Numerical Analysis Hilary Term 2023

Lecture 10: Orthogonal Polynomials

Gram-Schmidt orthogonalization procedure: the solution of the normal equations $A \alpha=\varphi$ for best least-squares polynomial approximation would be easy if A were diagonal. Instead of $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ as a basis for Π_{n}, suppose we have a basis $\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{n}\right\}$. Then $p_{n}(x)=\sum_{k=0}^{n} \beta_{k} \phi_{k}(x)$, and the normal equations become

$$
\int_{a}^{b} w(x)\left(f(x)-\sum_{k=0}^{n} \beta_{k} \phi_{k}(x)\right) \phi_{i}(x) \mathrm{d} x=0 \text { for } i=0,1, \ldots, n
$$

or equivalently

$$
\begin{gather*}
\sum_{k=0}^{n}\left(\int_{a}^{b} w(x) \phi_{k}(x) \phi_{i}(x) \mathrm{d} x\right) \beta_{k}=\int_{a}^{b} w(x) f(x) \phi_{i}(x) \mathrm{d} x, \quad i=0, \ldots, n, \text { i.e., } \\
A \beta=\varphi \tag{1}
\end{gather*}
$$

where $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{n}\right)^{\mathrm{T}}, \varphi=\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{\mathrm{T}}$ and now

$$
a_{i, k}=\int_{a}^{b} w(x) \phi_{k}(x) \phi_{i}(x) \mathrm{d} x \text { and } f_{i}=\int_{a}^{b} w(x) f(x) \phi_{i}(x) \mathrm{d} x
$$

So A is diagonal if

$$
\left\langle\phi_{i}, \phi_{k}\right\rangle=\int_{a}^{b} w(x) \phi_{i}(x) \phi_{k}(x) \mathrm{d} x \begin{cases}=0 & i \neq k \text { and } \\ \neq 0 & i=k\end{cases}
$$

We can create such a set of orthogonal polynomials

$$
\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{n}, \ldots\right\}
$$

with $\phi_{i} \in \Pi_{i}$ for each i, by the Gram-Schmidt procedure, which is based on the following lemma.
Lemma. Suppose that $\phi_{0}, \ldots, \phi_{k}$, with $\phi_{i} \in \Pi_{i}$ for each i, are orthogonal with respect to the inner product $\langle f, g\rangle=\int_{a}^{b} w(x) f(x) g(x) \mathrm{d} x$. Then,

$$
\phi_{k+1}(x)=x^{k+1}-\sum_{i=0}^{k} \lambda_{i} \phi_{i}(x)
$$

satisfies

$$
\begin{gathered}
\left\langle\phi_{k+1}, \phi_{j}\right\rangle=\int_{a}^{b} w(x) \phi_{k+1}(x) \phi_{j}(x) \mathrm{d} x=0, \quad j=0,1, \ldots, k, \quad \text { with } \\
\lambda_{j}=\frac{\left\langle x^{k+1}, \phi_{j}\right\rangle}{\left\langle\phi_{j}, \phi_{j}\right\rangle}, \quad j=0,1, \ldots, k
\end{gathered}
$$

Proof. For any $j, 0 \leq j \leq k$,

$$
\begin{aligned}
&\left\langle\phi_{k+1}, \phi_{j}\right\rangle=\left\langle x^{k+1}, \phi_{j}\right\rangle-\sum_{i=0}^{k} \lambda_{i}\left\langle\phi_{i}, \phi_{j}\right\rangle \\
&=\left\langle x^{k+1}, \phi_{j}\right\rangle-\lambda_{j}\left\langle\phi_{j}, \phi_{j}\right\rangle \\
&=0 \quad \text { by the orthogonality of } \phi_{i} \text { and } \phi_{j}, i \neq j, \\
& \text { by definition of } \lambda_{j} .
\end{aligned}
$$

Notes: 1. The G-S procedure does this successively for $k=0,1, \ldots, n$.
2. ϕ_{k} is always of exact degree k, so $\left\{\phi_{0}, \ldots, \phi_{\ell}\right\}$ is a basis for $\Pi_{\ell} \forall \ell \geq 0$.
3. ϕ_{k} can be normalised to satisfy $\left\langle\phi_{k}, \phi_{k}\right\rangle=1$ or to be monic, or \ldots

Examples: 1. The inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) \mathrm{d} x$ gives orthogonal polynomials called the Legendre polynomials,

$$
\phi_{0}(x) \equiv 1, \quad \phi_{1}(x)=x, \quad \phi_{2}(x)=x^{2}-\frac{1}{3}, \quad \phi_{3}(x)=x^{3}-\frac{3}{5} x, \ldots
$$

2. The inner product $\langle f, g\rangle=\int_{-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x$
gives orthogonal polynomials called the Chebyshev polynomials,

$$
\phi_{0}(x) \equiv 1, \quad \phi_{1}(x)=x, \quad \phi_{2}(x)=2 x^{2}-1, \quad \phi_{3}(x)=4 x^{3}-3 x, \ldots
$$

3. The inner product $\langle f, g\rangle=\int_{0}^{\infty} \mathrm{e}^{-x} f(x) g(x) \mathrm{d} x$
gives orthogonal polynomials called the Laguerre polynomials,

$$
\begin{gathered}
\phi_{0}(x) \equiv 1, \quad \phi_{1}(x)=1-x, \quad \phi_{2}(x)=2-4 x+x^{2} \\
\phi_{3}(x)=6-18 x+9 x^{2}-x^{3}, \ldots
\end{gathered}
$$

Lemma. Suppose that $\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{k}, \ldots\right\}$ are orthogonal polynomials for a given inner product $\langle\cdot, \cdot\rangle$. Then, $\left\langle\phi_{k}, q\right\rangle=0$ whenever $q \in \Pi_{k-1}$.
Proof. This follows since if $q \in \Pi_{k-1}$, then $q(x)=\sum_{i=0}^{k-1} \sigma_{i} \phi_{i}(x)$ for some $\sigma_{i} \in \mathbb{R}, i=$ $0,1, \ldots, k-1$, so

$$
\left\langle\phi_{k}, q\right\rangle=\sum_{i=0}^{k-1} \sigma_{i}\left\langle\phi_{k}, \phi_{i}\right\rangle=0
$$

Remark: note from the above argument that if $q(x)=\sum_{i=0}^{k} \sigma_{i} \phi_{i}(x)$ is of exact degree k (so $\sigma_{k} \neq 0$), then $\left\langle\phi_{k}, q\right\rangle=\sigma_{k}\left\langle\phi_{k}, \phi_{k}\right\rangle \neq 0$.
Theorem. Suppose that $\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{n}, \ldots\right\}$ is a set of orthogonal polynomials. Then, there exist sequences of real numbers $\left(\alpha_{k}\right)_{k=1}^{\infty},\left(\beta_{k}\right)_{k=1}^{\infty},\left(\gamma_{k}\right)_{k=1}^{\infty}$ such that a three-term recurrence relation holds of the form

$$
\phi_{k+1}(x)=\alpha_{k}\left(x-\beta_{k}\right) \phi_{k}(x)-\gamma_{k} \phi_{k-1}(x), \quad k=1,2, \ldots
$$

Proof. The polynomial $x \phi_{k} \in \Pi_{k+1}$, so there exist real numbers

$$
\sigma_{k, 0}, \sigma_{k, 1}, \ldots, \sigma_{k, k+1}
$$

such that

$$
x \phi_{k}(x)=\sum_{i=0}^{k+1} \sigma_{k, i} \phi_{i}(x)
$$

as $\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{k+1}\right\}$ is a basis for Π_{k+1}. Now take the inner product on both sides with ϕ_{j} where $j \leq k-2$. On the left-hand side, note $x \phi_{j} \in \Pi_{k-1}$ and thus

$$
\left\langle x \phi_{k}, \phi_{j}\right\rangle=\int_{a}^{b} w(x) x \phi_{k}(x) \phi_{j}(x) \mathrm{d} x=\int_{a}^{b} w(x) \phi_{k}(x) x \phi_{j}(x) \mathrm{d} x=\left\langle\phi_{k}, x \phi_{j}\right\rangle=0
$$

by the above lemma for $j \leq k-2$. On the right-hand side

$$
\left\langle\sum_{i=0}^{k+1} \sigma_{k, i} \phi_{i}, \phi_{j}\right\rangle=\sum_{i=0}^{k+1} \sigma_{k, i}\left\langle\phi_{i}, \phi_{j}\right\rangle=\sigma_{k, j}\left\langle\phi_{j}, \phi_{j}\right\rangle
$$

by the linearity of $\langle\cdot, \cdot\rangle$ and orthogonality of ϕ_{i} and ϕ_{j} for $i \neq j$. Hence $\sigma_{k, j}=0$ for $j \leq k-2$, and so

$$
x \phi_{k}(x)=\sigma_{k, k+1} \phi_{k+1}(x)+\sigma_{k, k} \phi_{k}(x)+\sigma_{k, k-1} \phi_{k-1}(x) .
$$

Almost there: taking the inner product with ϕ_{k+1} reveals that

$$
\left\langle x \phi_{k}, \phi_{k+1}\right\rangle=\sigma_{k, k+1}\left\langle\phi_{k+1}, \phi_{k+1}\right\rangle,
$$

so $\sigma_{k, k+1} \neq 0$ by the above remark as $x \phi_{k}$ is of exact degree $k+1$ (e.g., from above Gram-Schmidt notes). Thus,

$$
\phi_{k+1}(x)=\frac{1}{\sigma_{k, k+1}}\left(x-\sigma_{k, k}\right) \phi_{k}(x)-\frac{\sigma_{k, k-1}}{\sigma_{k, k+1}} \phi_{k-1}(x),
$$

which is of the given form, with

$$
\alpha_{k}=\frac{1}{\sigma_{k, k+1}}, \quad \beta_{k}=\sigma_{k, k}, \quad \gamma_{k}=\frac{\sigma_{k, k-1}}{\sigma_{k, k+1}}, \quad k=1,2, \ldots
$$

That completes the proof.
Example. The inner product $\langle f, g\rangle=\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} f(x) g(x) \mathrm{d} x$ gives orthogonal polynomials called the Hermite polynomials,

$$
\phi_{0}(x) \equiv 1, \quad \phi_{1}(x)=2 x, \quad \phi_{k+1}(x)=2 x \phi_{k}(x)-2 k \phi_{k-1}(x) \text { for } k \geq 1 .
$$

