Numerical Analysis Hilary Term 2023
Lecture 11: Gauss quadrature

Terminology: Quadrature = numerical integration

Goal: given a (continuous) function f : [a,b] — R, find its integral I = fabf(:c)da:, as
accurately as possible.

Idea: Approximate and Integrate. Find a polynomial p, from data {(z, f(xx))}ieo
by Lagrange interpolation (lecture 1), and integrate f;}” po(z)dx =: I,. Ideally, I, = I or
at least I,, =~ I. Is this true?

If we choose z; to be equispaced points in [a,b], the resulting I, is known as the
Newton-Cotes quadrature. This method is actually quite unstable and inaccurate, and a
much more accurate and elegant quadrature rule exists: Gauss quadrature. In this lecture
we cover this beautiful result involving orthogonal polynomials.

Preparations: Suppose that w is a weight function, defined, positive and integrable on
the open interval (a,b) of R.
Lemma. Let {¢g, ¢1,...,Pn, ...} be orthogonal polynomials for the inner product (f, g) =

b
/ w(z) f(x)g(x)dz. Then, for each k = 0,1,..., ¢ has k distinct roots in the interval
(a,b).

Proof. Since ¢o(z) = const. # 0, the result is trivially true for £ = 0. Suppose that k > 1:
b b

(Dr, Do) = / w(z)dr(x)po(x) dr = 0 with ¢y constant implies that / w(z)pr(x)dr =0
with w(z) >a0, x € (a,b). Thus ¢x(x) must change sign in (a,b), i.e.,a¢k has at least one
root in (a, b).

Suppose that there are ¢ points a < r; <1y < --- <1y < b where ¢, changes sign for some

1 </¢<k. Then
¢

H x —r;) X the sign of ¢, on (14, b)

J=1

has the same sign as ¢, on (a,b). Hence

<m4w=/1mmm@MWMx>a

and thus it follows from the previous lemma (cf. Lecture 12) that ¢, (which is of degree
¢) must be of degree > k, i.e., £ > k. However, ¢ is of exact degree k, and therefore the
number of its distinct roots, £, must be < k. Hence ¢ = k, and ¢, has k distinct roots in
(a,b). O

Application to quadrature. The above lemma leads to very efficient quadrature rules
since it answers the question: how should we choose the quadrature points xg, x1,...,x,

b n
[ )@ dem Y wfa) )

in the quadrature rule
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so that the rule is exact for polynomials of degree as high as possible? (The case w(x) =1
is the most common.)

Recall: the Lagrange interpolating polynomial

= f(z;)La; €11,
j=0

is unique, so f € II,, = p, = f whatever interpolation points are used, and moreover

[ @@ de= [ wtpode =3 w ),
exactly, where .
wj:/ w(z)Ly, ;j(z)dz. (2)

Theorem. Suppose that g < x; < --- < z, are the roots of the n+1-st degree orthogonal
polynomial ¢,,,; with respect to the inner product

(g9, 1) =/ w(z)g(x)h(z)dx.

Then, the quadrature formula (1) with weights (2) is exact whenever f € Iy, ;.

Proof. Let p € IIy,.1. Then by the Division Algorithm p(x) = q(z)¢ni1(x) + r(z) with
q,r € 1I,. So

b b b n
[ @@t = [ w@@onn@ de+ [ u de =Y wr) @

since the integral involving ¢ € II,, is zero by the lemma above and the other is integrated
exactly since r € II,,. Finally p(z;) = q(z;)Pn+1(z;) + r(z;) = r(z;) for j =0,1,...,n as
the z; are the roots of ¢,11. So (3) gives

/ w(x)p(x)de = ijp(xj),

where w; is given by (2) whenever p € Il 1. O

These quadrature rules are called Gauss quadratures.

w(z

=1, (a,b) = (—1,1): Gauss—Legendre quadrature.

)
e w(z) = (1 —2?)""2 and (a,b) = (—1,1): Gauss-Chebyshev quadrature.
e w(z) =e " and (a,b) = (0,00): Gauss—Laguerre quadrature.
e w(z) =e* and (a,b) = (—o0,00): Gauss Hermite quadrature.
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They give better accuracy than Newton—Cotes quadrature for the same number of function
evaluations.

Note When using quadrature on unbounded intervals, the integral should be of the form
fo x)dz and only f is sampled at the nodes.

Note that by the linear change of variable t = (2 — a — b)/(b — a), which maps [a, b] —

[—1, 1], we can evaluate for example
b—a b+a
t.
(P ).

/abf(x)dx: /_if((b—a)t;—b—l—a) b;adt

where ~ denotes “quadrature” and the ¢;, j = 0,1,...,n, are the roots of the n + 1-st

12

degree Legendre polynomial.
Example. 2-point Gauss-Legendre quadrature: ¢o(t) = 2 — 1 = t5 = —

and
1 t— L 1

13 3

S

with wy = 1, similarly. So e.g., changing variables x = (t 4 3)/2,

21 1 [t 2 1 1
/ —da;:—/ dt ~ + = 0.6923077 ... .
1T 2/ ,t+3 3+5 33— %

Note that the trapezium rule (also two evaluations of the integrand) gives

21 11
—dg~=|=4+1| =0.75
/lxx 2[2+} ’

2
whereas / 1 dr =1In2 =0.6931472. .. .
1T

Theorem. Error in Gauss quadrature: suppose that f"*2) is continuous on (a,b). Then
f(2n+2) (

b n
/ dx—ZwamJ an s 2)! / Hx—xj
a 7=0

for some 1 € (a,b).

Proof. The proof is based on the Hermite interpolating polynomial Hy,, 1 to f on zg, x1, ..., x,.
[Recall that Hony1(z;) = f(z;) and Hy,,(z;) = f'(x;) for j = 0,1,...,n.] The error in
Hermite interpolation is

1 2n2 -
f(z) — Hopyr(7) = m +2) jllx_%

for some n = n(x) € (a,b). Now Hapyq € Ilgpyq, s

b
/ w(z)Hops1(x)dz = ZwJH2n+1 ;) Zw]f xj),

7=0
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the first identity because Gauss quadrature is exact for polynomials of this degree and the
second by interpolation. Thus

b n b
[ @@ de =3 wtw) = [ wl@)fe) - Hano) ds

- Gy | @@ [ -t

J=0

and hence the required result follows from the integral mean value theorem as
w(z) [Ti_o(z — 2;)* > 0. O

Remark: the “direct” approach of finding Gauss quadrature formulae sometimes works
for small n, but more sophisticated algorithms are used for large n.*

Example. To find the two-point Gauss—Legendre rule wyg f(zo) +wq f(z1) on (—1,1) with
weight function w(z) = 1, we need to be able to integrate any cubic polynomial exactly,

SO
1
:/ ldzx = wo+wy (4)
-1
1
0:/ rdr = WoZo + W11 (5)
—1
1
g:/ vidr = wor] + wir? (6)
-1
1
:/ ;p3dx = on'g—lel’?- (7)
-1

These are four nonlinear equations in four unknowns wy, wy, o and x;. Equations (5) and

(7) give 0
ER IR

T — 21275 = 0

which implies that

for wg, wy # 0, i.e.,
l’o[L’l((E1 — 1‘0)(331 + l’o) = 0.

If zy = 0, this implies w; = 0 or 1 = 0 by (5), either of which contradicts (6). Thus
xo # 0, and similarly xy # 0. If x; = ¢, (5) implies w; = —wy, which contradicts (4). So

xr1 = —xo, and hence (5) implies w; = wy. But then (4) implies that wy = wy = 1 and (6)
gives
To=—25 and T = 2,

1See e.g., the research paper by Hale and Townsend, “Fast and accurate computation of Gauss-Legendre and
Gauss—Jacobi quadrature nodes and weights” SIAM J. Sci. Comput. 2013.
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which are the roots of the Legendre polynomial 2% — 1.

Convergence: Gauss quadrature converges astonishingly fast. It can be shown that if f
is analytic on [a, b], the convergence is geometric (exponential) in the number of samples.
This is in contrast to other (more straightforward) quadrature rules:

e Newton-Cotes: Find interpolant in n equispaced points, and integrate interpolant.
Convergence: (often) Divergent!

e (Composite) trapezium rule: Find piecewise-linear interpolant in n equispaced points,
and integrate interpolant. Convergence: O(1/n?) (assumes f” exists)

e (Composite) Simpson’s rule: Find piecewise-quadratic interpolant in n equispaced
points (each subinterval containing three points), and integrate interpolant. Conver-
gence: O(1/n*) (assumes f”" exists)

The figure below illustrates the performance on integrating the Runge function.
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Figure 1: Convergence of quadrature rules for f_ll 25:6712+1dx (Runge function)

Nodes and weights for Gauss(-Legendre) quadrature The figure below shows
the nodes (interpolation points) and the corrsponding weights with the standard Gauss-
Legendre quadrature rule, i.e., when w(z) = 1 and [a,b] = [—1,1]. In Chebfun these are
computed conveniently by [x,w] = legpts(n+1)
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Note that the nodes/interpolation points cluster near endpoints (and sparser in the
middle); this is a general phenomenon, and very analogous to the Chebyshev interpolation
points mentioned in the least-squares lecture (Gauss and Chebyshev points have asymp-
totically the same distribution of points). Note also that the weights are all positive and
shrink as n grows; they have to because they sum to 2 (why?).
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