
Numerical Analysis Hilary Term 2023

Lecture 12–13: Introduction to numerical methods for initial-value problems

Initial value problems: Initial value problems arise everywhere in mathematics where

we wish to model the evolution in time of a given system.

Definition 1. Let I = [x0, X] ⊂ R be a (time) interval and D ⊂ Rd be an open subset,

where d ∈ N+ denotes the space dimension.

• A first-order ordinary differential equation (ODE) is an equation of the form

y′(x) = f(x,y) ,

where the righthand side is a function f : I ×D → Rd.

• An initial value problem (IVP) is an ODE with an initial condition, that is,

y′(x) = f(x,y) , y(x0) = y0 .

Picard’s Theorem gives sufficient conditions to ensure that the IVP admits a unique solu-

tion1.

Theorem. Suppose that f is continuous in a neighborhood U ⊂ R1+d of (x0,y0) that

contains the (closed) cylinder

R = {(x,y) : x0 ≤ x ≤ XM , ∥y − y0∥ ≤ YM} ,

where XM > x0 and YM > 0 are constants. Suppose also that there exists a positive

constant L such that

∥f(x,y)− f(x, z)∥ ≤ L∥y − z∥

holds whenever (x,y) and (x, z) lie in R. Finally, letting

M := max{∥f(x,y)∥ : (x,y) ∈ R} ,

suppose that M(XM − x0) ≤ YM . Then, there exists a unique continuously differentiable

function

[x0, XM] ∋ x 7→ y(x) ∈ Rd

that is the solution to our IVP.

Note that Picard’s theorem guarantees the existence of a solution only up to a finite

time XM ; consider : y′ = y2, y(0) = 1, which has solution y(x) = (1−x)−1 and blows up at

x = 1. Furthermore, if an IVP satisfies the assumptions of Picard’s theorem, its solution

is stable on the bounded interval [x0, X]. This means that if y : [x0, X] → D solves the

IVP

y′(x) = f(x,y) , y(x0) = y0 ,

1For more details about Picard’s theorem, we refer to chapter 11 of Prof. Trefethen’s book Exploring ODEs,

which is freely available at http://people.maths.ox.ac.uk/trefethen/Exploring.pdf or part A DEI notes

Lecture 12–13 pg 1 of 7

http://people.maths.ox.ac.uk/trefethen/Exploring.pdf

and ỹ : [x0, X] → D solves the same ODE with a perturbed initial condition ỹ0, that is,

ỹ′(x) = f(x, ỹ) , ỹ(x0) = ỹ0 ,

then

∥y(x)− ỹ(x)∥ ≤ eL(X−x0)∥y0 − ỹ0∥ ∀x ∈ [x0, X] .

This implies that a small error in the initial condition does not compromise dramatically

the solution of the IVP. However, note that the constant eL(X−x0) in the above bound grows

exponentially as the final time X increases.

You have seen in A1 Differential Equations 1 that any higher-order IVP can be re-

formulated as a larger first-order IVP. We therefore mainly consider numerical methods

for first-order problems. It is also possible to reformulate nonautonomous problems as

larger autonomous ones (wherein y′ = f(y)), so sometimes we will restrict ourselves to

autonomous ones when it is convenient to do so.

An inconvenient truth is that most IVPs (and most differential equations) cannot be

solve analytically (i.e., exactly, to obtain closed-form solutions). It therefore becomes

necessary to find approximate solutions with a numerical algorithm. Fortunately, a number

of reliable and efficient methods are available for such solution. The remainder of this

course is devoted to these methods and their analysis.

One-step methods Assume that the IVP

y′ = f(x,y) , y(x0) = y0 ,

admits a unique stable solution y : [x0, X] → D that is defined on the bounded interval

[x0, X]. How can we compute a numerical approximation of y that can be made arbitrarily

accurate? A simple idea is to first divide the interval [x0, X] into N ∈ N+ subintervals

defined by the equidistant points xn = x0 + nh, n = 0, . . . , N , where the step size h is

h = (X − x0)/N . To each time step xn, we associate an approximation yn of y(xn). To

define how to compute these approximations, we take inspiration from the integral equation

arising in Picard’s theorem:

y(xn+1) = y(xn) +

∫ xn+1

xn

f(x,y(x)) dx ,

which is obtained by integrating the IVP, and where the integration is to be understood

componentwise.

This equality suggests that, if we have already computed an approximation yn of y(xn),

we could compute yn+1 by adding to yn an approximation of the integral appearing on the

righthand side. There is therefore a deep connection between quadrature and the solution

of IVPs. Indeed if f(x,y) = f(x), i.e., f does not depend on y, then computing y is

a standard quadrature problem, and can be solved by e.g. Gauss quadrature. Starting

with n = 0, we could iterate such a strategy to compute the entire sequence {yn}Nn=0. In

what follows, we construct three different schemes based on three different (and still very

similar) approximations of the integral and investigate the impact that this choice has on

the properties of the resulting numerical method.

Lecture 12–13 pg 2 of 7

To construct an approximation of the integral, we recall that by the mean value theorem

there is a ξ ∈ [xn, xn+1] such that∫ xn+1

xn

f(x,y(x)) dx = hf(ξ,y(ξ)) .

Therefore, we can construct an approximation by replacing ξ with a value s we like. The

resulting numerical approximation rule is called a rectangle rule. A consequence is that,

for any s ∈ [xn, xn+1], the approximation error is at most∫ xn+1

xn

f(x,y(x)) dx− hf(s,y(s)) = h(f(ξ,y(ξ))− f(s,y(s))) ≤ h max
r∈[xn,xn+1]

|f(r,y(r))− f(s,y(s))|.

For instance, we can choose s = xn, so that∫ xn+1

xn

f(x,y(x)) dx ≈ hf(xn,y(xn)) .

Inserting this gives

y(xn+1) ≈ y(xn) + hf(xn,y(xn)) ,

which motivates the definition of the explicit Euler method2

yn+1 = yn + hf(xn,yn) .

Two other interesting choices are ξ = xn+1 and ξ = (xn + xn+1)/2, which give rise to the

implicit Euler method

yn+1 = yn + hf(xn+1,yn+1)

and the implicit midpoint rule

yn+1 = yn + hf(xn + h/2, (yn + yn+1)/2) ,

respectively.

Note the occurrence of yn+1 on the right-hand side of these last two methods. These

numerical methods are called implicit, because computing yn+1 requires solving a (generally

nonlinear) system, which makes them more computationally expensive than explicit Euler.

The arising equations are typically solved with Newton’s method, which you met in M4

Constructive Mathematics. Explicit methods are faster per timestep, but as we will see

often suffer from severe timestep restrictions to retain stability, and implicit methods are

usually faster for such problems.

We test these methods on two different examples. First, we consider the linear test

case

y′ = λy , y0 = 1 , x ∈ [0, 1] . (1)

For λ = 3 and N = 10, we observe that all three methods compute a qualitatively

correct solution, although the one computed with the implicit midpoint rule is way more

2The explicit and the implicit Euler methods have been known since 1768!

Lecture 12–13 pg 3 of 7

accurate. Doubling the value ofN , we see that the accuracy of the Euler methods improves,

although they are never as precise as the implicit midpoint rule.

Next, we investigate what happens for negative values of λ. This case is interesting

because the exact solution converges to 0 exponentially fast. We fix N = 10 and investigate

different values of λ. For λ ∈ [−1,−10], we see that all methods provide a qualitatively

correct solution. For λ < −10, we see that the explicit Euler solution start oscillating,

becoming equioscillatory for λ = −20, and diverging for λ < −20.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

exact

impEul

impMpr

expEul

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

exact

impEul

impMpr

expEul

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

exact

impEul

impMpr

expEul

Figure 1: Solving (1) using explicit Euler, midpoint and implicit Euler methods.

For λ < −20, the solution computed with the implicit midpoint rule also starts to

oscillate, although the level of these oscillations cannot be compared with the ones of the

explicit Euler method, and the method does not diverge (not even for λ = −9000). On

the other hand, it is surprising to see that the implicit Euler method provides excellent

solutions for any negative number of λ. This example shows that the stability of a numerical

method can vary drastically.

The second test case we consider is the following IVP:

y′ =

(
y2
−y1

)
, y0 =

(
1

0

)
, x ∈ [0, 2π] , (2)

whose analytical (exact) solution is y(x) =
(
cos(x)
sin(x)

)
. This case is interesting because the

quantity Q(y) := ∥y(x)∥ is constant in time. We fix N = 40 and plot the orbit (that is,

the curve t 7→ y(x)) of the numerical solutions computed with the three methods above

and the evolution of their quantity Q.

The numerical solutions are illustrated in Figure 2. We see that the implicit midpoint

rule is the only method that preserves Q, and that it does it up to machine precision! The

laws of physics are typically formulated by considering the conservation laws of energy,

mass, momentum, etc., and numerical methods that exactly preserve key structural prop-

erties of the underyling models are now of prime importance. This line of thinking has led

to a beautiful confluence of numerical analysis with geometry and topology.

Consistency of a one-step method

Definition 2. A one-step method is a function Ψ that takes the triplet (s,y, h) ⊂ R ×
Rd × R and a function f , and computes an approximation Ψ(s,y, h, f) of y(s+ h), which

Lecture 12–13 pg 4 of 7

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

expEul

impEul

impMpr

0 1 2 3 4 5 6
0.6

0.8

1

1.2

1.4

1.6

1.8
Q(y(t))

Figure 2: Numerical solutions for (2).

is the solution at s+ h of the IVP

y′(x) = f(x,y) , y(s) = y .

Here, we tacitly assume that y(s + h) exists. Additionally, the timestep h may need to be

sufficiently small for Ψ to be well defined.

Definition 3. A one-step method Ψ is said to be consistent if

Ψ(s,y, 0, f) = y

and
d

dh
Ψ(s,y, h, f)|h=0 = f(s,y) .

Definition 4. The consistency error τ is defined as

τ (s,y, h, f) :=
y(s+ h)− y

h
− Ψ(s,y, h, f)− y

h
=

y(s+ h)−Ψ(s,y, h, f)

h
,

where y(s+ h) is the solution at s+ h of the IVP.

The following lemma gives additional insight about the definition of consistent one-step

method. The gist of it is that a one-step method is consistent if the consistency error can

be made arbitrarily small by reducing h.

Lemma. Assume that h 7→ Ψ(s,y, h, f) is continuously differentiable in a neighborhood

of 0. Then, Ψ is consistent if and only if, for any fixed f ,

∥τ (s̃, ỹ, h, f)∥ → 0 as h → 0

locally uniformly in (s̃, ỹ) ∈ R, where R is the cylinder from Picard’s Theorem.

It is sometimes convenient to represent an abstract one-step method via its increment

function.

Lemma. Assume that h 7→ Ψ(s,y, h, f) is continuously differentiable in a neighborhood

of 0. Then, Ψ is consistent if and only if there is a continuous increment function h 7→

Lecture 12–13 pg 5 of 7

ψ(s,y, h, f) such that

Ψ(s,y, h, f) = y + hψ(s,y, h, f) , ψ(s,y, 0, f) = f(s,y) .

We also define the global error

en := y(xn)− yn.

Then e := eN = y(xN)− yN is the error in the solution at x = X.

Theorem. Let Ψ be a consistent one-step method and assume that its increment function

ψ is Lipschitz continuous with respect to y, that is, that there exists a positive constant

Lψ such that, for 0 ≤ h ≤ h0 and for the same region R of Picard’s theorem,

∥ψ(x,y, h, f)−ψ(x, z, h, f)∥ ≤ Lψ∥y − z∥ for(x,y), (x, z) inR .

Then, assuming that (xn,yn) remains in R, it follows that

e ≤
(
exp (Lψ(xN − x0))− 1

Lψ

)
max

n=0,...,N−1
∥τ (xn,y(xn), h, f)∥ .

Proof. For a generic n ∈ {1, . . . , N − 1},

en+1= ∥y(xn+1)− yn+1∥ ,
= ∥y(xn+1)−Ψ(xn,yn, h, f)∥ ,
= ∥y(xn+1)−Ψ(xn,y(xn), h, f) +Ψ(xn,y(xn), h, f)−Ψ(xn,yn, h, f)∥ ,
≤ ∥y(xn+1)−Ψ(xn,y(xn), h, f)∥+ ∥Ψ(xn,y(xn), h, f)−Ψ(xn,yn, h, f)∥ ,
= h∥τ (xn,y(xn), h, f)∥+ ∥ (y(xn) + hψ(x,y(xn), h, f))− (yn + hψ(x,yn, h, f)) ∥ ,
≤ h∥τ (xn,y(xn), h, f)∥+ ∥y(xn)− yn∥+ h∥ψ(x,y(xn), h, f)−ψ(x,yn, h, f)∥ ,
= h∥τ (xn,y(xn), h, f)∥+ en + h∥ψ(x,y(xn), h, f)−ψ(x,yn, h, f)∥ ,
≤ h∥τ (xn,y(xn), h, f)∥+ en + hLψ∥y(xn)− yn∥ ,
= h∥τ (xn,y(xn), h, f)∥+ (1 + hLψ)en .

Iterating recursively, this implies that (note that e0 = 0)

en+1≤ (1 + hLψ)
n+1e0 + h

∑n
k=0(1 + hLψ)

k maxm=0,...,n ∥τ (xm,y(xm), h, f)∥
=

(1+hLψ)
n+1−1

Lψ
maxm=0,...,n ∥τ (xm,y(xm), h, f)∥ .

To conclude the proof, note that 1 + hLψ ≤ exphLψ. 2

Amethod is said to have order of accuracy (or just order) p if e ≤ Chp for some constant

C. The related notion of consistency order is the largest p̃ such that the consistency error

∥τ (s,y, h, f)∥ ≤ C̃hp̃ for some C̃. The consistency order p̃ measures the local error whereas

p does the global error; they are usually the same, as the above theorem suggests.

Listing 1: l11 ivp1.m

1 clear , set(0,’DefaultFigureWindowStyle ’,’docked ’)

2 N = 10; h = 1/N; lambda = -20; %modify these parameters to experiment

Lecture 12–13 pg 6 of 7

3 expEul = nan(1, N+1); impEul = nan(1, N+1); impMpr = nan(1, N+1);

4 y0 = 1; expEul (1) = y0; impEul (1) = y0; impMpr (1) = y0;

5

6 for ii = 1:N

7 expEul(ii+1) = expEul(ii)*(1+h*lambda);

8 impEul(ii+1) = impEul(ii)/(1-h*lambda);

9 impMpr(ii+1) = impMpr(ii)*(1+h*lambda /2)/(1 -h*lambda /2);

10 end

11

12 t = linspace(0, 1, N+1); figure (1);

13 plot(t, exp(lambda*t), t, impEul , ’*-’, t, impMpr , ’k*-’,t, expEul , ’*-’)

14 legend ({’exact’, ’impEul ’, ’impMpr ’,’expEul ’})

Listing 2: l11 ivp2.m

1 clear , set(0,’DefaultFigureWindowStyle ’,’docked ’)

2 N = 40; T = 2*pi; h = T/N; A = [0 1; -1 0];

3 expEul = nan(2, N+1); impEul = nan(2, N+1); impMpr = nan(2, N+1);

4 y0 = [1; 0]; expEul (:,1) = y0; impEul (:,1) = y0; impMpr (:,1) = y0;

5

6 for ii = 1:N

7 expEul(:,ii+1) = (eye (2)+h*A)* expEul(:,ii);

8 impEul(:,ii+1) = (eye(2)-h*A)\ impEul(:,ii);

9 impMpr(:,ii+1) = (eye(2)-h*A/2)\((eye (2)+h*A/2)* impMpr(:,ii));

10 end

11 figure (2); subplot (1,2,1);

12 plot(expEul (1,:), expEul (2,:), ’*-’, ’linewidth ’, 4);

13 plot(impEul (1,:), impEul (2,:), ’*-’, ’linewidth ’, 4);

14 plot(impMpr (1,:), impMpr (2,:), ’*-’, ’linewidth ’, 4);

15 axis equal

16 legend ({’expEul ’, ’impEul ’, ’impMpr ’})

17 subplot (1,2,2), t = linspace(0, T, N+1); Q = @(y) sqrt(sum(y.^2, 1));

18 plot(t, Q(expEul), ’*-’, t, Q(impEul), ’*-’, t, Q(impMpr), ’*-’,’linewidth ’, 4)

19 title(’Q(y(t))’,’FontSize ’ ,24);

20 fprintf(’max(abs(Q(impMpr)-1)) = %e\n’, max(abs(Q(impMpr)-1)))

Lecture 12–13 pg 7 of 7

