Numerical Analysis Hilary Term 2023

Lecture 15-16: Multistep methods

Linear multi-step methods

Runge-Kutta methods deliver an approximate solution to

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}, \tag{1}
\end{equation*}
$$

but tacitly assume that it is possible to evaluate the right-hand side $\mathbf{f}(x, \mathbf{y})$ anywhere (and use a lot of such function evaluations). Instead, linear multi-step methods require values of \mathbf{f} at grid points only.

Definition 1. Let $X>x_{0}$ be a final time, $N, k \in \mathbb{N}, N \geq k, h:=\left(X-x_{0}\right) / N$, and $x_{n}:=$ $x_{0}+h n$. A linear k-step method is an iterative method that computes the approximation \mathbf{y}_{n+k} to $\mathbf{y}\left(x_{n+k}\right)$ by solving

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} \mathbf{y}_{n+j}=h \sum_{j=0}^{k} \beta_{j} \mathbf{f}\left(x_{n+j}, \mathbf{y}_{n+j}\right) \tag{2}
\end{equation*}
$$

where $\left\{\alpha_{j}\right\}_{j=0}^{k}$ and $\left\{\beta_{j}\right\}_{j=0}^{k}$ are real coefficients. To avoid degenerate cases, we assume that $\alpha_{k} \neq 0$ and that $\alpha_{0}^{2}+\beta_{0}^{2} \neq 0$.

Note that if $\beta_{k}=0$, the method is explicit.
It is also possible to construct multi-step methods on nonequidistant grids, and good timestepping software does so for you.

In the same way Runge-Kutta methods are summarized with Butcher tables, linear multi-step methods can be summarized with two polynomials.

Definition 2. For the k-step method defined by (2),

$$
\begin{equation*}
\rho(z)=\sum_{j=0}^{k} \alpha_{j} z^{j} \quad \text { and } \quad \sigma(z)=\sum_{j=0}^{k} \beta_{j} z^{j} \tag{3}
\end{equation*}
$$

are called the first and second characteristic polynomials.
Example 3. A simple linear 3 -step method can be constructed using Simpson's quadrature rule. Indeed,

$$
\begin{aligned}
\mathbf{y}\left(x_{n+1}\right) & =\mathbf{y}\left(x_{n-1}\right)+\int_{x_{n-1}}^{x_{n+1}} \mathbf{f}(x, \mathbf{y}(x)) \mathrm{d} x \\
& \approx \mathbf{y}\left(x_{n-1}\right)+\frac{2 h}{6}\left(\mathbf{f}\left(x_{n-1}, \mathbf{y}\left(x_{n-1}\right)\right)+4 \mathbf{f}\left(x_{n}, \mathbf{y}\left(x_{n}\right)\right)+\mathbf{f}\left(x_{n+1}, \mathbf{y}\left(x_{n+1}\right)\right)\right) .
\end{aligned}
$$

This motivates the following linear 2-step method

$$
\begin{equation*}
\mathbf{y}_{n+2}-\mathbf{y}_{n}=h\left(\frac{2}{6} \mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right)+\frac{8}{6} \mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right)+\frac{2}{6} \mathbf{f}\left(x_{n+2}, \mathbf{y}_{n+2}\right)\right) \tag{4}
\end{equation*}
$$

Its first and second characteristic polynomials are

$$
\begin{equation*}
\rho(z)=z^{2}-1 \quad \text { and } \quad \sigma(z)=\frac{2}{6}\left(z^{2}+4 z+1\right) . \tag{5}
\end{equation*}
$$

There is a formal calculus that can be used to construct families of multi-step methods.
Definition 4. For a fixed small $h>0$, we define:

- the shift operator $E: \mathbf{y}(x) \mapsto \mathbf{y}(x+h)$,
- its inverse $E^{-1}: \mathbf{y}(x) \mapsto \mathbf{y}(x-h)$,
- the difference operator $\Delta: \mathbf{y}(x) \mapsto \mathbf{y}(x)-\mathbf{y}(x-h)$,
- the identity operator $\mathbf{I}: \mathbf{y}(x) \mapsto \mathbf{y}(x)$,
- and the differential operator $D: \mathbf{y}(x) \mapsto \mathbf{y}^{\prime}(x)$.

Lemma 5. Suppose that $\mathbf{y}(x)$ is analytic (hence infinitely differentiable) at x. Then formally, $h D=-\log (\mathbf{I}-\Delta)$.

Proof. First, using Taylor expansion, we can show that

$$
\begin{aligned}
E \mathbf{y}(x) & =\mathbf{y}(x)+h \mathbf{y}^{\prime}(x)+\frac{h^{2}}{2} \mathbf{y}^{\prime \prime}(x)+\ldots \\
& =\mathbf{y}(x)+h D \mathbf{y}(x)+\frac{h^{2}}{2} D^{2} \mathbf{y}(x)+\ldots=\exp (h D) \mathbf{y}(x),
\end{aligned}
$$

and thus, $E=\exp (h D)$. This implies that $h D=\log (E)$.
Then, using the definition, we see that $E^{-1}=\mathbf{I}-\Delta$, and thus $E=(\mathbf{I}-\Delta)^{-1}$.
Therefore, $h D=\log (E)=\log \left((\mathbf{I}-\Delta)^{-1}\right)=-\log (\mathbf{I}-\Delta)$.

Example 6. We can construct a multi-step method using the previous lemma. Indeed, by Taylor expansion of the logarithm $\log (1-x)=-\sum_{i=1}^{\infty} x^{i} / i$,

$$
\begin{equation*}
h D=-\log (\mathbf{I}-\Delta)=\left(\Delta+\frac{1}{2} \Delta^{2}+\frac{1}{3} \Delta^{3}+\ldots\right) \tag{6}
\end{equation*}
$$

and thus

$$
\begin{equation*}
h \mathbf{f}\left(x_{n}, \mathbf{y}\left(x_{n}\right)\right)=\left(\Delta+\frac{1}{2} \Delta^{2}+\frac{1}{3} \Delta^{3}+\ldots\right) \mathbf{y}\left(x_{n}\right) . \tag{7}
\end{equation*}
$$

To construct a family of multi-step methods, we truncate the infinite series at different orders and replace $\mathbf{y}\left(x_{n}\right)$ with \mathbf{y}_{n}. These methods are called backward differentiation formulas, and their simplest instances are

$$
\begin{aligned}
\mathbf{y}_{n}-\mathbf{y}_{n-1} & =h \mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right), \quad \text { (implicit Euler) } \\
\frac{3}{2} \mathbf{y}_{n}-2 \mathbf{y}_{n-1}+\frac{1}{2} \mathbf{y}_{n-2} & =h \mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right), \\
\frac{11}{6} \mathbf{y}_{n}-3 \mathbf{y}_{n-1}+\frac{3}{2} \mathbf{y}_{n-2}-\frac{1}{3} \mathbf{y}_{n-3} & =h \mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right) .
\end{aligned}
$$

Example 7. Explicit Euler's method arises from truncating the series

$$
\begin{equation*}
h D=\left(\Delta-\frac{1}{2} \Delta^{2}-\frac{1}{6} \Delta^{3}+\ldots\right) E, \tag{8}
\end{equation*}
$$

which can be derived similarly.

Example 8. Another two important families are the Adams-Moulton methods and the Adams-Bashforth methods, which originate from the formal equalities

$$
\begin{aligned}
& E \Delta=h\left(\mathbf{I}-\frac{1}{2} \Delta-\frac{1}{12} \Delta^{2}-\frac{1}{24} \Delta^{3}-\frac{19}{720} \Delta^{4}+\ldots\right) D, \\
& E \Delta=h\left(\mathbf{I}+\frac{1}{2} \Delta+\frac{5}{12} \Delta^{2}+\frac{3}{8} \Delta^{3}+\frac{251}{720} \Delta^{4}+\ldots\right) D,
\end{aligned}
$$

respectively.
For example, writing $\mathbf{f}_{n+i}=\mathbf{f}_{n+i}\left(x_{n+i}, \mathbf{y}_{n+i}\right)$ for simplicity, the three-step AdamsMoulton method is (an implicit method)

$$
\mathbf{y}_{n+3}=\mathbf{y}_{n+2}+\frac{1}{24} h\left(9 \mathbf{f}_{n+3}+19 \mathbf{f}_{n+2}-5 \mathbf{f}_{n+1}-9 \mathbf{f}_{n}\right),
$$

and the four-step Adams-Bashforth method is (explicit)

$$
\mathbf{y}_{n+4}=\mathbf{y}_{n+3}+\frac{1}{24} h\left(55 \mathbf{f}_{n+3}-59 \mathbf{f}_{n+2}+37 \mathbf{f}_{n+1}-9 \mathbf{f}_{n}\right)
$$

To compute \mathbf{y}_{k} with a linear k-step method, we need the values $\mathbf{y}_{0}, \ldots, \mathbf{y}_{k-1}$. These (except \mathbf{y}_{0}) must be approximated with either a one-step method or another multi-step method that uses fewer steps. At any rate, they will contain numerical errors. Clearly, a meaningful multistep method should be robust with respect to small perturbations of these initial values.

Definition 9. A linear k-step method is said to be zero-stable if there is a constant $K>0$ such that for every $N \in \mathbb{N}$ sufficiently large and for any two different sets of initial data $\mathbf{y}_{0}, \ldots, \mathbf{y}_{k-1}$ and $\tilde{\mathbf{y}}_{0}, \ldots, \tilde{\mathbf{y}}_{k-1}$, the two sequences $\left\{\mathbf{y}_{n}\right\}_{n=0}^{N}$ and $\left\{\tilde{\mathbf{y}}_{n}\right\}_{n=0}^{N}$ that stem from the linear k-step method with $h=\left(X-x_{0}\right) / N$ satisfy

$$
\begin{equation*}
\max _{0 \leq n \leq N}\left\|\mathbf{y}_{n}-\tilde{\mathbf{y}}_{n}\right\| \leq K \max _{j \leq k-1}\left\|\mathbf{y}_{j}-\tilde{\mathbf{y}}_{j}\right\| \tag{9}
\end{equation*}
$$

Zero-stability of a k-step method can be verified algebraically with the following property, which is known as the root condition.

Definition 10. A linear k-step method satisfies the root condition if all zeros of its first characteristic polynomial $\rho(z)$ lie inside the closed unit disc, and every zero that lies on the unit circle is simple.

Theorem 11. A linear multi-step method is zero-stable for any $O D E \mathbf{y}^{\prime}(x)=\mathbf{f}(x, \mathbf{y})$ with Lipschitz right-hand side, if and only if the linear multi-step method satisfies the root condition.

This theorem implies that zero-stability of a multi-step method can be determined by merely considering its behavior when applied to the trivial differential equation $y^{\prime}=0$; it is for this reason that it is called zero-stability.

Consistency and convergence

Definition 12. The consistency error of a linear k-step method with $\sigma(1) \neq 0$ is

$$
\begin{equation*}
\boldsymbol{\tau}(h)=\frac{\sum_{j=0}^{k} \alpha_{j} \mathbf{y}\left(x_{j}\right)-h \sum_{j=0}^{k} \beta_{j} \mathbf{y}^{\prime}\left(x_{j}\right)}{h \sum_{j=0}^{k} \beta_{j}} \tag{10}
\end{equation*}
$$

where \mathbf{y} is a smooth function.
Definition 13. A linear multi-step method has (consistency) order pif $\boldsymbol{\tau}(h)=O\left(h^{p}\right)$.
By adequate Taylor expansion, we can obtain the following theorem.
Theorem 14. A linear multi-step method has consistency order p if and only if $\sigma(1) \neq 0$ and

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j}=0 \quad \text { and } \quad \sum_{j=0}^{k} \alpha_{j} j^{q}=q \sum_{j=0}^{k} \beta_{j} j^{q-1} \quad \text { for } \quad q=1, \ldots, p . \tag{11}
\end{equation*}
$$

Definition 15. A multi-step method is said to be consistent if these conditions are satisfied at least for $p=1$.

Theorem 16. A linear multi-step method is consistent iff

$$
\begin{equation*}
\rho(1)=0 \quad \text { and } \quad \rho^{\prime}(1)=\sigma(1) \neq 0 . \tag{12}
\end{equation*}
$$

In general, these conditions can be reformulated more elegantly.
Theorem 17. Equation (11) is equivalent to $\rho\left(e^{h}\right)-h \sigma\left(e^{h}\right)=O\left(h^{p+1}\right)$.
To define the concept of convergence for linear k-step methods, we need to specify some criteria about the choice of the starting conditions.

Definition 18. A set of starting conditions $\mathbf{y}_{i}=\boldsymbol{\eta}_{i}(h), i=0, \ldots, k-1$ is consistent with the initial value \mathbf{y}_{0} if $\boldsymbol{\eta}_{s}(h) \rightarrow \mathbf{y}_{0}$ as $h \rightarrow 0$ for every $s=0, \ldots, k-1$.

Definition 19. A linear k-step method is convergent if, for every initial value problem $\mathbf{y}=\mathbf{f}(x, \mathbf{y}), \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}$ (that satisfies the assumptions of Picard's theorem) and for any choice of consistent starting conditions

$$
\begin{equation*}
\mathbf{y}_{0}=\boldsymbol{\eta}_{0}(h), \ldots, \mathbf{y}_{k-1}=\boldsymbol{\eta}_{k-1}(h), \tag{13}
\end{equation*}
$$

we have that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \mathbf{y}_{N}=\mathbf{y}(X) \quad\left(\text { with } N=\left(X-x_{0}\right) / h\right) \tag{14}
\end{equation*}
$$

Theorem 20 (Dahlquist's Equivalence Theorem). For consistent linear k-step method with consistent starting values, zero-stability is necessary and sufficient for convergence.

Moreover, if $\boldsymbol{\tau}(h)=O\left(h^{p}\right)$ and $\left\|\mathbf{y}\left(x_{s}\right)-\boldsymbol{\eta}_{s}(h)\right\|=O\left(h^{p}\right)$ for $s=0, \ldots, k-1$, then $\max _{0 \leq n \leq N}\left\|\mathbf{y}\left(x_{n}\right)-\mathbf{y}_{n}\right\|=O\left(h^{p}\right)$.

For Runge-Kutta methods, we showed that one can construct s-stage methods of order $2 s$. Unfortunately, it is not possible to construct linear k-step methods of order $2 k$ without violating the zero-stability requirement.

Theorem 21 (The first Dahlquist-barrier). The order p of a zero-stable linear k-step method satisfies

- $p \leq k+2$ if k is even,
- $p \leq k+1$ if k is odd,
- $p \leq k$ if $\beta_{k} / \alpha_{k} \leq 0$ (in particular if the method is explicit).

Stability of linear multi-step methods Similar to one-step methods, stability is investigated by applying a linear multi-step method to the Dahlquist test equation $y^{\prime}=z y$, $z \in \mathbb{C}, y(0)=1$, and $h=1$. Recall that the solution to this ODE is $y(x)=\exp (z x)$, that $|y(x)| \rightarrow 0$ as $t \rightarrow \infty$ whenever $\operatorname{Re}(z)<0$, and that we call its numerical approximation $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ (absolutely) stable if $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ when $\operatorname{Re}(z)<0$.

Our goal is to investigate when the sequence $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ computed with a linear k-step method is stable. First of all, note that the n-th iterate y_{n} satisfies

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=\sum_{j=0}^{k} \beta_{j} z y_{n+j}, \quad \text { or equivalently, } \quad \sum_{j=0}^{k}\left(\alpha_{j}-z \beta_{j}\right) y_{n+j}=0 \tag{15}
\end{equation*}
$$

With the following lemma from the theory of difference equations, we know that y_{n} is of the form

$$
\begin{equation*}
y_{n}=p_{1}(n) r_{1}^{n}+\ldots+p_{\ell}(n) r_{\ell}^{n} \tag{16}
\end{equation*}
$$

where the $r_{j} \mathrm{~S}$ are the roots of the polynomial $\pi(x)=\sum_{j=0}^{k}\left(\alpha_{j}-z \beta_{j}\right) x^{j}$, and the $p_{j}(n) \mathrm{s}$ are polynomials of degree $m_{j}-1$, where m_{j} is the multiplicity of r_{j}.

Lemma 22. Let $\left\{\gamma_{i}\right\}_{i=0}^{k}$ be real coefficients and let $\left\{x_{i}\right\}_{i=0}^{k-1}$ be initial values. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be the sequence defined by the k th order linear difference equation

$$
\begin{equation*}
\sum_{i=0}^{k} \gamma_{i} x_{n+i}=0 \tag{17}
\end{equation*}
$$

Then, x_{n} is of the form

$$
\begin{equation*}
x_{n}=p_{1}(n) r_{1}^{n}+\ldots+p_{\ell}(n) r_{\ell}^{n}, \tag{18}
\end{equation*}
$$

where r_{1}, \ldots, r_{ℓ} are the roots of the polynomial $\pi(x)=\sum_{i=0}^{k} \gamma_{i} x^{i}$ and p_{1}, \ldots, p_{ℓ} are polynomials of degree $m_{1}-1, \ldots, m_{\ell}-1$, where m_{i} is the multiplicity of r_{i}.

With (16), we can fully analyze the asymptotic behavior of $\left\{y_{n}\right\}_{n \in \mathbb{N}}$. Indeed:

- if $\pi(x)$ has a zero r_{j} outside the unit disc, than y_{n} grows as $\left|r_{j}\right|^{n}$,
- if an r_{j} is on the unit circle and has multiplicity $m_{j}>1$, then $y_{n} \sim n^{m_{j}-1}$,
- otherwise, $y_{n} \rightarrow 0$ geometrically as $n \rightarrow \infty$.

This computation shows that the polynomial π plays a crucial role in this stability analysis. Therefore, similarly to one-step methods, we introduce the following definitions.

Definition 23. The stability polynomial of a linear k-step method is

$$
\begin{equation*}
\pi(x)=\pi(x ; z):=\sum_{j=0}^{k}\left(\alpha_{j}-z \beta_{j}\right) x^{j}=\rho(x)-z \sigma(x) . \tag{19}
\end{equation*}
$$

Definition 24. The stability domain of a linear multistep method is

$$
\begin{equation*}
S:=\{z \in \mathbb{C}: \text { if } \pi(x ; z)=0 \text {, then }|x| \leq 1 ; \text { multiple zeros satisfy }|x|<1\} \tag{20}
\end{equation*}
$$

Note that $0 \in S$ if the method is zero-stable (as $\pi(x ; 0)=\rho(x)$).
Dahlquist's second barrier theorem places sharp limits on the stability domains of linear multi-step methods.

Theorem 25 (Dahlquist's second barrier). An A-stable linear multi-step method must be implicit and of order $p \leq 2$. The trapezium rule is the second-order A-stable linear multistep method with the smallest error constant.

It is possible to break the Dahlquist barrier by hybridising between multi-stage and multistep methods. Such methods are called general linear methods ${ }^{1}$.

Example 26. We conclude with an example illustrating some of the results. Consider the scalar IVP $y^{\prime}=\sin \left(x^{2}\right) y, y(0)=1$. We use explicit Euler, implicit Euler, implicit midpoint, explicit 4-stage Runge-Kutta, and 4th order Adam-Bashforth method to solve it. Here are the solutions.

We now look at the error $y\left(x_{n}\right)-y_{n}$, shown in Figure 1. There we also examine the multistep method

$$
\begin{equation*}
\mathbf{y}_{n+2}=-4 \mathbf{y}_{n+1}+5 \mathbf{y}_{n}+h\left(4 \mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right)-2 \mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right)\right) \tag{21}
\end{equation*}
$$

Figure 1: Errors with stable methods (left) and an unstable method (21)
which has consistency order 3, but is not zero-stable; we thus expect it to not converge. In fact the solution blows up and the error diverges to ∞-it hardly gets any worse than that!

Finally, we can vary the step size h and examine the convergence as $h \rightarrow 0$. Higherorder methods should have better accuracy especially for small h. We confirm this in the figure (note the loglog scale).

(MATLAB code is lec16_demo.m)
This concludes this course - for further courses related to numerical analysis, check out e.g.

- Numerical Solution of Differential Equations (Part B)
- Approximation of Functions (Part C)
- Numerical Linear Algebra (Part C)
- Finite Element Method for PDEs (Part C)
- Continuous Optimisation (Part C)

[^0]
[^0]: ${ }^{1}$ See General linear methods, J. C. Butcher, Acta Numerica (2006).

