## Numerical Analysis Hilary Term 2023

## Lecture 11: Gauss quadrature

Terminology: Quadrature $\equiv$ numerical integration
Goal: given a (continuous) function $f:[a, b] \rightarrow \mathbb{R}$, find its integral $I=\int_{a}^{b} f(x) d x$, as accurately as possible.
Idea: Approximate and Integrate. Find a polynomial $p_{n}$ from data $\left\{\left(x_{k}, f\left(x_{k}\right)\right)\right\}_{k=0}^{n}$ by Lagrange interpolation (lecture 1), and integrate $\int_{x_{0}}^{x_{n}} p_{n}(x) \mathrm{d} x=: I_{n}$. Ideally, $I_{n}=I$ or at least $I_{n} \approx I$. Is this true?

If we choose $x_{k}$ to be equispaced points in $[a, b]$, the resulting $I_{n}$ is known as the Newton-Cotes quadrature. This method is actually quite unstable and inaccurate, and a much more accurate and elegant quadrature rule exists: Gauss quadrature. In this lecture we cover this beautiful result involving orthogonal polynomials.
Preparations: Suppose that $w$ is a weight function, defined, positive and integrable on the open interval $(a, b)$ of $\mathbb{R}$.
Lemma. Let $\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{n}, \ldots\right\}$ be orthogonal polynomials for the inner product $\langle f, g\rangle=$ $\int_{a}^{b} w(x) f(x) g(x) \mathrm{d} x$. Then, for each $k=0,1, \ldots, \phi_{k}$ has $k$ distinct roots in the interval $(a, b)$.
Proof. Since $\phi_{0}(x) \equiv$ const. $\neq 0$, the result is trivially true for $k=0$. Suppose that $k \geq 1$ : $\left\langle\phi_{k}, \phi_{0}\right\rangle=\int_{a}^{b} w(x) \phi_{k}(x) \phi_{0}(x) \mathrm{d} x=0$ with $\phi_{0}$ constant implies that $\int_{a}^{b} w(x) \phi_{k}(x) \mathrm{d} x=0$ with $w(x)>0, x \in(a, b)$. Thus $\phi_{k}(x)$ must change sign in $(a, b)$, i.e., $\phi_{k}$ has at least one root in ( $a, b$ ).
Suppose that there are $\ell$ points $a<r_{1}<r_{2}<\cdots<r_{\ell}<b$ where $\phi_{k}$ changes sign for some $1 \leq \ell \leq k$. Then

$$
q(x)=\prod_{j=1}^{\ell}\left(x-r_{j}\right) \times \text { the sign of } \phi_{k} \text { on }\left(r_{\ell}, b\right)
$$

has the same sign as $\phi_{k}$ on $(a, b)$. Hence

$$
\left\langle\phi_{k}, q\right\rangle=\int_{a}^{b} w(x) \phi_{k}(x) q(x) \mathrm{d} x>0
$$

and thus it follows from the previous lemma (cf. Lecture 12) that $q$, (which is of degree $\ell)$ must be of degree $\geq k$, i.e., $\ell \geq k$. However, $\phi_{k}$ is of exact degree $k$, and therefore the number of its distinct roots, $\ell$, must be $\leq k$. Hence $\ell=k$, and $\phi_{k}$ has $k$ distinct roots in $(a, b)$.

Application to quadrature. The above lemma leads to very efficient quadrature rules since it answers the question: how should we choose the quadrature points $x_{0}, x_{1}, \ldots, x_{n}$ in the quadrature rule

$$
\begin{equation*}
\int_{a}^{b} w(x) f(x) \mathrm{d} x \approx \sum_{j=0}^{n} w_{j} f\left(x_{j}\right) \tag{1}
\end{equation*}
$$

so that the rule is exact for polynomials of degree as high as possible? (The case $w(x) \equiv 1$ is the most common.)
Recall: the Lagrange interpolating polynomial

$$
p_{n}=\sum_{j=0}^{n} f\left(x_{j}\right) L_{n, j} \in \Pi_{n}
$$

is unique, so $f \in \Pi_{n} \Longrightarrow p_{n} \equiv f$ whatever interpolation points are used, and moreover

$$
\int_{a}^{b} w(x) f(x) \mathrm{d} x=\int_{a}^{b} w(x) p_{n}(x) \mathrm{d} x=\sum_{j=0}^{n} w_{j} f\left(x_{j}\right)
$$

exactly, where

$$
\begin{equation*}
w_{j}=\int_{a}^{b} w(x) L_{n, j}(x) \mathrm{d} x . \tag{2}
\end{equation*}
$$

Theorem. Suppose that $x_{0}<x_{1}<\cdots<x_{n}$ are the roots of the $n+1$-st degree orthogonal polynomial $\phi_{n+1}$ with respect to the inner product

$$
\langle g, h\rangle=\int_{a}^{b} w(x) g(x) h(x) \mathrm{d} x
$$

Then, the quadrature formula (1) with weights (2) is exact whenever $f \in \Pi_{2 n+1}$.
Proof. Let $p \in \Pi_{2 n+1}$. Then by the Division Algorithm $p(x)=q(x) \phi_{n+1}(x)+r(x)$ with $q, r \in \Pi_{n}$. So

$$
\begin{equation*}
\int_{a}^{b} w(x) p(x) \mathrm{d} x=\int_{a}^{b} w(x) q(x) \phi_{n+1}(x) \mathrm{d} x+\int_{a}^{b} w(x) r(x) \mathrm{d} x=\sum_{j=0}^{n} w_{j} r\left(x_{j}\right) \tag{3}
\end{equation*}
$$

since the integral involving $q \in \Pi_{n}$ is zero by the lemma above and the other is integrated exactly since $r \in \Pi_{n}$. Finally $p\left(x_{j}\right)=q\left(x_{j}\right) \phi_{n+1}\left(x_{j}\right)+r\left(x_{j}\right)=r\left(x_{j}\right)$ for $j=0,1, \ldots, n$ as the $x_{j}$ are the roots of $\phi_{n+1}$. So (3) gives

$$
\int_{a}^{b} w(x) p(x) \mathrm{d} x=\sum_{j=0}^{n} w_{j} p\left(x_{j}\right)
$$

where $w_{j}$ is given by (2) whenever $p \in \Pi_{2 n+1}$.
These quadrature rules are called Gauss quadratures.

- $w(x) \equiv 1,(a, b)=(-1,1)$ : Gauss-Legendre quadrature.
- $w(x)=\left(1-x^{2}\right)^{-1 / 2}$ and $(a, b)=(-1,1)$ : Gauss-Chebyshev quadrature.
- $w(x)=\mathrm{e}^{-x}$ and $(a, b)=(0, \infty)$ : Gauss-Laguerre quadrature.
- $w(x)=\mathrm{e}^{-x^{2}}$ and $(a, b)=(-\infty, \infty)$ : Gauss-Hermite quadrature.

They give better accuracy than Newton-Cotes quadrature for the same number of function evaluations.
Note when using quadrature on unbounded intervals, the integral should be of the form $\int_{0}^{\infty} \mathrm{e}^{-x} f(x) \mathrm{d} x$ and only $f$ is sampled at the nodes.
Note that by the linear change of variable $t=(2 x-a-b) /(b-a)$, which maps $[a, b] \rightarrow$ $[-1,1]$, we can evaluate for example

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{-1}^{1} f\left(\frac{(b-a) t+b+a}{2}\right) \frac{b-a}{2} \mathrm{~d} t \simeq \frac{b-a}{2} \sum_{j=0}^{n} w_{j} f\left(\frac{b-a}{2} t_{j}+\frac{b+a}{2}\right)
$$

where $\simeq$ denotes "quadrature" and the $t_{j}, j=0,1, \ldots, n$, are the roots of the $n+1$-st degree Legendre polynomial.

Example. 2-point Gauss-Legendre quadrature: $\phi_{2}(t)=t^{2}-\frac{1}{3} \Longrightarrow t_{0}=-\frac{1}{\sqrt{3}}, t_{1}=\frac{1}{\sqrt{3}}$ and

$$
w_{0}=\int_{-1}^{1} \frac{t-\frac{1}{\sqrt{3}}}{-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}} \mathrm{~d} t=-\int_{-1}^{1}\left(\frac{\sqrt{3}}{2} t-\frac{1}{2}\right) \mathrm{d} t=1
$$

with $w_{1}=1$, similarly. So e.g., changing variables $x=(t+3) / 2$,

$$
\int_{1}^{2} \frac{1}{x} \mathrm{~d} x=\frac{1}{2} \int_{-1}^{1} \frac{2}{t+3} \mathrm{~d} t \simeq \frac{1}{3+\frac{1}{\sqrt{3}}}+\frac{1}{3-\frac{1}{\sqrt{3}}}=0.6923077 \ldots
$$

Note that the trapezium rule (also two evaluations of the integrand) gives

$$
\int_{1}^{2} \frac{1}{x} \mathrm{~d} x \simeq \frac{1}{2}\left[\frac{1}{2}+1\right]=0.75
$$

whereas $\int_{1}^{2} \frac{1}{x} \mathrm{~d} x=\ln 2=0.6931472 \ldots$.
Theorem. Error in Gauss quadrature: suppose that $f^{(2 n+2)}$ is continuous on $(a, b)$. Then

$$
\int_{a}^{b} w(x) f(x) \mathrm{d} x=\sum_{j=0}^{n} w_{j} f\left(x_{j}\right)+\frac{f^{(2 n+2)}(\eta)}{(2 n+2)!} \int_{a}^{b} w(x) \prod_{j=0}^{n}\left(x-x_{j}\right)^{2} \mathrm{~d} x
$$

for some $\eta \in(a, b)$.
Proof. The proof is based on the Hermite interpolating polynomial $H_{2 n+1}$ to $f$ on $x_{0}, x_{1}, \ldots, x_{n}$. [Recall that $H_{2 n+1}\left(x_{j}\right)=f\left(x_{j}\right)$ and $H_{2 n+1}^{\prime}\left(x_{j}\right)=f^{\prime}\left(x_{j}\right)$ for $j=0,1, \ldots, n$.] The error in Hermite interpolation is

$$
f(x)-H_{2 n+1}(x)=\frac{1}{(2 n+2)!} f^{(2 n+2)}(\eta(x)) \prod_{j=0}^{n}\left(x-x_{j}\right)^{2}
$$

for some $\eta=\eta(x) \in(a, b)$. Now $H_{2 n+1} \in \Pi_{2 n+1}$, so

$$
\int_{a}^{b} w(x) H_{2 n+1}(x) \mathrm{d} x=\sum_{j=0}^{n} w_{j} H_{2 n+1}\left(x_{j}\right)=\sum_{j=0}^{n} w_{j} f\left(x_{j}\right),
$$

the first identity because Gauss quadrature is exact for polynomials of this degree and the second by interpolation. Thus

$$
\begin{aligned}
\int_{a}^{b} w(x) f(x) \mathrm{d} x-\sum_{j=0}^{n} & w_{j} f\left(x_{j}\right)=\int_{a}^{b} w(x)\left[f(x)-H_{2 n+1}(x)\right] \mathrm{d} x \\
& =\frac{1}{(2 n+2)!} \int_{a}^{b} f^{(2 n+2)}(\eta(x)) w(x) \prod_{j=0}^{n}\left(x-x_{j}\right)^{2} \mathrm{~d} x
\end{aligned}
$$

and hence the required result follows from the integral mean value theorem as $w(x) \prod_{j=0}^{n}\left(x-x_{j}\right)^{2} \geq 0$.

Remark: the "direct" approach of finding Gauss quadrature formulae sometimes works for small $n$, but more sophisticated algorithms are used for large $n .^{1}$
Example. To find the two-point Gauss-Legendre rule $w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)$ on $(-1,1)$ with weight function $w(x) \equiv 1$, we need to be able to integrate any cubic polynomial exactly, so

$$
\begin{align*}
2 & =\int_{-1}^{1} 1 \mathrm{~d} x=w_{0}+w_{1}  \tag{4}\\
0 & =\int_{-1}^{1} x \mathrm{~d} x=w_{0} x_{0}+w_{1} x_{1}  \tag{5}\\
\frac{2}{3} & =\int_{-1}^{1} x^{2} \mathrm{~d} x=w_{0} x_{0}^{2}+w_{1} x_{1}^{2}  \tag{6}\\
0 & =\int_{-1}^{1} x^{3} \mathrm{~d} x=w_{0} x_{0}^{3}+w_{1} x_{1}^{3} \tag{7}
\end{align*}
$$

These are four nonlinear equations in four unknowns $w_{0}, w_{1}, x_{0}$ and $x_{1}$. Equations (5) and (7) give

$$
\left[\begin{array}{cc}
x_{0} & x_{1} \\
x_{0}^{3} & x_{1}^{3}
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which implies that

$$
x_{0} x_{1}^{3}-x_{1} x_{0}^{3}=0
$$

for $w_{0}, w_{1} \neq 0$, i.e.,

$$
x_{0} x_{1}\left(x_{1}-x_{0}\right)\left(x_{1}+x_{0}\right)=0
$$

If $x_{0}=0$, this implies $w_{1}=0$ or $x_{1}=0$ by (5), either of which contradicts (6). Thus $x_{0} \neq 0$, and similarly $x_{1} \neq 0$. If $x_{1}=x_{0}$, (5) implies $w_{1}=-w_{0}$, which contradicts (4). So $x_{1}=-x_{0}$, and hence (5) implies $w_{1}=w_{0}$. But then (4) implies that $w_{0}=w_{1}=1$ and (6) gives

$$
x_{0}=-\frac{1}{\sqrt{3}} \quad \text { and } \quad x_{1}=\frac{1}{\sqrt{3}},
$$

[^0]which are the roots of the Legendre polynomial $x^{2}-\frac{1}{3}$.
Convergence: Gauss quadrature converges astonishingly fast. It can be shown that if $f$ is analytic on $[a, b]$, the convergence is geometric (exponential) in the number of samples. This is in contrast to other (more straightforward) quadrature rules:

- Newton-Cotes: Find interpolant in $n$ equispaced points, and integrate interpolant. Convergence: (often) Divergent!
- (Composite) trapezium rule: Find piecewise-linear interpolant in $n$ equispaced points, and integrate interpolant. Convergence: $O\left(1 / n^{2}\right)$ (assumes $f^{\prime \prime}$ exists)
- (Composite) Simpson's rule: Find piecewise-quadratic interpolant in $n$ equispaced points (each subinterval containing three points), and integrate interpolant. Convergence: $O\left(1 / n^{4}\right)$ (assumes $f^{\prime \prime \prime \prime}$ exists)

The figure below illustrates the performance on integrating the Runge function.


Figure 1: Convergence of quadrature rules for $\int_{-1}^{1} \frac{1}{25 x^{2}+1} d x$ (Runge function)

Nodes and weights for Gauss(-Legendre) quadrature The figure below shows the nodes (interpolation points) and the corrsponding weights with the standard GaussLegendre quadrature rule, i.e., when $w(x)=1$ and $[a, b]=[-1,1]$. In Chebfun these are computed conveniently by $[\mathrm{x}, \mathrm{w}]=\operatorname{legpts}(\mathrm{n}+1)$


Note that the nodes/interpolation points cluster near endpoints (and sparser in the middle); this is a general phenomenon, and very analogous to the Chebyshev interpolation points mentioned in the least-squares lecture (Gauss and Chebyshev points have asymptotically the same distribution of points). Note also that the weights are all positive and shrink as $n$ grows; they have to because they sum to 2 (why?).


[^0]:    ${ }^{1}$ See e.g., the research paper by Hale and Townsend, "Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights" SIAM J. Sci. Comput. 2013.

