogonal polynomials. Then,

there exist sequences of real numbers (αk)
∞
k=1, (βk)

∞
k=1, (γk)

∞
k=1 such that a three-term

recurrence relation holds of the form

ϕk+1(x) = αk(x− βk)ϕk(x)− γkϕk−1(x), k = 1, 2, . . . .
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Proof. The polynomial xϕk ∈ Πk+1, so there exist real numbers

σk,0, σk,1, . . . , σk,k+1

such that

xϕk(x) =
k+1∑
i=0

σk,iϕi(x)

as {ϕ0, ϕ1, . . . , ϕk+1} is a basis for Πk+1. Now take the inner product on both sides with

ϕj where j ≤ k − 2. On the left-hand side, note xϕj ∈ Πk−1 and thus

⟨xϕk, ϕj⟩ =
∫ b

a

w(x)xϕk(x)ϕj(x) dx =

∫ b

a

w(x)ϕk(x)xϕj(x) dx = ⟨ϕk, xϕj⟩ = 0,

by the above lemma for j ≤ k − 2. On the right-hand side〈
k+1∑
i=0

σk,iϕi, ϕj

〉
=

k+1∑
i=0

σk,i⟨ϕi, ϕj⟩ = σk,j⟨ϕj, ϕj⟩

by the linearity of ⟨·, ·⟩ and orthogonality of ϕi and ϕj for i ̸= j. Hence σk,j = 0 for

j ≤ k − 2, and so

xϕk(x) = σk,k+1ϕk+1(x) + σk,kϕk(x) + σk,k−1ϕk−1(x).

Almost there: taking the inner product with ϕk+1 reveals that

⟨xϕk, ϕk+1⟩ = σk,k+1⟨ϕk+1, ϕk+1⟩,

so σk,k+1 ̸= 0 by the above remark as xϕk is of exact degree k + 1 (e.g., from above

Gram–Schmidt notes). Thus,

ϕk+1(x) =
1

σk,k+1

(x− σk,k)ϕk(x)−
σk,k−1

σk,k+1

ϕk−1(x),

which is of the given form, with

αk =
1

σk,k+1

, βk = σk,k, γk =
σk,k−1

σk,k+1

, k = 1, 2, . . . .

That completes the proof. 2

Example. The inner product ⟨f, g⟩ =
∫ ∞

−∞
e−x2

f(x)g(x) dx

gives orthogonal polynomials called the Hermite polynomials,

ϕ0(x) ≡ 1, ϕ1(x) = 2x, ϕk+1(x) = 2xϕk(x)− 2kϕk−1(x) for k ≥ 1.

Lecture 10 pg 3 of 4



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Chebyshev orthogonal polynomials

 

 

T
0
(x)

T
1
(x)

T
2
(x)

T
3
(x)

T
4
(x)

T
5
(x)

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5
Legendre polynomials

P
0
(x)

P
1
(x)

P
2
(x)

P
3
(x)

P
4
(x)

P
5
(x)

−2 −1 0 1 2
−150

−100

−50

0

50

100

150

x

Hermite orthogonal polynomials

 

 

H
0
(x)

H
1
(x)

H
2
(x)

H
3
(x)

H
4
(x)

H
5
(x)

Lecture 10 pg 4 of 4


