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These notes are written for the lectures delivered in 2016 Hilary term. In writing up these
notes, I have benefited from the notes written by the previous lecturers, in particular the notes
produced by A. Etheridge and C. Batty. I have adopted many of their worked examples, and
in many places I have closely followed their notes. Any errors appeared in these notes however
are completely my own responsibility. Please report errors, typos and etc. you may discover to
qianz@maths.ox.ac.uk .

1 Introduction

In Prelims Analysis III – Integration, the theory of Riemann integrals for bounded continuous
functions on finite intervals were established. In addition to the computational techniques such
as the methods of change of variables, integration by parts and etc., we have proved several
fundamental results about Riemann integrals. Let us recall two important results. The first is
the existence of Riemann integrals. If f is bounded on [a, b] and is continuous on (a, b) (where a
and b are two numbers), then f is Riemann integrable on [a, b]. The second is the fundamental
theorem in calculus (FTC): if F has continuous derivative on [a, b] then

ˆ b

a

F ′(x)dx = F (b)− F (a).

These results are important and are still good, and form the foundation for further study in your
3rd year and 4th year. What you have learned in Prelims Calculus and Analysis courses are
important not only for the study of advanced theories in mathematics, but also are essential in
applying mathematics to solve practical problems in science.

The theory of Riemann integration is a powerful tool for computations, it however lacks
flexibility in handling limit procedures such as taking limits under integration. Here is a simple
and illustrative example. Consider the Dirichlet function f(x) = 1 if x is rational and −1 if x is
irrational. f is a simple function but perhaps is not an interesting one. While it appears as the
limit of simple functions. List all rational numbers in [0, 1] as r1, r2, · · · , and define fn(x) = 1 if
x ∈ {r1,· · · ,rn} and fn(x) = −1 otherwise. Clearly fn → f on [0, 1], clearly each fn is Riemann

integrable on [0, 1] and
´ 1

0
fn(x)dx = −1. Therefore limn→∞

´ 1

0
fn(x)dx = −1, but we can not

take limit limn fn = f first then take Riemann integral of f , as f is not Riemann integrable.
It was recognized gradually that most difficulties one has with Riemann integrals come from

the limitation of the theory of Riemann’s integration. There was a need to extend the theory of
integration to a larger class of functions, so that functions we are interested are integrable.

In order to explain the approach we are going to develop in this course, let us recall quickly the
main steps in defining Riemann integrals. The first step is to choose a simple class of functions
to which we can assign integrals. For the theory of Riemann integrals we choose the collection
L of all step functions. Recall that a function ϕ is step if ϕ =

∑n
i=1 ai1Ji , where n is a positive

integer, J1, · · · , Jn are finite intervals, and where 1A denotes the characteristic function of A:
1A(x) = 1 or 0 according to x ∈ A or not. The integral of a step function ϕ is defined to be
I(ϕ) =

∑n
i=1 ai|Ji|, where |J | denotes the length of an interval J (which is the measure of the

interval J). The reason we choose to consider step functions in the Riemann integration lies
in the fact that the measure of an interval, namely its length, makes sense for intervals. The
second step is to define lower and upper integrals for a bounded function f on a finite interval
(a, b). The lower integral

´ b

a
f(x)dx is defined to be the supremum of all I(ϕ) where ϕ is step
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and ϕ ≤ f1(a,b), and the upper integral
´ b

a
f(x)dx is the infinimum of all I(ψ) where ψ is step

and ψ ≥ f1(a,b). Finally, f is Riemann integrable if the lower and upper integrals of f over (a, b)

coincide, and its Riemann integral
´ b

a
f(x)dx is the common upper (and lower) integral.

By definition of supremum and infinimum, if we are able to enlarge the class L of simple
functions, then the corresponding lower integral

´ b

a
f(x)dx (which is a supremum) would become

greater, and the corresponding upper integral
´ b

a
f(x)dx (an infinimum) become smaller, so they

have better chance to be equal, thus have better chance to be ”integrable”. This suggests the
following approach to extend the theory of integration to a larger class of functions. Take a
collection of functions ϕ in place of step functions with the following form

ϕ =
n
∑

i=1

ai1Ei

where Ei are certain subsets but not necessary intervals. It is required that we should be able to
define integral for such ϕ to proceed the definition of integrals for general functions. Namely the
integral of ϕ should be defined as I(ϕ) =

∑n
i=1 ai|Ei|. The problem to carry out this idea is that

for a general subset E, |E|, the length of E, is not well-defined. The good news is that this is the
main difficulty we need to overcome in order to establish a new integration theory. Therefore our
first task is to extend the notion of lengths for intervals to a larger class of subsets than intervals,
the new notion will be called the Lebesgue measures. As long as the measures of certain subsets
are established, the integration theory can be established solely based on measures, no other
structures of the real line will be needed, which is somehow an unexpected reward by extending
the notion of length to measures to general sets beyond intervals.

A very short history of Lebesgue’s theory of integration. E. Borel and H. Lebesgue were inter-
ested in the general construction of functions, and they wanted to extend the concepts of length,
areas and volumes to general sets. They discovered it was not always possible to do so. It was
H. Lebesgue who recognized the importance of the countable additivity in handling limits under
integration. His Ph D thesis ”Intégrale, Longueur, Aire” was finished in 1902, and in a book form
”Lecons sur l’intégration et la recherche des fonctions primitives” which was published in 1904,
in Paris, Lebesgue’s theory of integration was established, and basic limit theorems (Monotone
Convergence Theorem, Dominated Convergence Theorem), which are the powerful mathematical
tools, were proved. H. Lebesgue applied his new integration theory to the study of trigonomet-
ric series, and published another monograph in 1906, ”Lecons sur les séries trigonométriques”
(Paris). The theory of Lebesgue’s integration and its generalization, called the theory of mea-
sures (a measure is a generalization of the concept of length, area, volume), got prominent when,
in 1933, A. Kolmogorov firmly established the foundation of probability theory by interpreting
measure spaces as mathematical models for developing probability theory and statistics. A. Kol-
mogorov published his finding in the article ”Grundbergriffe der Wahrscheinlichkeitsrechnung,
Erg. Mat. 2, no.3 (1933). The English translation in a book form, ”Foundations of the theory of
probability” is still in print, and is still worthy of reading even today. A. Kolmogorov not only
founded the probability theory based on the theory of measures, he made very important contri-
butions even for the theory of measures. It was him who introduced the concept of conditional
expectations which plays a vital role in both analysis and probability. He also developed basic
tools for constructing measures out of marginal distributions.

Around 1940, J. L. Doob systematically developed the theory of martingales. He turned Kol-
mogorov’s conditional expectation into a powerful tool, and identified a class of random variables
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(while, random variables are exactly those measurable functions according to A. Kolmogorov)
called martingales which is the most important class of measurable functions in probability the-
ory. Doob established powerful tools in a collection of Doob’s inequalities, convergence theorems
and etc. His results on martingales were organized neatly in his classic ”Stochastic Processes”,
published in 1953. Meanwhile Paul Halmos wrote a book on the subject of measures, ”Measure
Theory” (1950), which was and remains a standard reference on Lebesgue’s theory of measures
and integration.

2 Extended real line, upper and lower limits

We will use the following convention in dealing with the symbols ∞ and −∞. Introduce the
extended real line [−∞,∞] = {−∞} ∪ R ∪ {∞} by adding two symbols −∞ and ∞ which are
not in R. We make the following conventions: for every a ∈ R, −∞ < a <∞,

a+∞ = ∞+ a = ∞, a−∞ = −∞+ a = −∞.

a

−∞ =
a

∞ = 0, and 0 · ∞ = −∞ · 0 = 0,

but ∞
∞

and a
0
are not defined.

Recall that if S ⊆ R is non-empty, and if S is bounded above, that is, there is b ∈ R such
that s ≤ b for every s ∈ S, then the Completeness Axiom says that S has the least upper bound
denoted by supS, which is an upper bound of S, and if b is an upper bound of S, then supS ≤ b.
If S is not bounded above, that is, for every n = 1, 2, · · · , there is sn ∈ S, such that sn > n,
then we say supS = ∞. Clearly, if S ⊆ R is non-empty, then supS = ∞ if and only if there is a
sequence {sn}, where each sn ∈ S, such that sn → ∞. Similarly we extend the definition of inf S
for any non-empty subset S of R. It is remains true that inf S = − sup(−S), where −(∞) = −∞
which is a convention, and −S = {−x : x ∈ S}, for non-empty S ⊆ R.

If {an} is a sequence of real numbers, then, by our extension of the concept for sup and inf,

sup
k≥n

ak = lim
m→∞

max {an, an+1, · · · , an+m} ,

which is decreasing in n, and

inf
k≥n

ak = lim
m→∞

min {an, an+1, · · · , an+m}

which is increasing in n. Define

lim inf
n→∞

an = lim
n→∞

lim
m→∞

min {an+1, · · · , an+m}

and
lim sup
n→∞

an = lim
n→∞

lim
m→∞

max {an+1, · · · , an+m} ,

which are called the lower and upper limit of {an}, respectively.
It follows that lim infn→∞ an = − lim supn→∞(−an) and lim supn→∞ an = − lim infn→∞(−an).
It also follows from definition that, which are useful to evaluate upper and lower limits,

lim infn→∞ an is the least number among all possible limits (i.e. numbers or ±∞ which are the
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limits of convergent sub-sequences of {an}), and similarly, lim supn→∞ an is the largest number
among all possible limits (i.e. numbers or ±∞ which are the limits of convergent sub-sequences
of {an}).

If {bn} is a sequence of real numbers, and if limn→∞ bn = b exists and finite (i.e. b 6= ∞ or
−∞), then

lim inf
n→∞

(an + bn) = lim inf
n→∞

an + lim
n→∞

bn

and
lim sup
n→∞

(an + bn) = lim sup
n→∞

an + lim
n→∞

bn.

3 Measure spaces

Our first task is to extend the notion of length to some subsets E of R, called Lebesgue measures
and denoted by m(E) (which is the length |J | if E = J is an interval). Suppose the class of
subsets of R to which we are able to assign measures is denoted by M, then we expect the
followings are satisfied:

1. The empty set Ø has measure zero, that is m(Ø) = 0.

2. The measure of E ∈ M is non-negative, i.e. m(E) ≥ 0 (but can be infinity).

3. m is finite additive: if E1, · · · , En belong to M, then E1∪· · ·∪En ∈ M, and if in addition
Ei are disjoint, then

m(E1 ∪ · · · ∪ En) = m(E1) + · · ·+m(En).

The property of finite additivity is not enough in order to do integration, which should be
enhanced.

4. m is countably additive: if E1, · · · , En, · · · belong to M, then ∪∞
n=1En ∈ M. If in addition

{En : n = 1, 2, · · · } are disjoint, then

m

(

∞
⋃

n=1

En

)

=
∞
∑

n=1

m(En).

We are going to identify carefully the class M of Lebesgue measurable subsets of R, and to define
the measure m as a function from M to [0,∞] which possesses properties 1)-4).

The theory of integration based on the Lebesgue measure m may be developed in a rather
general setting which uses no algebraic or geometric structures of R. Therefore it is beneficial to
introduce the concept of measures, the concept of measurable spaces, and the concept of measure
spaces.

Definition 3.1 Let Ω be a set [which is called a space or called a sample space], and F be a
collection of some subsets of Ω.

1) F is called an algebra on Ω if a) Ø ∈ F and Ω ∈ F , b) if A,B ∈ F then Ac ∈ F and
A ∪ B ∈ F .
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2) F is called a σ-algebra (also called a σ-field) on Ω, if F is an algebra over Ω, and if in
addition F is closed under the countable union operation. That is, if A1, A2, · · · belong to F , so
does ∪∞

n=1An.
3) A pair (Ω,F), where F is a σ-algebra on Ω, is called a measurable space. If E ∈ F then

E is called a measurable subset of Ω (with respect to the σ-algebra F).

Remark 3.2 (about notations) 1) If A is a subset of Ω then Ac denotes Ω \ A if no confusion
may arise, so Ac = {x ∈ Ω : x /∈ A}.

2) Some authors use AB to denote A∩B, in particular in probability literature. The notation
is justified since 1A∩B = 1A1B, a fact which will be used without further comments.

3) According to De Morgan’s law, if F is a σ-algebra and An ∈ F (n = 1, 2, · · · ) then
⋂∞

n=1An = (
⋃∞

n=1A
c
n)

c ∈ F .

Definition 3.3 Let (Ω,F) be a measurable space. A function µ : F → [0,∞] is called a measure
on (Ω,F), if

1) µ(Ø) = 0 and µ(A) ∈ [0,∞] (i.e. µ(A) ≥ 0 or µ(A) = ∞) for every A ∈ F .
2) [µ is countably additive] If An ∈ F for n = 1, 2, · · · , and An are disjoint, then µ (

⋃∞
n=1An) =

∑∞
n=1 µ(An).
A triple (Ω,F , µ), where F is a σ-algebra Ω and µ is a measure on the measurable space

(Ω,F), is called a measure space.

A measure µ on a measurable space (Ω,F) is called a probability (measure) if µ(Ω) = 1. In
this case Ω is called a sample space (of fundamental events), an element A in the σ-algebra F is
called an event, and µ(A) is called the probability that the event A happens.

Proposition 3.4 Let (Ω,F , µ) be a measure space. Then
1) µ(A) ≤ µ(B) if A ⊂ B,
2) if An ∈ F and An ↑ (that is An ⊂ An+1 for all n), then µ(

⋃∞
n=1An) = limn→∞ µ(An),

3) if An ∈ F , An ↓ (that is An ⊃ An+1 for all n) and µ(A1) < ∞, then µ(
⋂∞

n=1An) =
limn→∞ µ(An).

Proof. 1) If A ⊂ B then B = A ∪ (B ∩Ac), and A and B ∩Ac are disjoint, by additivity of
the measure, we have

µ(B) = µ(A) + µ(B ∩ Ac) ≥ µ(A).

2) Let E1 = A1 and En = An−An−1 for n ≥ 2. Then En are disjoint and
⋃∞

n=1An =
⋃∞

n=1En.
Therefore, by the countable additivity of µ,

µ

[

∞
⋃

n=1

An

]

= µ

[

∞
⋃

n=1

En

]

=
∞
∑

n=1

µ(En).

On the other hand, since An ↑ ,
⋃n

k=1Ek = An, thus

∞
∑

k=1

µ(Ek) = lim
n→∞

n
∑

k=1

µ(Ek) = lim
n→∞

µ

[

n
⋃

k=1

Ek

]

= lim
n→∞

µ(An)

which yields 2).
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3) Let Bn = A1 \ An. Then Bn ↑. Since A1 = Bn ∪ An, Bn and An are disjoint, so
µ(A1) = µ(Bn) + µ(An). Hence µ(Bn) = µ(A1) − µ(An) as µ(An) ≤ µ(A1) < ∞. According to
de Morgan’s law

⋃∞
n=1Bn = A1 \

⋂∞
n=1An , thus, by applying 2) to Bn, we obtain that

µ(A1)− µ

[

∞
⋂

n=1

An

]

= µ

[

A1 \
∞
⋂

n=1

An

]

= µ

[

∞
⋃

n=1

Bn

]

= lim
n→∞

µ (Bn) = lim
n→∞

(µ(A1)− µ(An))

= µ(A1)− lim
n→∞

µ(An)

which implies 3) for µ(A1) <∞.
Interesting examples of measures are Lebesgue’s measures on Euclidean spaces Rd which

will be constructed in the next section. One of the central problems in probability theory,
quantum field theories and statistical mechanics is to construct various measures on some infinite
dimensional spaces, which however should be studied in specialized courses.

4 The Lebesgue measure

In this section we construct 1) the σ-algebra MLeb of Lebesgue measurable subsets of R, and 2)
the Lebesgue measure m : MLeb → [0,∞].

Let us first describe a candidate of the Lebesgue measure m, called the Lebesgue outer
measure.

Let C denote the collection of all finite intervals with a form (a, b] where a ≤ b are two real
numbers. C is a π-system over R in the sense that if A,B ∈ C then A∩B ∈ C. If J is an interval,
then |J | denotes the length of J , so if J = (a, b] ∈ C then |J | = b− a.

We build the outer measure m∗ by

m∗(A) = inf

{

∞
∑

i=1

|Ji| : where all Ji ∈ C such that
∞
⋃

i=1

Ji ⊇ A

}

(4.1)

for A ⊂ R. Then m∗ possesses the following properties:
(1) m∗(Ø) = 0, and m∗(A) ≥ 0 for any A ⊆ R.
(2) m∗(A) ≤ m∗(B) if A ⊂ B, and
(3) m∗ is countably sub-additive, as stated in the following

Lemma 4.1 [Countably additive] If {An : n = 1, 2, · · · } is a sequence of subsets, then

m∗

[

∞
⋃

n=1

An

]

≤
∞
∑

n=1

m∗(An). (4.2)

Proof. If
∑∞

n=1m
∗(An) = ∞ then (4.2) holds. Suppose

∑∞
n=1m

∗(An) < ∞. Then
m∗(An) < ∞ for every n. By definition of m∗(An), for every ε > 0 there is a countable cover
{

J
(n)
i : i = 1, 2, · · ·

}

of An, where J
(n)
i ∈ C, such that

∞
∑

i=1

|J (n)
i | ≤ m∗(An) +

ε

2n
.
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While
{

J
(n)
i : i, n = 1, 2, · · ·

}

forms a countable cover of
⋃∞

n=1An so that

m∗

∞
⋃

n=1

An ≤
∞
∑

n=1

∞
∑

i=1

|J (n)
i | ≤

∞
∑

n=1

(

m∗(An) +
ε

2n

)

=
∞
∑

n=1

m∗(An) + ε.

Since ε > 0 is arbitrary, (4.2) follows immediately.
Although m∗(E) is well defined for every subset E of R, m∗ is not countably additive, thus

m∗ is not a measure on P(R) (the σ-algebra of all subsets of R). In fact, P(R) is too big for m∗

to be countably additive. The main technical step in the construction of the Lebesgue measure
is to identify the σ-algebra MLeb on which m∗ is countably additive. MLeb should be sufficient
large and should include all intervals. This will be achieved in the celebrated Carathéodory’s
extension theorem.

4.1 Outer measures and Carathéodory’s extension theorem

This is a major theorem in the theory of measures. It is a general theorem so we will formulate
it in general setting. Its proof is not examinable. We will use this theorem to identify some
important measurable subsets which we should be familiar with.

Let (Ω,G) be a measurable space, and µ∗ : G → [0,∞] be an outer measure on (Ω,G) in the
following sense:

1) µ∗(∅) = 0, and µ∗(A) ≥ 0 for every A ∈ G;
2) µ∗(A) ≤ µ∗(B) if A ⊆ B, A,B ∈ G;
3) µ∗ is countably sub-additive: if An ∈ G for n = 1, 2, · · · , then

µ∗

[

∞
⋃

n=1

An

]

≤
∞
∑

n=1

µ∗(An). (4.3)

Definition 4.2 A subset E ∈ G is µ∗-measurable if E satisfies the Carathéodory condition

µ∗(F ) = µ∗(F ∩ E) + µ∗(F ∩ Ec) for every F ∈ G. (4.4)

The collection of all µ∗-measurable subsets is denoted by Gm.

Since F \ E = F ∩ Ec, (4.4) may be written as

µ∗(F ) = µ∗(F ∩ E) + µ∗(F \ E) for any subset F ∈ G. (4.5)

Since F = (F ∩ E) ∪ (F ∩ Ec), by sub-additivity of µ∗

µ∗(F ) ≤ µ∗(F ∩ E) + µ∗(F ∩ Ec)

for any E and F belonging to G , the Carathéodory condition (4.4) is equivalent to the inequality

µ∗(F ) ≥ µ∗(F ∩ E) + µ∗(F ∩ Ec) (4.6)

for any subset F ∈ G.
E is measurable if and only if (4.6) holds for any subset F∈ G such that µ∗(F ) <∞.
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Theorem 4.3 Gm is a σ-algebra on Ω, and µ∗ is a measure on Gm.

Proof. [The proof is not examinable]. Clearly the empty set ∅ ∈ Gm. Also, according to
(4.5), E ∈ Gm if and only if Ec ∈ Gm.

Let A,B ∈ Gm. We show that A∩B ∈ Gm so that Gm is an algebra. Since (A∩B)c = Ac∪Bc,
we need to show that

µ∗(F ) = µ∗(F ∩ (A ∩B)) + µ∗(F ∩ (Ac ∪ Bc))

for any subset F ∈ G.
Since A is µ∗-measurable, so

µ∗(F ) = µ∗(F ∩ A) + µ∗(F ∩ Ac). (4.7)

Since B is also µ∗-measurable, applying (4.5) to F ∩ A (in the place of F ) and B we obtain

µ∗(F ∩ A) = µ∗(F ∩ A ∩ B) + µ∗(F ∩ A ∩ Bc). (4.8)

Substitute (4.8) into (4.7) to obtain

µ∗(F ) = µ∗(F ∩ (A ∩ B)) + µ∗(F ∩ A ∩Bc) + µ∗(F ∩ Ac). (4.9)

Use again (4.5) to A (which is measurable) and F ∩ (Ac ∪Bc) to obtain

µ∗(F ∩ (Ac ∪ Bc)) = µ∗(F ∩ (Ac ∪ Bc) ∩ A) + µ∗(F ∩ (Ac ∪ Bc) ∩ Ac)

= µ∗(F ∩ Bc ∩ A) + µ∗(F ∩ Ac),

here we have used the elementary equalities (Ac ∪ Bc) ∩ A = Bc ∩ A and (Ac ∪ Bc) ∩ Ac = Ac.
Together with (4.9) we deduce that

µ∗(F ) = µ∗(F ∩ (A ∩B)) + µ∗(F ∩ (Ac ∪ Bc))

for any F ∈ G, so that A ∩ B ∈ Gm. By de Morgan law, it follows also that

A ∪ B = (Ac ∩ Bc)c ∈ Gm.

Thus Gm is an algebra.
We next to show that Gm is a σ-algebra. To this end, consider En ∈ Gm, n = 1, 2, · · · . We

show that E =
⋃∞

n=1En ∈ Gm. Without losing generality we may assume that En are disjoint,
otherwise we may consider An instead, where A1 = E1 ∈ Gm and An = En \ (∪j<nEj) ∈ Gm for
n ≥ 2. An ∈ Gm are disjoint, and E =

⋃∞
n=1An.

Since
⋃n

j=1Ej ∈ Gm, by applying (4.5), we obtain

µ∗(F ) = µ∗

[

F ∩
(

n
⋃

j=1

Ej

)]

+ µ∗

[

F ∩
(

n
⋃

j=1

Ej

)c]

.
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Since En is measurable,

µ∗

[

F ∩
(

n
⋃

j=1

Ej

)]

= µ∗

[

F ∩
(

n
⋃

j=1

Ej

)

∩ En

]

+ µ∗

[

F ∩
(

n
⋃

j=1

Ej

)

∩ Ec
n

]

= µ∗ [F ∩ En] + µ∗

[

F ∩
(

n−1
⋃

j=1

Ej

)]

= · · · =
n
∑

j=1

µ∗ [F ∩ Ej]

here we have used the following identities: since Ej are disjoint

(

n
⋃

j=1

Ej

)

∩ En = En and

(

n
⋃

j=1

Ej

)

∩ Ec
n =

n−1
⋃

j=1

Ej.

We therefore have

µ∗(F ) =
n
∑

j=1

µ∗ [F ∩ Ej] + µ∗

[

F ∩
(

n
⋃

j=1

Ej

)c]

≥
n
∑

j=1

µ∗(F ∩ Ej) + µ∗

[

F ∩
(

∞
⋃

j=1

Ej

)c]

.

Letting n→ ∞ to obtain

µ∗(F ) ≥
∞
∑

j=1

µ∗(F ∩ Ej) + µ∗

[

F ∩
(

∞
⋃

j=1

Ej

)c]

(4.10)

≥ µ∗

[

F ∩
(

∞
⋃

j=1

Ej

)]

+ µ∗

[

F ∩
(

∞
⋃

j=1

Ej

)c]

(4.11)

which implies that
⋃∞

j=1Ej ∈ Gm. Since we must have

µ∗(F ) ≤ µ∗

[

F ∩
(

∞
⋃

j=1

Ej

)]

+ µ∗

[

F ∩
(

∞
⋃

j=1

Ej

)c]

for any F ∈ G and Ej, the inequalities in (4.11) must be equalities. Hence

µ∗(F ) =
∞
∑

j=1

µ∗ [F ∩ Ej] + µ∗

[

F ∩
(

∞
⋃

j=1

Ej

)c]

for any subset F ∈ G. In particular, by applying the equality above to F =
⋃∞

k=1Ek we obtain

µ∗

[

∞
⋃

j=1

Ej

]

=
∞
∑

j=1

µ∗

[(

∞
⋃

k=1

Ek

)

∩ Ej

]

=
∞
∑

j=1

µ∗(Ej).

11



That is, µ∗ is countably additive, so that µ∗ is a measure on Gm.
It is possible, for some outer measures µ∗, the σ-algebra Gm may be trivial, so that it is useless

in this case.
Let us look at some simple examples of µ∗-measurable sets.

Definition 4.4 A subset A ∈ G is called a µ∗-null set if it has zero µ∗-outer measure, i.e.
µ∗(A) = 0.

We have the following simple fact

Lemma 4.5 If {An : n = 1, 2, · · · } is a sequence of µ∗-null subsets, then
⋃∞

n=1An is µ∗-null as
well.

This follows immediately from the fact that µ∗ is countably sub-additive. In fact, if µ∗(An) =
0, then

µ∗

(

∞
⋃

n=1

An

)

≤
∞
∑

n=1

µ∗(An) = 0

hence we must have µ∗ [
⋃∞

n=1An] = 0.
⋃∞

n=1An is µ∗-null.

Proposition 4.6 If A is µ∗-null, then A ∈ Gm.

Proof. For every subset F ∈ G, we have µ∗(F ∩ A) ≤ µ∗(A) = 0 so that

µ∗(F ) ≥ µ∗(F ∩ Ac) = µ∗(F ∩ A) + µ∗(F ∩ Ac).

By definition, A is µ∗-measurable.
In applications, it is important to be able to describe the structure of the σ-algebra Gm of

µ∗-measurable subsets, which is determined by the outer measure µ∗. However, without further
information about µ∗, Prop. 4.6 is the best we can offer. In practice, we do have some a priori
knowledge, which helps to identify the structure of Gm.

4.2 The Lebesgue measure space

Recall that C is the π-system of all intervals (a, b] where a ≤ b are two real numbers. If J = (a, b],
then |J | = b− a is the length of J . The Lebesgue outer measure m∗ is defined by

m∗(E) = inf

{

∞
∑

i=1

|Ji| : Ji ∈ C such that
∞
⋃

i=1

Ji ⊃ E

}

(4.12)

where E is a subset of R, and the inf takes over all possible countable cover {Ji : i = 1, 2, · · · } ⊂ C

of E.
MLeb denotes the collection of all m∗-measurable [from now on, called Lebesgue measurable,

or simply measurable if no confusion may arise] subsets. Recall that E is m∗-measurable if E
satifies the Caratheodory condition:

m∗(F ) = m∗(F ∩ E) +m∗(F ∩ Ec)

12



for every F ⊆ R.
We have proved that MLeb is a σ-algebra, and m∗ restricted on MLeb is a measure. The

measure space (R,MLeb,m
∗) is called the Lebesgue measure space, or simply the Lebesgue

space.
We give a description of the sets in MLeb in this lecture. The key is the following

Lemma 4.7 C ⊆ MLeb, and moreover, if J = (a, b] ∈ C , then m∗(J) = b− a.

This lemma looks very simple, but its proof is not easy and is quite technical. Its proof is
not examinable, therefore I don’t give the proof in the lecture.

By using this lemma, we can describe the σ-algebra MLeb. We divide this task into several
steps, all are elementary.

1) Firstly, we claim any interval J is Lebesgue measurable, and m∗(J) = |J | the length of J .
If J is unbounded, for example J = (a,∞), then J =

⋃∞
n=1(a, n], since each (a, n] is measur-

able and has measure n − a, so that J ∈ MLeb, and m
∗(J) ≥ n − a, therefore m∗(J) = ∞. If

J = [a,∞), then J = {a} ∪ (a,∞). We only need to show {a} = [a, a] is measurable. Indeed
[a, a] =

⋂∞
n=1(a− 1

n
, a], so [a, a] ∈ MLeb and

0 ≤ m∗ ({a}) ≤ a− (a− 1

n
) =

1

n

for any n = 1, 2, · · · , so m∗ ({a}) = 0.
While (−∞, a) = [a,∞)c, and (−∞, a] = (a,∞)c, so both (−∞, a) and (−∞, a] are measur-

able. Of course (−∞,∞) is measurable.
Now suppose J is bounded interval with two ends a ≤ b. By Lemma (a, b] is measurable, and

we have shown {a} is measurable. Since [a, b] = {a} ∪ (a, b], (a, b) =
⋃∞

n=1(a, b − 1
n
], so open /

closed intervals are measurable. Since [a, b) = {a} ∪ (a, b) so [a, b) is measurable too. Therefore
any bounded interval is measurable.

2) Any open subset of R is measurable, so is any closed subset of R. Hence any closed / open
subset is measurable.

According to Question 7, Problem Sheet 1, if G ⊂ R is open, then G has a decomposition

G =
⋃

i

(ai, bi) (4.13)

where (ai, bi) are disjoint open intervals (bounded or unbounded), at most countably many. Since
MLeb is σ-algebra, and each interval (ai, bi) is measurable, hence G is also measurable. Since m∗

is a measure on MLeb, so it is countably additive,

m∗(G) =
∑

i

(bi − ai).

Remark. However we should note that it is in general impossible to arrange intervals (ai, bi)
in the decomposition of G in an order, such that a1 < b1 < a2 < b2 < · · · .

The Borel σ-algebra B(R) over R is defined to be the smallest σ-algebra containing all open
subsets of R. A subset E ⊂ R is called Borel measurable if E ∈ B(R). Since any open subset
belongs to MLeb and MLeb is a σ-algebra, therefore MLeb is bigger than B(R). We thus have
the following important conclusion.
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Lemma 4.8 B(R) ⊂ MLeb, that is, any Borel measurable subset is Lebesgue measurable.

On the other hand, MLeb is not lot bigger than B(R). In fact we have

Lemma 4.9 If E ∈ MLeb, then there are A,B ∈ B(R), such that A ⊂ E ⊂ B and m∗(E \A) =
m∗(B \ E) = 0. That is, MLeb and B(R) differ by Lebesgue measure zero subsets.

Example 1. If a ∈ R, then m∗ ({a}) = 0 (see above), so that, by the countable additivity of
m∗ on MLeb, any countable subset is measurable and has Lebesgue measure zero. In particular
m∗ (Q) = 0.

Example 2. There are uncountable Lebesgue null sets. Cantor set (see pages 15 -17 in Lecture
Notes) is an example. Read the notes carefully for its construction. Also Question 2 part (a),
Problem Sheet 2.

Example 3. There are subsets which are not Lebesgue measurable. See page 17 Lecture Notes
for an example.

To construct the example, we need the following fact: the Lebesgue outer measure m∗ (and
therefore the Lebesgue measure m∗ on MLeb) is translation invariant in the sense that:

m∗(E + a) = m∗(E)

for every subset E, and for every number a ∈ R, where E + a = {x+ a : x ∈ E}. This is a
part of Question 1 is Problem Sheet 2. Of course, by symmetry, you only need to show that
m∗(E + a) ≤ m∗(E), which you can prove it by using the definition of m∗ given by (4.12).

Let us point out that examples of non-Lebesgue measurable subsets are not examinable.
Let me finish these notes by saying that there are Lebesgue measurable sets which are not

Borel measurable, that is, the σ-algebra MLeb is strictly larger than the Borel σ-algebra B(R).

4.3 The Cantor set and null subsets

Example 4.10 If A is a countable subset, then A is a Lebesgue null set.

There are null sets which are not countable! Here is an example.

Example 4.11 The Cantor ternary set.

Consider the closed interval J
(1)
0 = [0, 1].

1) Divide J
(1)
0 equally into three sub-intervals, the middle open interval I

(1)
1 = (1

3
, 2
3
) is removed

from J
(1)
0 , the remaining two closed sub-intervals are J

(1)
1 = [0, 1

3
] and J

(1)
2 =

[

2
3
, 1
]

, each has
length 1

3
.

2) Repeat step 1) for each closed interval J
(1)
1 and J

(1)
2 : divide each equally into three sub-

intervals and remove the middle open ones. From J
(1)
1 we remove I

(2)
1 =

(

1
32
, 2
32

)

, and from J
(1)
2

remove

I
(2)
2 =

(

2

3
+

1

32
,
2

3
+

2

32

)

=
2

3
+

(

1

32
,
2

32

)

.

The remaining 22 closed intervals are denoted by J
(2)
1 , J

(2)
2 , J

(2)
3 , J

(2)
4 each has length 1

32
.
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3) Repeat the procedure for each J
(2)
i , remove the middle open intervals I

(2)
i (i = 1, · · · , 22)

and the remaining 23 closed intervals are denoted by J
(3)
i for i = 1, · · · , 23, each has length 1

33
.

Repeating this process, for each n, we have 2n−1 disjoint open intervals I
(n)
i (i = 1, · · · , 2n−1)

with equal length 1
3n
, and 2n disjoint closed intervals J

(n)
i (i = 1, 2, · · · , 2n) with length 1

3n
(where

n = 1, 2, · · · ).
For each n, I

(n)
i , J

(n)
k (i = 1, · · · , 2n−1 and k = 1, · · · , 2n) are disjoint sub-intervals of [0, 1],

and




n
⋃

k=1

2k−1
⋃

i=1

I
(k)
i





⋃

(

2n
⋃

k=1

J
(n)
k

)

= [0, 1].

Cantor’s ternary set C is defined to be the subset of [0, 1] by removing all middle intervals

I
(n)
i . That is

C = [0, 1] \
(

∞
⋃

n=1

2n−1
⋃

i=1

I
(n)
i

)

.

Lemma 4.12 The Cantor ternary set C is a null set.

Proof. By the construction, for every n, J
(n)
i (i = 1, · · · , 2n) is a finite cover of C, so that

m∗(C) ≤
2n
∑

i=1

|J (n)
i | = 2n

1

3n
→ 0

as n→ ∞. Therefore m∗(C) = 0, and C is a null subset by definition.
Ternary expansions – For decimal expansion of x = 0.x1x2 · · · ∈ (0, 1] we mean that

x =
∞
∑

n=1

xn
10n

.

Similarly x ∈ (0, 1] can be written in its ternary expansion

x =
∞
∑

n=1

an
3n

= 0.a1a2 · · ·

where an = 0, 1 or 3, and we use the convention that it should not end with ak = 2 for all k ≥ N .
Then, in terms of ternary expansion

(
1

3
,
2

3
) = (0, 1, 0.2)

and x ∈ I
(1)
1 = (1

3
, 2
3
) then x = 0.a1a2 · · · with a1 = 1. Let A = {0.a1a2 · · · : where ai = 0 or 2}.

Then by our construction, A ⊆ C so that m∗(A) ≤ m∗(C) = 0.
We leave the reader as an exercise to show that 1) C is closed, 2) C is uncountable, and 3)

describe C in terms of ternary expansions for real numbers.
Finally we should point out that MBor is strictly smaller than MLeb. However we have the

following fact

Proposition 4.13 If E ∈ MLeb then there are A,B ∈ MBor such that A ⊂ E ⊂ B and both
E \ A and B \ E are null sets.

The proof is outside the syllabus.
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4.4 An example of non measurable sets

While not every subset of R is measurable, though it is not easy to produce an example of non
measurable sets, which is a good news indeed. In fact we need to invoke the axiom of choice to
produce a subset which is not in MLeb.

If E is a subset of R, and a is a real number, then a + A = {a + x : x ∈ A} is a translation
of a subset A. It is elementary that if J is an interval, so is a+ J and |a+ J | = |J |. According
to the definition of the outer measure m∗ we may deduce that m∗(a + A) = m∗(A). It follows
that, if E ∈ MLeb, then a+E ∈ MLeb and m(a+E) = m(E). Therefore the Lebesgue measure
m is invariant under translations.

Consider the unit interval [0, 1]. Define the following equivalence relations: if x, y ∈ [0, 1] and
x−y ∈ Q, then we say x ∼ y. Divide [0, 1] into equivalent classes, and choose exactly one number
from each equivalent class to form a subset A ⊂ [0, 1]. We claim that A is not measurable, i.e.
A /∈ MLeb. In fact, list the rational numbers in [−1, 1] by r1, r2, · · · . Then ∪∞

i=1(ri + A) ⊇ [0, 1]
and ∪∞

i=1(ri + A) ⊂ [−1, 2], so that

1 ≤ m∗

(

∞
⋃

i=1

(ri + A)

)

≤ 3.

Note that ri + A are disjoint, and m∗(ri + A) = m∗(A) for every i. If A were measurable, then
ri + A are measurable for every i, hence, by countable additivity, we would have

m∗

(

∞
⋃

i=1

(ri + A)

)

=
∞
∑

i=1

m∗(ri + A) =
∞
∑

i=1

m∗(A)

so that

1 ≤
∞
∑

i=1

m∗(A) ≤ 3

which is impossible as
∑∞

i=1m
∗(A) = 0 or

∑∞
i=1m

∗(A) = ∞ (according to m∗(A) = 0 or not).
Thus A is not Lebesgue measurable.

4.5 Lebesgue sub-spaces

Suppose E ⊂ R is Lebesgue measurable, then

MLeb(E) = {E ∩ A : where A ∈ MLeb}
= {A : where A ⊆ E and A ∈ MLeb}

is a σ-algebra on E. On the other hand MLeb(E) ⊆ MLeb so that the restriction of the Lebesgue
measure m, denoted by m|E or by m if no confusion is possible, is obviously a measure on
(E,MLeb(E)), called the Lebesgue measure on E. The triple (E,MLeb(E),m) is therefore a
measure space, called a Lebesgue subspace. A function f defined on E which is MLeb(E)-
measurable is called Lebesgue measurable on E. MLeb(E) will be simply denoted (by abusing
notations) by MLeb if no confusion may arise.
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5 Measurable functions

In this section we identify a class of functions, called measurable functions, for which we aim to
define integrals. The concept of measurability can be developed independent of a measure, we
therefore develop this concept for a general measurable space (Ω,F).

5.1 Definition and basic properties

Recall that B(R) (or denoted by MBor) denotes the Borel σ-algebra on R, which is the smallest
σ-algebra containing all open sets in R, or equivalently, the smallest σ-algebra which contains all
intervals.

Let us begin with some comments on notations. If f is a function defined on a space Ω and
takes its values in [−∞,∞] (i.e. f is a mapping from Ω to [−∞,∞]), and if A is a subset of
[−∞,∞], then f−1(A) is the pre-image of A under f , that is,

f−1(A) = {x ∈ Ω : f(x) ∈ A} .

For simplicity, we will also use {f ∈ A} to denote f−1(A). More generally, if P is a property (or a
statement) depending on x ∈ Ω, then we will use {P} to denote the subset {x ∈ Ω : P (x) holds },
if the underlying space Ω is clear, and if no confusion may arise. For example, f as above and
a ∈ R, then {f > a} = {x ∈ Ω : f(x) > a}. That is, {f > a} is the pre-image of (a,∞] under f .
Similarly {f = ∞} denotes the set {x ∈ Ω : f(x) = ∞} etc. As another example, if f and g are
two mappings from Ω into [−∞,∞], then

{f 6= g} = {x ∈ Ω : f(x) = g(x)}

and
{f > g} = {x ∈ Ω : f(x) > g(x)}

and etc.
Let F be a σ-algebra on the space Ω.

Definition 5.1 Let f : Ω → R be a function on Ω. Then f is F-measurable if f−1(G) ∈ F for
every G ∈ B(R). That is, {f ∈ G} ∈ F for every Borel subset G.

In probability theory, an F -measurable function on Ω is called a random variable on the
measurable space (Ω,F). To discuss the measurability of functions (in general mappings, the
following fact is very useful.

Lemma 5.2 Let X : Ω → S be a mapping, and F be a σ-algebra on Ω. Then

FX =
{

A ⊂ S : X−1(A) ∈ F
}

(5.1)

is a σ-algebra. FX is the push-forward σ-algebra of F by X.

The proof is left as an exercise [Problem 4, Sheet 2].
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Proposition 5.3 Suppose f : Ω → R. Then the following statements are equivalent:
1) f−1(G) ∈ F for every G ∈ MBor, i.e. f is F-measurable.
2) {f > a} ∈ F for every a ∈ R,
3) {f < a} ∈ F for every a ∈ R,
4) {f ≤ a} ∈ F for every a ∈ R,
5) f−1(J) ∈ F for every interval J .

Proof. Let G = Ff be defined by (5.1). Then G is a σ-algebra, and f is F -measurable, i.e.
it satisfies 1), if and only if B(R) ⊂ G. Let us for example show that 1) and 4) are equivalently.
Clearly 1) implies 4), so let us prove the other direction that 4) yields 1). To this end, let A

be the family of all intervals (−∞, a]. Then 4) says that A ⊂ G. Since G is a σ-algebra, so
that σ {A } ⊂ G, where σ {A } is the smallest σ-algebra which contains all subsets in A . Since
σ {A } = B(R), therefore B(R) ⊂ G. Thus for every G ∈ B(R), {f ∈ G} ∈ F .

Definition 5.4 Let Ω be a Lebesgue measurable subset of R, and MLeb(Ω) (or MLeb if no
confusion may arise) denote the σ-algebra of all Lebesgue measurable subsets of Ω, that is,

MLeb(Ω) = {A ∈ MLeb : A ⊂ Ω} .

Then (Ω,MLeb(Ω)) is a measurable space, and the Lebesgue measure restricted on MLeb(Ω) is
a measure on (Ω,MLeb). The measure space (Ω,MLeb,m) is called a Lebesgue measure space.
Let f : Ω → R be a function defined on a Lebesgue measurable subset Ω.

If f : Ω → R is MLeb-measurable, then f is called Lebesgue measurable on Ω.

Definition 5.5 A function f : R → R which is B (R)-measurable, is called Borel measurable.

Since B (R) ⊂ MLeb, a Borel measurable function is Lebesgue measurable. The converse is
not true in general, there are Lebesgue measurable functions which are not Borel measurable.

Example. 1) Suppose h : R → R is continuous. Then if U is open then h−1(U) is open, so
that h−1(U) ∈ B(R). Since

G =
{

A ⊂ R : h−1(A) ∈ B(R)
}

is a σ-algebra, and any open subset belongs to G, by definition, B(R) ⊂ G. Therefore h−1(G) ∈
B (R) for any G ∈ B(R). Thus a continuous function h is B(R)-measurable.

2) If h : (a, b) → R is monotone, then h is Borel measurable.

Proposition 5.6 Let (Ω,F) be a measurable space.
1) Let A ⊂ Ω. Then 1A is F-measurable if and only if A ∈ F .
2) If f : Ω → R is F-measurable, and h : R → R is Borel measurable, then h ◦ f is

F-measurable. In particular, if h is continuous, and f is F-measurable, then h ◦ f is also F-
measurable. [While, on the other hand, there are Lebesgue measurable functions h and f such
that h ◦ f is not Lebesgue measurable. ]

3) If a ∈ R and f, g : Ω → R are F-measurable, then af , f ± g, fg, f/g (if g 6= 0) are
F-measurable.

4) f ∧ g = max {f, g} and f ∨ g = min {f, g} are F-measurable. Hence |f |, f+ and f− are
F-measurable, where f+ = f ∨ 0 and f− = (−f) ∨ 0. f+ (resp. f−) is called the positive part
(negative part) of f . |f | = f+ + f− and f = f+ − f−.
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Proof. 1) For every G, {1A ∈ G} equals A, Ac, Ø or Ω, so IA is measurable if and only if
A ∈ F .

2) In fact, for any G ∈ B (R), h−1(G) ∈ B (R), thus (h◦f)−1(G) = f−1(h−1(G)) ∈ F , so h◦f
is F -measurable.

3) There is nothing to prove if a = 0. If a > 0 then for any b we have

{af > b} =

{

f >
b

a

}

∈ F

and if a < 0 then

{af > b} =

{

f <
b

a

}

∈ F

so that af is measurable. In particular −g is measurable if g is measurable. We show that f + g
is measurable. For any b we have

{f + g > b} =
⋃

q∈Q

{f > q and g > b− q}

=
⋃

q∈Q

{f > q} ∩ {g > b− q}.

Since f, g are measurable so that {f > q} ∈ F and {g > b− q} ∈ F and therefore

{f > q} ∩ {g > b− q} ∈ F ∀q.

Since the set Q of all rational numbers is countable, it follows that
⋃

q∈Q

{f > q} ∩ {g > b− q} ∈ F

and therefore f + g is measurable.
Since f 2 = h ◦ f where h(x) = x2 is a continuous function, so that f 2 is measurable if f is

measurable. Now

fg =
1

4

[

(f + g)2 − (f − g)2
]

is measurable.
Similarly, since h(x) = |x| is continuous, so that |f | = h ◦ f is measurable. Hence

f ∨ g = 1

2
[(f + g) + |f − g|]

and

f ∧ g = 1

2
[(f + g)− |f − g|]

are measurable. In particular f+ = f ∨ 0 and f− = (−f) ∨ 0 are measurable.

Definition 5.7 A function f : Ω → [−∞,∞] is F-measurable, if {f = −∞}, {f = ∞} are
measurable, and f−1(G) ∈ F for every Borel subset G.

Next we prove that the class of F -measurable functions on a measurable space (Ω,F) is
closed under limiting operations.

19



Proposition 5.8 If {fn : n = 1, 2, · · · } is a sequence of F-measurable functions, then supn≥1 fn,
infn≥1 fn, lim supn→∞ fn and lim infn→∞ fn are F-measurable. In particular, if f = limn→∞ fn
exists, then f is F-measurable.

Proof. For each n consider

gn(x) = sup {fn(x), fn+1(x), · · · }

and
hn(x) = inf {fn(x), fn+1(x), · · · } .

Then {gn : n = 1, 2, · · · } is a [point-wise] decreasing sequence and {hn : n = 1, 2, · · · } is an in-
creasing sequence, hence gn ↓ g and hn ↑ h, where g and h may take value ±∞. g and h are
called the upper limit and lower limit of (fn), denoted by limn→∞fn (or lim sup fn) and limn→∞fn
(or by lim inf fn) respectively.

For each n, gn takes values in (−∞,∞]. For any real number a we have

{gn ≤ a} =
∞
⋂

m=n

{fm ≤ a}

and

{gn = ∞} =

(

∞
⋃

N=1

{gn ≤ N}
)c

so that gn is F -measurable. On the other hand

hn = − inf {−fn(x),−fn+1(x), · · · }

so that hn is F -measurable. Finally since

lim sup
n→∞

fn = inf {gn : n ≥ 1}

thus lim supn→∞ fn is F -measurable, and limn→∞fn = −limn→∞(−fn) is also F -measurable.
If (Ω,F) is a measurable space, then a function ϕ : Ω → R is called a simple function, or

more precisely called a simple F-measurable function on Ω, if

ϕ =
k
∑

i=1

ci1Ei

for some positive integer k, some reals ci and some F -measurable subsets Ei.
The collection of all non-negative, simple functions is denoted by S+(Ω,F) or by S+ if no

confusion may arise.

Theorem 5.9 Suppose that f is a measurable function taking values in [0,∞]. Then there is an
increasing sequence of simple functions (fn) such that fn ↑ f .
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Proof. For each n we define

fn =
22n−1
∑

k=0

k

2n
1
E

(n)
k

+ 2n1An
,

where

E
(n)
k =

{

x :
k

2n
≤ f(x) <

k + 1

2n

}

and An = {x : f(x) ≥ 2n}

are measurable. Then (fn) is an increasing sequence of non-negative simple F -measurable func-
tions. Moreover 0 ≤ f − fn ≤ 1

2n
on {f < 2n} and fn = 2n on {f ≥ 2n}. Therefore fn ↑ f as

n→ ∞.
Therefore we have the following simple structure theorem for measurable functions in terms

of simple measurable functions.

Corollary 5.10 A function f on Ω taking values in [−∞,∞] is F-measurable if and only if
there is a sequence of simple F-measurable functions fn : Ω → R such that fn → f .

Proof. We note that f = f+−f− is measurable if and only if both f+ and f− are measurable.
Apply the previous theorem to f+ and f−.

5.2 Almost everywhere properties

Let (Ω,F , µ) be a measurable space. If P is a property depending on x ∈ Ω, then {P} denotes
the subset {x ∈ Ω : P (x) holds }, and µ [P ] deontes the measure of {P} if {P} is measurable.
That is,

µ [P ] = µ ({P}) = µ ({x ∈ Ω : P (x) holds }) .
For example, if f : Ω → [−∞,∞] is F -measurable and λ is a real number, then

µ [f > λ] = µ ({x ∈ Ω : f(x) > λ}) .

If f and g are two measurable functions, then

µ [f 6= g] = µ ({x ∈ Ω : f(x) 6= g(x)})

etc.
We say the property P holds µ-almost everywhere (or almost surely) on Ω, if

µ [P doesn’t hold ] = µ ({x ∈ Ω : P (x) doesn’t hold }) = 0.

If the underlying space Ω and the measure µ is clear from the context, then we simply say the
property P holds almost everywhere. For example, if f and g are two functions, then we say
f = g almost everywhere if µ [f 6= g] = 0.

If (fn) is a sequence of functions, then fn converges to f almost everywhere, if

µ ({x ∈ Ω : fn(x) does not converge to f(x)}) = 0.

Recall that a measure space (Ω,F , µ) is complete, if A ∈ F and µ(A) = 0, then any subset
of A is F -measurable, that is, any subset of A also belongs to F . Any Lebesgue measurable
sub-space (E,MLeb,m) (where E is Lebesgue measurable) is complete. However, (R,B(R),m)
is not complete.
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Proposition 5.11 Suppose (Ω,F , µ) is a complete measure space. If f : Ω → [−∞,∞] is
F-measurable, and g = f almost everywhere, then g is also F-measurable.

This is an exercise in Problem Sheet 2.

Proposition 5.12 Suppose (Ω,F , µ) is a complete measure space. If fn : Ω → [−∞,∞] are
F-measurable functions, and fn → f almost everywhere on Ω, then f is F-measurable.

5.3 Examples

We give in this part further properties about measurable functions in terms of examples.

Example 1. If g : R → R is monotone, then g is Borel measurable. In fact if I is an interval,
then g−1(I) is a union of at most countable many intervals, so it belongs to B(R). Hence g is
Borel measurable.

Example 2. Let (Ω,F) be a measurable space. Suppose fn : Ω → R are F -measurable.
Recall that {fn} converges at x ∈ Ω if and only if {fn(x)} is a Cauchy sequence. Hence

{x ∈ Ω : (fn(x)) converges to a number}

=
∞
⋂

k=1

∞
⋃

N=1

∞
⋂

m,n=N

{

|fn − fm| <
1

k

}

and

{x ∈ Ω : (fn(x)) doesn’t converge to a number}

=
∞
⋃

k=1

∞
⋂

N=1

∞
⋃

m,n=N

{

|fn − fm| ≥
1

k

}

are both measurable.

Example 3. Let (Ω,F) be a measurable space. If fn, f : Ω → R are F -measurable, then

{fn → f} =
∞
⋂

k=1

∞
⋃

N=1

∞
⋂

n=N

{

|fn − f | < 1

k

}

and

{fn 9 f} =
∞
⋃

k=1

∞
⋂

N=1

∞
⋃

n=N

{

|fn − f | ≥ 1

k

}

are measurable as well.

Example 4. Let E ⊂ R, and f, fn : E → R (n = 1, 2, · · · ) be Lebesgue measurable functions
on E. Then fn → f almost everywhere on E (with respect to the Lebesgue measure), i.e.

m [fn doesn’t converge to f ] = 0
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[where
{fn doesn’t converge to f} = {x ∈ E : fn(x) 9 f(x)}

and similar notations apply to other sets], if and only if for every ε > 0

m

(

∞
⋂

N=1

∞
⋃

n=N

{|fn − f | ≥ ε}
)

= 0 . (5.2)

If in addition m(E) <∞, then [Proposition 2.4, item 3)] (5.2) is equivalent to the condition
that

lim
N→∞

m

(

∞
⋃

n=N

{|fn − f | ≥ ε}
)

= 0 (5.3)

for any ε > 0.

Example 5. Let E = (0,∞), and fn(x) = 1 if x ∈ (0, n] and fn(x) = 0 if x > n. Then
fn → f = 1(0,∞) everywhere. For every ε ∈ (0, 1) we have

{|fn − f | ≥ ε} = (n,∞)

so that
m ({|fn − f | ≥ ε}) = ∞.

Thus (5.3) doesn’t hold. On the other hand

∞
⋂

N=1

∞
⋃

n=N

{|fn − f | ≥ ε} =
∞
⋂

N=1

(N,∞) = Ø.

[This is a simple example that fn → f everywhere, but fn does not converge to f in measure,
see Definition 7.5 below].

Example 6. (Egorov’s theorem) Let E ⊂ R be measurable such that m(E) < ∞. Suppose
fn, f : E → R are measurable, and suppose fn → f almost everywhere on E. Then for every
δ > 0 there is a measurable Eδ ⊂ E such that m(E \ Eδ) < δ and fn → f uniformly on Eδ.

Proof. Since fn → f almost surely on E and m(E) < ∞, according to (5.3) in Example 4,
for every δ > 0 and for any k = 1, 2, · · · (applying (5.2) to ε = 1

k
) there is nk such that

m

(

∞
⋃

j=n

{

|fj − f | ≥ 1

k

}

)

≤ δ

2k
for n ≥ nk.

Let

Ek =
∞
⋂

j=nk

{

|fj − f | < 1

k

}

=

{

|fj − f | < 1

k
: j ≥ nk

}

and Eδ =
⋂∞

k=1Ek. Then m(Ec
k) ≤ δ

2k
and

m(E \ Eδ) = m

(

∞
⋃

k=1

Ec
k

)

≤
∞
∑

k=1

m(Ec
k) ≤

∞
∑

k=1

δ

2k
= δ.
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We claim that fn → f uniformly on Eδ. In fact, x ∈ Eδ if and only if x ∈ Ek for all k = 1, 2, · · · ,
and if and only if

|fj(x)− f(x)| < 1

k
∀j ≥ nk.

Therefore

sup
x∈Eδ

|fj(x)− f(x)| ≤ 1

k
, ∀j ≥ nk

and fn → f uniformly on Eδ.

6 Lebesgue integration

In this section we study Lebesgue’s theory of integration. Lebesgue’s theory of integration can
be built on a measure space, though most of textbooks on integration theory deal with the case
of Lebesgue measure first, the process to construct the theory of integration however does not
become simpler if we restricted to the Lebesgue measure.

First of all we need to define the class of simple (measurable) functions, and we define in-
tegrals for simple and non-negative functions, then define integrals for non-negative measurable
functions. Finally we define Lebesgue integrals for measurable functions.

In this course, we only deal with the theory of Lebesgue’s integration for the Lebesgue mea-
sure, we will nevertheless develop the theory on a measure space (Ω,F , µ) if no additional effort
is required and if only modifications of notations are required. We will however concentrate on
the Lebesgue space (E,MLeb,m), where E ⊂ R is a Lebesgue measurable subset, and m is the
Lebesgue measure as our model of the measure space, and you may read notes as if Ω = E,
F = MLeb(E), µ = m for some Lebesgue measurable subset E ⊂ R, unless otherwise specified,
and thus F -measurable means Lebesgue measurable on E.

6.1 Lebesgue integrals, and integrable functions

Therefore we will develop Lebesgue’s theory on a measure space (Ω,F , µ). The following tech-
nical conditions are enforced in what follows, unless said otherwise.

1) (Ω,F , µ) is complete in the sense that: if A ∈ F and µ(A) = 0, then any subset of A
belongs to F .

2) (Ω,F , µ) is σ-finite, that is, there is an increasing sequence Gn ∈ F (n = 1, 2, · · · ), such
that

⋃∞
n=1Gn = Ω and µ (Gn) <∞ for all n.

Our basic example is a Lebesgue sub-space (E,MLeb,m), where E ⊆ R is a Lebesgue mea-
surable subset, and MLeb denotes the σ-algebra E ∩MLeb on E for simplicity.

S+(Ω,F) denotes the collection of all non-negative, simple, F -measurable functions on Ω.
Suppose ϕ =

∑k
i=1 ci1Ei

is a non-negative, simple, F -measurable function on Ω, where ci ≥ 0
and Ei ∈ F , then its Lebesgue integral is defined by

ˆ

Ω

ϕdµ =
k
∑

i=1

ciµ(Ei)
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where the convention that 0 · ∞ = 0 has been used, to ensure the finite sum on the right-hand
side is well defined and is independent of the representation of ϕ. In fact, if

ϕ =
k
∑

i=1

ci1Ei
=

N
∑

j=1

aj1Aj

where ci ≥ 0 and aj ≥ 0 for all i, j, then

k
∑

i=1

ciµ(Ei) =
N
∑

j=1

ajµ(Aj)

which follows from the additivity of the measure µ.

Proposition 6.1 Let ϕ, ψ ∈ S+(Ω,F), and λ ≥ 0. Then
1)
´

Ω
(ϕ+ ψ)dµ =

´

Ω
ϕdµ+

´

Ω
ψdµ.

2)
´

Ω
λϕdµ = λ

´

Ω
ϕdµ.

3) If ϕ ≤ ψ then
´

Ω
ϕdµ ≤

´

Ω
ψdµ.

Proof. We may choose measurable sets Ei ∈ F (i = 1, · · · , k) which are disjoint such that

ϕ =
k
∑

i=1

ci1Ei
, ψ =

k
∑

i=1

di1Ei

so that

ϕ+ ψ =
k
∑

i=1

(ci + di)1Ei

and therefore
ˆ

Ω

(ϕ+ ψ)dµ =
k
∑

i=1

(ci + di)µ(Ei) =

ˆ

Ω

ϕdµ+

ˆ

Ω

ψdµ,

which proves 1). If ϕ ≤ ψ then ci ≤ di for all i for which Ei 6= Ø, then

ˆ

Ω

ϕdµ =
k
∑

i=1

ciµ(Ei) ≤
k
∑

i=1

diµ(Ei) =

ˆ

Ω

ψdµ

which is 3).
Suppose f : Ω → [0,∞] is F -measurable, then the (Lebesgue) integral of f is defined by

ˆ

Ω

fdµ = sup

{
ˆ

Ω

ϕdµ : ϕ ∈ S+(Ω,F) s.t. ϕ ≤ f

}

. (6.1)

A non-negative measurable function f is integrable on Ω (with respect to the measure µ) if
´

Ω
fdµ <∞.
By definition, if f, g are non-negative and measurable, f ≤ g, and λ be a non-negative

number, then
ˆ

Ω

λfdµ = λ

ˆ

Ω

fdµ and

ˆ

Ω

fdµ ≤
ˆ

Ω

gdµ

In particular, if g is integrable, then so is f .
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Lemma 6.2 f : Ω → [0,∞] is F-measurable, then

µ [f ≥ λ] ≤ 1

λ

ˆ

Ω

fdµ (6.2)

for every λ > 0, which is called the Markov inequality.

We recall here the convention of our notation: if P is a statement depending on x ∈ Ω, then
{P} = {x ∈ Ω : P (x)} and

µ [P ] = µ ({P}) = µ ({x ∈ Ω : P (x)}) .

Therefore {f ≥ λ} = {x ∈ Ω : f(x) ≥ λ} and

µ [f ≥ λ] = µ ({x ∈ Ω : f(x) > λ}) .

Proof. of Lemma 6.2. Since {f ≥ λ} is F -measurable, and f is non-negative, the simple
function ϕ = λ1{f≥λ} ≤ f . By definition of integration,

ˆ

Ω

fdµ ≥
ˆ

Ω

ϕdµ = λµ [f ≥ λ] ,

which yields (7.1).

Proposition 6.3 f : Ω → [0,∞] is integrable, then µ [f = ∞] = 0. That is, f is finite almost
everywhere on Ω.

Proof. Since {f = ∞} is measurable, so that, by the Markov inequality

µ [f = ∞] ≤ µ [f > λ] ≤ 1

λ

ˆ

Ω

fdµ

for every λ > 0, where the first inequality follows from the fact that {f = ∞} ⊂ {f > λ} for
every λ > 0. Letting λ ↑ ∞ in the inequality above, we deduce that

0 ≤ µ [f = ∞] ≤ 0

and therefore we must have µ [f = ∞] = 0.

Proposition 6.4 If f : Ω → [0,∞] is F-measurable, and
´

Ω
fdµ = 0, then f = 0 almost

everywhere on Ω, i.e. µ [f 6= 0] = 0.

Proof. By Markov’s inequality

µ [f ≥ λ] ≤ 1

λ

ˆ

Ω

fdµ = 0,

so that µ [f ≥ λ] = 0 for every λ > 0. Since {f > 0} =
⋃∞

n=1

{

f ≥ 1
n

}

, we have

0 ≤ µ [f > 0] ≤
∞
∑

n=1

µ

[

f ≥ 1

n

]

= 0.
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Therefore f = 0 almost everywhere on Ω.
Lebesgue integrable functions on (Ω,F , µ)
If f : Ω → [−∞,∞] is F -measurable, then its positive part f+ = max{f, 0} and negative

part f− = max{−f, 0} are F -measurable on Ω, f = f+ − f− and |f | = f+ + f−. Thus
´

Ω
f+dµ

and
´

Ω
f−dµ are both well defined (may be ∞). If both

´

Ω
f+dµ and

´

Ω
f−dµ are finite, then

we say f is (Lebesgue) integrable on Ω, and define its (Lebesgue) integral

ˆ

Ω

fdµ =

ˆ

Ω

f+dµ−
ˆ

Ω

f−dµ.

Let L1(Ω,F , µ) (L1(Ω, µ) or L1(Ω) if no confusion is possible from the context, for simplicity)
denote the space of all integrable functions on Ω.

If f : Ω → [−∞,∞] is measurable, then f ∈ L1(Ω) if and only if
´

Ω
|f |dµ <∞. If f ∈ L1(Ω),

then µ [|f | = ∞] = 0 [Applying Proposition 6.3 to |f |], that is, f is finite almost everywhere on
Ω.

We have a very simple comparison theorem for integrability.

Proposition 6.5 1) Let f and g be F-measurable. If g ∈ L1(Ω,F , µ) and |f | ≤ g on Ω, then
f ∈ L1(Ω,F , µ) and

´

Ω
|f |dµ ≤

´

Ω
gdµ.

2) If µ(Ω) <∞, and if f is F-measurable and bounded on Ω, then f ∈ L1(Ω,F , µ).

Proof. 1) is obvious by definition, as both f+ and f− are dominated by g under assumption.
To show 2), suppose ϕ ∈ S+(Ω,F) and ϕ ≤ |f |. Then ϕ is bounded by C = supΩ |f | < ∞, so
that ϕ ≤ C1Ω on Ω. Hence

ˆ

Ω

ϕdµ ≤ Cµ (Ω) <∞.

Hence
ˆ

Ω

|f |dµ = sup

{
ˆ

Ω

ϕdµ : ϕ is non-negative, simple; and ϕ ≤ |f |
}

≤ Cµ(E) <∞.

Thus f ∈ L1 (Ω,F , µ).
The following theorem, called Monotone Convergence Theorem (MCT), is one of the most

important results in Lebesgue’s Theory of Integration.

Theorem 6.6 (MCT, Lebesgue and B. Levi) Suppose fn : Ω → [0,∞] are F-measurable and
fn ↑ (that is fn+1(x) ≥ fn(x) for n = 1, 2, · · · , and x ∈ Ω). Let f = limn→∞ fn. Then

ˆ

Ω

fdµ = lim
n→∞

ˆ

Ω

fndµ . (6.3)

Proof. [The proof is not examinable. We use the proof in W. Rudin: Real and Complex
Analysis, Third Edition, page 21]. Since fn ↑ f , f is measurable and takes values in [0,∞].
Moreover fn ≤ fn+1 ≤ f so that

´

Ω
fndµ ≤

´

Ω
fn+1dµ ≤

´

Ω
fdµ. Hence limn→∞

´

Ω
fndµ exists

(but may be ∞), and limn→∞

´

Ω
fndµ ≤

´

Ω
fdµ. We next prove the reversed inequality that

limn→∞

´

Ω
fndµ ≥

´

Ω
fdµ.

Suppose ϕ ∈ S+(Ω,F) and that ϕ ≤ f . Let λ ∈ (0, 1), and let En = {fn ≥ λϕ}. Since
fn ↑, En ↑ and ∪∞

n=1En = Ω . In fact, for any x ∈ Ω, if f(x) = 0 then x ∈ E1. If f(x) > 0,
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then λϕ(x) < f(x) (as ϕ ≤ f and λ < 1), since fn ↑ f , there is N such that fn(x) ≥ λϕ(x) for
all n ≥ N (though in general N depends on x) so that x ∈ En for n ≥ N . Thus in any case
x ∈ ∪∞

n=1En, and therefore ∪∞
n=1En = Ω. Since

fn ≥ fn1En
≥ λϕ1En

it follows that
ˆ

Ω

fndµ ≥
ˆ

Ω

fn1En
dµ ≥

ˆ

Ω

λϕ1En
dµ = λ

ˆ

Ω

ϕ1En
dµ. (6.4)

Suppose ϕ =
∑k

i=1 ci1Ai
where ci ≥ 0 and Ai are measurable, then

ϕ1En
=

k
∑

i=1

ci1Ai
1En

=
k
∑

i=1

ci1Ai∩En

so that
ˆ

Ω

ϕ1En
dµ =

k
∑

i=1

ciµ(Ai ∩ En).

Since Ai ∩En ↑ Ai as n→ ∞, thus [Proposition 2.4, item 2)] µ(Ai ∩En) → µ(Ai) as n→ ∞ for
i = 1, · · · , k. Therefore

ˆ

Ω

ϕ1En
dµ→

k
∑

i=1

ciµ(Ai) =

ˆ

Ω

ϕdµ as n ↑ ∞.

Letting n→ ∞ in (6.4) we obtain limn→∞

´

Ω
fndµ ≥ λ

´

Ω
ϕdµ for every ϕ ∈ S+(Ω,F) such that

ϕ ≤ f on Ω, which implies that

lim
n→∞

ˆ

Ω

fndµ ≥ λ

ˆ

Ω

fdµ.

Since λ ∈ (0, 1) arbitrary, we must have limn→∞

´

Ω
fndµ ≥

´

Ω
fdµ. Therefore limn→∞

´

Ω
fndµ =

´

Ω
fdµ.
Let us draw several useful consequences which follow directly from MCT.

Corollary 6.7 Suppose f, g : Ω → [0,∞] are measurable.
1) There is a sequence of simple non-negative functions ϕn ∈ S+(Ω,F) such that ϕn ↑ f on

Ω and
´

Ω
fdµ = limn→∞

´

Ω
ϕndµ.

2) We have
ˆ

Ω

(f + g)dµ =

ˆ

Ω

fdµ+

ˆ

Ω

gdµ

and
ˆ

Ω

λfdµ = λ

ˆ

Ω

fdµ

for every number λ ≥ 0.
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Proof. 1) follows from Theorem 5.9 and MCT directly. By Theorem 5.9, we may choose
ϕn, ψn ∈ S+(Ω,F) such that ϕn ↑ f and ψn ↑ g. Then ϕn + ψn ↑ f + g, so that

ˆ

Ω

(f + g)dµ = lim
n→∞

ˆ

Ω

(ϕn + ψn) dµ = lim
n→∞

(
ˆ

Ω

ϕndµ+

ˆ

Ω

ψndµ

)

= lim
n→∞

ˆ

Ω

ϕndµ+ lim
n→∞

ˆ

Ω

ψndµ =

ˆ

Ω

fdµ+

ˆ

Ω

gdµ

which proved 2).

Theorem 6.8 Let (Ω,F , µ) be a measure space. Then L1(Ω,F , µ) is a vector space, and f →
´

Ω
fdµ is linear on L1(Ω,F , µ).

Proof. If f, g ∈ L1(Ω,F , µ), then
´

Ω
f+dµ <∞ and

´

Ω
f−dµ <∞. Since

(f + g)+ ≤ f+ + g+, (f + g)− ≤ f− + g−

so that
´

Ω
(f + g)+dµ < ∞ and

´

Ω
(f + g)−dµ < ∞, which shows that f + g ∈ L1(Ω,F , µ).

Moreover
(f + g)+ − (f + g)− = f+ − f− + g+ − g−

so that
(f + g)+ + f+ + g+ = (f + g)− + f− + g−,

thus
ˆ

Ω

(f + g)+dµ+

ˆ

Ω

f+dµ+

ˆ

Ω

g+dµ =

ˆ

Ω

(f + g)−dµ+

ˆ

Ω

f−dµ+

ˆ

Ω

g−dµ.

Rearrange to obtain
ˆ

Ω

(f + g)dµ =

ˆ

Ω

fdµ+

ˆ

Ω

gdµ .

Suppose λ ≥ 0 is a constant, then λf = λf+ − λf−, thus if f ∈ L1(Ω,F , µ), then both
λf+, λf− ∈ L1(Ω,F , µ), so that by definition λf is integrable

ˆ

Ω

λfdµ =

ˆ

Ω

λf+dµ−
ˆ

Ω

λf−dµ = λ

ˆ

Ω

fdµ.

Since (−f)+ = f− and (−f)− = f+, so that −f is integrable by definition, and
ˆ

Ω

(−f)dµ = −
ˆ

Ω

fdµ.

Therefore f →
´

Ω
fdµ is linear, L1(Ω,F , µ) is a vector space.

Theorem 6.9 (MCT for series of non-negative measurable functions, B. Levi) Let fn : Ω →
[0,∞] be F-measurable. Then

ˆ

Ω

∞
∑

n=1

fndµ =
∞
∑

n=1

ˆ

Ω

fndµ.

Therefore,
∑∞

n=1 fn ∈ L1 (Ω,F , µ) if and only if
∑∞

n=1

´

Ω
fndµ <∞.
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Proof. Apply MCT to the sequence of partial sum
∑n

i=1 fi ↑
∑∞

n=1 fn to obtain

ˆ

Ω

∞
∑

n=1

fndµ = lim
n→∞

ˆ

Ω

n
∑

i=1

fidµ = lim
n→∞

n
∑

i=1

ˆ

Ω

fidµ =
∞
∑

n=1

ˆ

Ω

fndµ.

Theorem 6.10 Suppose En are F-measurable (n = 1, 2, · · · ) and are disjoint. Let E = ∪∞
n=1En.

Suppose f : E → [0,∞] is measurable. Then
´

E
fdµ =

∑∞
n=1

´

En
fdµ.

Proof. Let fn =
∑n

i=1 f1Ei
. Then fn are measurable and fn ↑ f on E. Therefore, according

to MCT,

ˆ

E

fdµ = lim
n→∞

ˆ

E

fndµ = lim
n→∞

ˆ

E

n
∑

i=1

f1Ei
dµ

= lim
n→∞

n
∑

i=1

ˆ

E

f1Ei
dµ = lim

n→∞

n
∑

i=1

ˆ

Ei

fdµ =
∞
∑

i=1

ˆ

Ei

fdµ.

Corollary 6.11 Suppose h : R → [0,∞] is Lebesgue measurable. Define µh(E) =
´

E
hdm for

any E ∈ MLeb. Then µh is a measure on (R,MLeb). dµ is denoted by hdm, and h is called the
density of the measure µ with respect to the Lebesgue measure m. The measure µh is absolutely
continuous with respect to the Lebesgue measure in the sense that if m(A) = 0, then µh(A) = 0.
Suppose f : R → [0,∞] is Lebesgue measurable, then

ˆ

R

fdµh =

ˆ

R

fhdm.

Suppose A ⊂ Ω is a null set, i.e. µ(A) = 0, then any function f on A is F -measurable on the
measure space (A,A ∩ F , µ). If ϕ ∈ S+(A,F) is a simple function on A, with a representation
ϕ =

∑k
i=1 ci1Ai

where Ai ⊂ A, then

ˆ

A

ϕdµ =
k
∑

i=1

ciµ(Ai) = 0

which yields that
´

A
f+dµ =

´

A
f−dµ =

´

A
fdµ = 0 for every null set A. Thus we must have by

definition
´

A
fdµ = 0 for any null set A, for any function f defined on A.

If f, g : Ω → [−∞,∞] be two functions. Suppose f is F -measurable and suppose f = g
almost everywhere on Ω. Let A = {f 6= g}. Then µ (A) = 0. g is F -measurable too. Thus both
A and Ω \ A are F -measurable. Now

ˆ

Ω

g+dµ =

ˆ

Ω\A

g+dµ+

ˆ

A

g+dµ =

ˆ

Ω\A

g+dµ =

ˆ

Ω\A

f+dµ =

ˆ

Ω

f+dµ

and similarly,
´

Ω
f−dµ =

´

Ω
g−dµ. Therefore f ∈ L1(Ω,F , µ) if and only if g ∈ L1(Ω,F , µ), and

in this case
´

Ω
fdµ =

´

Ω
gdµ. Therefore, the definition of Lebesgue integrals on a measurable

set Ω applies to measurable functions which may be well defined on Ω only almost surely.
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Suppose E and F are two measurable sets, F ⊂ E, and that E \ F is null. Suppose f : E →
[0,∞] is measurable, then

ˆ

E

fdµ =

ˆ

F

fdµ+

ˆ

E\F

fdµ =

ˆ

F

fdµ

In particular, if a < b, then m ([a, b] \ (a, b)) = 0, so that
ˆ

(a,b)

fdm =

ˆ

[a,b)

fdm =

ˆ

(a,b]

fdm =

ˆ

[a,b]

fdm.

Therefore, we will use
´ b

a
f(x)dx to denote the Lebesgue integral

´

J
fdm on an interval J with

endpoints a < b.

Theorem 6.12 (MCT – version for sequences of integrable functions) Suppose fn ∈ L1(Ω,F , µ)
where n = 1, 2, · · · , fn ↑ f almost everywhere on Ω [That is, there is a null set N ⊂ Ω such
that fn(x) ≤ fn+1(x) for all n and x ∈ Ω \ N , and f(x) = limn→∞ fn(x) for x ∈ Ω \ N ], and
suppose that the sequence

{´

Ω
fndµ

}

is bounded above. Then f ∈ L1(Ω,F , µ) and
´

Ω
fdµ =

limn→∞

´

Ω
fndµ.

To prove the theorem, we apply MCT (the version for non-negative functions) to fn − f1, to
obtain

ˆ

Ω

(f − f1)dµ = lim
n→∞

ˆ

Ω

(fn − f1)dµ = lim
n→∞

ˆ

Ω

fndµ−
ˆ

Ω

f1dµ

which is finite, so that f−f1 ∈ L1(Ω,F , µ). Hence f ∈ L1(Ω,F , µ) and
´

Ω
fdµ = limn→∞

´

Ω
fndµ.

Theorem 6.13 (Fatou’s lemma) Suppose fn : Ω → [0,∞] are F-measurable (n = 1, 2, · · · ),
then

ˆ

Ω

lim inf
n→∞

fndµ ≤ lim inf
n→∞

ˆ

Ω

fndµ. (6.5)

In particular, if fn are non-negative and measurable, and fn → f almost everywhere as n→ ∞,
then

´

Ω
fdµ ≤ lim infn→∞

´

Ω
fndµ.

Proof. [The proof is not examinable]. Let gn(x) = infi≥n fi(x) for n = 1, 2, · · · , so gi ≤ fn
for all i ≥ n, and gn ↑ lim infn→∞ fn. Apply MCT to (gn) we have

ˆ

Ω

lim inf
n→∞

fndµ = lim
n→∞

ˆ

Ω

gndµ.

On the other hand
´

Ω
gndµ ≤

´

Ω
fidµ for all i ≥ n, so that

´

Ω
gndµ ≤ infi≥n

´

Ω
fidµ and

therefore
ˆ

Ω

lim inf
n→∞

fndµ = lim
n→∞

ˆ

Ω

gndµ ≤ lim
n→∞

inf
i≥n

ˆ

Ω

fidµ = lim inf
n→∞

ˆ

Ω

fndµ.

Example. Suppose fn are integrable on (Ω,F , µ) and bounded in L1 (Ω,F , µ), that is,
supn≥1

[´

Ω
|fn|dµ

]

< ∞, and suppose fn → f almost everywhere, then f is integrable. In
fact, by Fatou’s lemma (applying to the sequence {|fn| : n = 1, 2, · · · })

ˆ

Ω

|f |dµ =

ˆ

Ω

lim
n→∞

|fn|dµ ≤ lim inf
n→∞

ˆ

Ω

|fn|dµ ≤ sup
n≥1

[
ˆ

Ω

|fn|dµ
]

<∞

so that f ∈ L1 (Ω,F , µ).
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Theorem 6.14 (Lebesgue’s Dominated Convergence Theorem, DCT) Let fn : Ω → [−∞,∞]
be F-measurable, and f = limn→∞ fn almost everywhere on Ω. Suppose there is an integrable
function g ∈ L1 (Ω,F , µ) such that |fn(x)| ≤ g(x) for almost all x ∈ Ω for n = 1, 2, · · · . Then

1) f and fn are integrable, and
2)
´

Ω
fdµ = limn→∞

´

Ω
fndµ.

Proof. f is F -measurable, and |f | ≤ g almost everywhere on Ω, so by comparison, fn, f are
integrable. Apply Fatou’s lemma to g − fn to obtain

ˆ

Ω

(g − f) dµ =

ˆ

Ω

lim
n→∞

(g − fn)dµ ≤ lim inf

ˆ

Ω

(g − fn)dµ

=

ˆ

Ω

gdµ− lim sup

ˆ

Ω

fndµ

so that

lim sup

ˆ

Ω

fndµ ≤
ˆ

Ω

fdµ. (6.6)

Apply the inequality above to −fn → −f we obtain

lim sup

ˆ

Ω

(−fn) dµ ≤
ˆ

Ω

(−f) dµ

which is equivalent to that

lim inf

ˆ

Ω

fndµ ≥
ˆ

Ω

fdµ. (6.7)

Putting (6.6) and (6.7) together we have

lim sup
n→∞

ˆ

Ω

fndµ ≤
ˆ

Ω

fdµ ≤ lim inf
n→∞

ˆ

Ω

fndµ.

Since

lim inf
n→∞

ˆ

Ω

fndµ ≤ lim sup
n→∞

ˆ

Ω

fndµ

so that

lim inf
n→∞

ˆ

Ω

fndµ =

ˆ

Ω

fdµ = lim sup
n→∞

ˆ

Ω

fndµ

hence lim
´

Ω
fndµ exists and lim

´

Ω
fndµ =

´

Ω
fdµ, so the proof is complete.

The integrable function g appearing in the previous theorem is called a control function for
the sequence (fn). It is essential to have a control g in DCT. Here is an example. E = [0,∞)
with the Lebesgue measure m, fn = 1[n−1,n). Then fn → 0 on E,

´

E
fndm = 1 for every n,

but limn→∞

´

E
fndm = 1 6=

´

E
limn→∞ fndm. This example also shows that the condition that

m(E) <∞ in the following Corollary is essential.

Corollary 6.15 (Bounded Convergence Theorem, Lebesgue) Let (Ω,F , µ) be a finite, complete
measure space, so that µ(Ω) < ∞. Suppose fn are measurable, fn → f almost everywhere, and
|fn(x)| ≤ K for all n and for almost all x ∈ Ω, where K is a constant, then fn and f are
integrable and

ˆ

Ω

fdµ = lim
n→∞

ˆ

Ω

fndµ .
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We end this part by proving that a Riemann integrable function f on [a, b] must be Lebesgue
integrable.

Theorem 6.16 Suppose f : [a, b] → R is Riemann integrable, then f must be measurable and
Lebesgue integrable on [a, b]. Moreover, the Lebesgue integral

´

(a,b)
fdm coincides with the Rie-

mann integral of f over [a, b].

Proof. Recall that ϕ is a step functions if ϕ =
∑k

i=1 ci1Ji where ci are constants and Ji are
finite intervals, which is a simple function on (R,MLeb). I (ϕ) denotes the Riemann integral of
the step function, that is,

I (ϕ) =
k
∑

i=1

ci|Ji| =
k
∑

i=1

cim(Ji) =

ˆ

R

ϕdm

according to the definition of Lebesgue measure m. Therefore, for step functions, the Lebesgue
integrals coincide with their Riemann integrals.

If f is Riemann integrable, then it is bounded. For every n there are two step functions ϕn

and ψn such that

ϕn ≤ f1(a,b) ≤ ψn, I(ϕn) ≤
ˆ b

a

f(x)dx ≤ I(ψn)

and

0 ≤ I(ψn)− I(ϕn) <
1

n
.

Since the class of step functions is stable under the lattice operations ∧ and ∨, that is, if ϕ1 and
ϕ2 are step functions, then so are ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2. Therefore we can choose two sequences
of step functions ϕn ↑ and ψn ↓ . Let g = limn−→∞ ϕn and h = limn→∞ ψn. Then both g and h
are measurable, and

I(ϕn − ϕ1) = I(ϕn − ϕ1) ≤
ˆ b

a

f(x)dx− I(ϕ1)

so that, according to MCT, g − ϕ1 ∈ L1(a, b) and therefore g ∈ L1(a, b). Similarly h ∈ L1(a, b).
Moreover

I(ψn)− I(ϕn) <
1

n

so that, again by MCT
ˆ

(a,b)

hdm =

ˆ

(a,b)

gdm =

ˆ b

a

f(x)dx.

Since h − g ≥ 0 and
´

(a,b)
(h − g)dm = 0, h = g almost every on (a, b). However g ≤ f ≤ h so

that f = g = h almost surely on (a, b), thus f is Lebesgue measurable. Since f is bounded, and
m ((a, b)) = b− a <∞, f is (Lebesgue) integrable on (a, b). Moreover

ˆ

(a,b)

fdm =

ˆ

(a,b)

hdm =

ˆ

(a,b)

gdm =

ˆ b

a

f(x)dx,

that is the Riemann integral of f on [a, b] coincides with its Lebesgue integral on [a, b] (or
equivallently on (a, b)).
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6.2 Integrals depending on parameters

The convergence theorems, in particular the Dominated Convergence Theorem, may be applied
to a family of measurable functions rather than sequences of measurable functions.

Let E ⊆ MLeb be a measurable subset, and G ⊂ R. Suppose for every t ∈ G, ft : E →
[−∞,∞] is integrable, so that we may form a function F : G → R by taking F (t) =

´

E
ft(x)dx

for every t ∈ G. We seek for sufficient conditions to ensure that F is continuous on G. Let us
begin with a simple example.

Example 1. Consider ft(x) = te−t2x2
for t ∈ R and x ∈ R which is continuous in (t, x). Then

f0 = 0 so that

F (0) =

ˆ ∞

−∞

f0(x)dx = 0

while if t 6= 0 we have

F (t) =

ˆ ∞

−∞

te−t2x2

dx =

ˆ ∞

−∞

e−x2

dx =
√
2π

and therefore F (t) =
´∞

−∞
te−t2x2

dx is not continuous at t = 0.

Theorem 6.17 Let E be measurable, and J ⊂ R be an interval. For t ∈ J , ft : E → [−∞,∞]
is measurable. Suppose

1) for every t0 ∈ J , ft → ft0 almost everywhere on E, and
2) there is g ∈ L1(E) such that |ft| ≤ g almost everywhere on E for all t ∈ J (that is, there

is a null subset A ⊆ E, such that |ft(x)| ≤ g(x) for all x ∈ E \ A and for all t).
Then ft ∈ L1(E) for every t, and F (t) =

´

E
ft(x)dx is continuous on J .

Proof. By 2), ft ∈ L1(E) for every t ∈ J , so F (t) =
´

E
ft(x)dx is well defined real function

on J . To see the continuity at t0 ∈ J , consider any sequence tn ∈ J such that tn → t0, apply
DCT to ftn we may deduce that

F (tn) =

ˆ

E

ftn(x)dx→
ˆ

E

ft0(x)dx = F (t0),

i.e. F (tn) → F (t0) for any tn → t0, therefore F is continuous at t0.
It is important to notice that the control function g in 2) is independent of the parameter t,

as required in the DCT.
We may apply the theorem above to ft+h−ft

h
to obtain the following

Theorem 6.18 Let E be a measurable set, and J ⊂ R be an interval. For each t ∈ J , ft : E → R

is measurable, and the following conditions are satisfied:
1) for every t ∈ J , ft ∈ L1(E), and define F (t) =

´

E
ft(x)dx for t ∈ J ,

2) for every x ∈ E, the partial derivative

∂

∂t
ft(x) = lim

h→0

ft+h(x)− ft(x)

h

exists for every t ∈ J (here the limit runs over h→ 0 such that t+ h ∈ J), and
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3) there is a control function g ∈ L1(E) such that

∣

∣

∣

∣

∂

∂t
ft

∣

∣

∣

∣

≤ g

almost everywhere on E for all t ∈ J . [Here almost everywhere means that there is a null subset
A ⊆ E, such that | ∂

∂t
f(t, x)| ≤ g(x) for x ∈ E \ A and t ∈ J .]

Then F is differentiable on J and

F ′(t) =

ˆ

E

∂

∂t
ft(x)dx .

Proof. Suppose t ∈ J we want to show F ′(t) =
´

E
∂
∂t
ft(x)dx. We may assume that there is

ε > 0 such that [t, t+ ε) ⊂ J (similarly consider the case that (t− ε, t] ⊂ J). Consider

gh(x) =
ft+h(x)− ft(x)

h
for x ∈ E and h ∈ (0, ε).

By mean value theorem

|gh(x)| ≤ g(x) for almost all xand for all h ∈ (0, ε).

By applying DCT to ghn
where hn ∈ (0, ε) and hn → 0, to obtain

F (t+ hn)− F (t)

hn
=

ˆ

E

ghn
(x)dx→

ˆ

E

∂

∂t
ft(x)dx

so that F ′(t) exists and F ′(t) =
´

E
∂
∂t
ft(x)dx, which completes the proof.

6.3 Examples

Examples 1. The function f(x) = 1
xp (where p is a constant) is Lebesgue integrable on (0, 1) if

and only if p < 1, and f is Lebesgue integrable on (1,∞) if and only if p > 1.
In fact, f is continuous on (0, 1) so it is measurable. It is bounded on (0, 1) if p ≤ 0, so f is

Riemann integrable on [0, 1], and therefore f ∈ L1(0, 1). Consider any p. For n = 1, 2, · · · , let
En = [ 1

n
, 1) and fn = f1En

. Then 0 ≤ fn ↑ f on (0, 1). f is continuous on interval En and is
bounded, so f is (Riemann) integrable on En. According to MCT

ˆ 1

0

x−pdx = lim
n→∞

ˆ 1

1
n

x−pdx

= lim
n→∞

{

1
1−p

(1− 1
n1−p ) if p 6= 1

lnn if p = 1
=

{

1
1−p

if p < 1

∞ if p ≥ 1

Therefore f ∈ L1(0, 1) if p < 1, and f is not integrable on (0, 1) if p ≥ 1.

Similarly, f(x) = x−p on [1,∞) is continuous so it is measurable. f is non-negative. For each
n let En = [1, n]. f is continuous and bounded on [1, n] thus f is (Riemann) integrable on [1, n].
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Clearly fn = f1En
↑ f , so according to MCT

ˆ ∞

1

f(x)dx = lim
n→∞

ˆ ∞

1

fn(x)dx = lim
n→∞

ˆ n

1

x−pdx

= lim
n→∞

{

1
1−p

(n−p+1 − 1) if p 6= 1

lnn if p = 1

=

{

1
p−1

if p > 1

∞ if p ≤ 1

so that x−p ∈ L1(1,∞) if p > 1 and x−p is not integrable on (1,∞) if p ≤ 1.
Therefore x−p is not integrable on (0,∞) for any p.

Example 3. Let f(x) = xp

1+xq where q ≥ 0. f is integrable on (1,∞) if and only if q − p > 1,
and f is integrable on (0, 1) if and only if p > −1. Therefore f is integrable on (0,∞) if and
only if p > −1 and q − p > 1.

Example 4. (a) f(x) = sinx
x

is integrable on (0, 1), and (b) f(x) = sinx
x

is not integrable on
(0,∞).

By means of contour integral, we have evaluated the (improper Riemann) integral

ˆ ∞

0

sin x

x
dx = lim

R→∞

ˆ R

0

sin x

x
dx =

π

2

[for example, on page 115, 2.7 Example, in J. B. Conway: Functions of one complex variable I ].
sinx
x

is continuous and bounded on (0, R] for any R > 0. Therefore it is (Riemann) integrable on

(0, R]. The existence of the limit limR→∞

´ R

0
sinx
x
dx doesn’t necessarily imply that f is integrable

on (0,∞). In fact, for any n = 1, 2, · · · , consider gn = |f |1En
↑ |f | where En = (0, nπ), thus,

according to MCT

ˆ ∞

0

|f(x)|dx = lim
n→∞

ˆ ∞

0

gn(x)dx = lim
n→∞

ˆ nπ

0

| sin x|
x

dx.

Since

ˆ nπ

0

| sin x|
x

dx =
n−1
∑

k=0

ˆ (k+1)

kπ

| sin x|
x

dx ≥
n−1
∑

k=0

ˆ (k+1)

kπ

| sin x|
(k + 1)π

dx

=
n−1
∑

k=0

1

(k + 1)π

ˆ π

0

sin xdx = 2
n−1
∑

k=0

1

(k + 1)π
→ ∞

so that
´∞

0
|f(x)|dx = ∞, thus f is not integrable on (0,∞).

In the following exercises, E ⊂ R is a Lebesgue measurable subset, and m is the Lebesgue
measure. L1(E) is the linear space of Lebesgue integrable functions on E.

Example 5. Use definition to prove carefully the following claims.
a) If m(E) = 0, then

´

E
ϕdm = 0 for any simple function ϕ on E.

b) Hence, prove that if m(E) = 0, then
´

E
fdm = 0 for any function f .
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Proof. a) First prove that
´

E
ϕdm = 0 for any simple measurable function ϕ on E. In fact, if

ϕ =
∑N

i=1 ci1Ai
where ci ≥ 0 and Ai ⊆ E. Since E is null, so are Ai, thus m(Ai) = 0. Therefore

ˆ

E

ϕdm =
N
∑

i=1

cim(Ai) = 0.

b) If m(E) = 0, then any function f on E is measurable. Since

ˆ

E

f+dm = sup

{
ˆ

E

ϕdm : ϕ ∈ S+(E), ϕ ≤ f+

}

= 0

and by the same reason,
´

E
f−dm = 0. Therefore f ∈ L1(E), and

´

E
fdm =

´

E
f+dm −

´

E
f−dm = 0.

Example 6. a) Suppose f : E → [0,∞]. Prove that {f > 0} = ∪∞
n En where En =

{

f ≥ 1
n

}

.
Hence prove that if in addition

´

E
fdm = 0, then m(

{

f ≥ 1
n

}

) = 0 for any n = 1, 2, · · · , and
conclude that m({f > 0}) = 0.

b) If f ∈ L1(E) then f is finite almost everywhere.
c) If f is measurable, and

´

E
|f |dm = 0, then f = 0 almost everywhere on E. If f, g ∈ L1(E)

and
´

E
|f − g| = 0, then f = g almost everywhere on E.

Proof. a) For every λ > 0, since f is non-negative and measurable, we have

m [f ≥ λ] =

ˆ

{f≥λ}

dm =

ˆ

{f≥λ}

f

λ
dm ≤ 1

λ

ˆ

E

fdm

which is called the Markov inequality. Therefore, if
´

E
fdm = 0, then for every λ > 0, m({f ≥

λ}) = 0, so that m({f > 0}) ≤∑∞
n=1m(En) = 0. Therefore m({f > 0}) = 0.

b) Suppose f ∈ L1(E) and non-negative, then for every n = 1, 2, · · · , m({f ≥ n}) ≤
1
n

´

E
fdm. Now {f = ∞} = ∩∞

n=1{f ≥ n}, so that m({f = ∞}) ≤ 1
n

´

E
fdm → 0 as n → ∞,

thus m({f = ∞}) = 0. For general f ∈ L1(E), we apply what proved to |f |.
c) follows a) immediately.

Example 7. If f ∈ L1(E) then

∣

∣

∣

∣

ˆ

E

fdm

∣

∣

∣

∣

≤
ˆ

E

|f | dm.

Hint : This is because
´

E
fdm =

´

E
f+dm−

´

E
f−dm and

´

E
|f | dm =

´

E
f+dm+

´

E
f−dm.

Example 8. [Absolute continuity, uniform integrability ] Let E ⊆ R be a measurable subset.
a) If f ∈ L1(E), then

´

En
fdm→ 0 as n→ ∞, where En = {x ∈ E : |f(x)| ≥ n}.

b) If f ∈ L1(E), then the mapping A→
´

A
fdm is absolutely continuous with respect to the

measure m in the following sense: for any ε > 0 there is δ > 0 such that
∣

∣

´

A
fdm

∣

∣ < ε for any
measurable subset A ⊆ E such that m(A) < δ.

Proof. a) Since
∣

∣

∣

´

En
fdm

∣

∣

∣ ≤
´

En
|f | dm so without losing generality, we can assume that f

is non-negative. Let fn = f1E\En
= f1{|f |<n}. The fact that f is finite almost everywhere on E
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implies that fn ↑ f almost everywhere on E. Hence, by MCT,
´

E\En
fdm→

´

E
fdm as n→ ∞,

so that
´

En
fdm =

´

E
fdm−

´

E\En
fdm→ 0.

b) Since
∣

∣

´

A
fdm

∣

∣ ≤
´

A
|f | dm so we may assume that f is non-negative in order to prove

b). Given ε > 0, choose N such that
´

{f≥n}
fdm < ε

2
for all n ≥ N , and use the following

(in-)equalities
ˆ

A

fdm =

ˆ

A∩{f<N}

fdm+

ˆ

A∩{f≥N}

fdm

≤ Nm(A) +

ˆ

{f≥N}

fdm ≤ Nm(A) +
ε

2
.

Now δ = ε
2N

will do.

Example 9. (MCT and DCT, almost everywhere versions). a) Suppose fn ∈ L1(E) and
fn ↑ f almost everywhere on E. If

´

E
fndm is bounded above, i.e. there is a constant K such

that
´

E
fn ≤ K for all n, then f ∈ L1(E) and

ˆ

E

f = lim
n→∞

ˆ

E

fn .

Hint. a) Let A = {fn ↑ f}. Then A is measurable and E \ A is a null set. Apply MCT to
fn − f1 ↑ f − f1 on A to conclude that f − f1 ∈ L1(A) and therefore f ∈ L1(E).

b) Suppose fn, and f are measurable functions on E, and fn → f almost everywhere on E
as n→ ∞. Suppose there is a control function g ∈ L1(E) such that |fn| ≤ g almost everywhere
on E for n = 1, 2, · · · . Then limn→∞

´

E
fndm =

´

E
fdm.

c) If fn : E → [−∞,∞] are measurable, where E ⊆ R is measurable, n = 1, 2, · · · . Suppose
∑∞

n=1

´

E
|fn| <∞ then

∑∞
n=1 fn converges almost everywhere on E,

∑∞
n=1 fn ∈ L1(E) and

ˆ

E

∞
∑

n=1

fndm =
∞
∑

n=1

ˆ

E

fndm.

Proof. According to MCT (series version, see Theorem 6.9)
ˆ

E

∞
∑

n=1

|fn|dm =
∞
∑

n=1

ˆ

E

|fn|dm <∞

hence
∑∞

n=1 |fn| ∈ L1(E). In particular,
∑∞

n=1 |fn| is finite almost everywhere on E [Example
6, b)], that is,

∑∞
n=1 |fn| converges almost everywhere on E. Now consider the sequence {Sn}

of partial sums, Sn =
∑n

i=1 fi. Then Sn → S =
∑∞

n=1 fn exists almost everywhere on E, and
|Sn| ≤

∑∞
n=1 |fn| almost everywhere on E for all n, thus we may apply DCT (part b) to {Sn} to

obtain that
ˆ

E

∞
∑

n=1

fndm = lim
n→∞

ˆ

E

n
∑

k=1

fkdm = lim
n=∞

n
∑

k=1

ˆ

E

fkdm =
∞
∑

n=1

ˆ

E

fkdm.

Example 10. The Gamma function Γ(α). Let f(x) = xα−1e−x. f is continuous on (0,∞) so
it is measurable. Since |f(x)| ≤ xα−1 on (0, 1], so f is integrable if α > 0. While for x ≥ 1 we
have

e−x =
1

∑∞
n=0

1
n!
xn

≤ n!

xn
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for any n, chose n such that n− α + 1 ≥ 2, then

|f(x)| ≤ xα−1 n!

xn
≤ n!

x2
for x ≥ 1,

hence f(x) is integrable on [1,∞) for every α. Therefore f is integrable on (0,∞) if α > 0.
Define

Γ(α) =

ˆ ∞

0

xα−1e−xdx for α > 0.

For n = 1, 2, · · · , consider fn(x) = xα−1e−x1[ 1
n
,n]. Then fn ↑ f so, according to MCT

ˆ ∞

0

xα−1e−xdx = lim
n→∞

ˆ n

1
n

xα−1e−xdx [Riemann integral]

On the other hand, using integration by parts we have
ˆ n

1
n

xα−1e−xdx = −
ˆ n

1
n

xα−1de−x

= − xα−1e−x
∣

∣

n
1
n

+ (α− 1)

ˆ n

1
n

x(α−1)−1e−xdx,

so that, by MCT,
ˆ ∞

0

xα−1e−xdx = (α− 1)

ˆ ∞

0

x(α−1)−1e−xdx

if α− 1 > 0. Hence
Γ(α + 1) = αΓ(α) for α > 0.

Suppose α = [α− 1] + r where r ∈ [1, 0), then

Γ(α) = (α− 1) · · · (α− 1− [α− 1])Γ(r).

In particular, if n is positive integer then

Γ(n+ 1) =

ˆ ∞

0

xne−xdx = nΓ(n) = · · · = n!Γ(1)

= n!

ˆ ∞

0

e−xdx = n! .

The Gamma function Γ(α) =
´∞

0
xα−1e−xdx is continuous on (0,∞). In fact for every any

α0 > 0, choose J = (a, b) such that 0 < a < α0 < b, and consider fα(x) = xα−1e−x for x ∈ (0,∞)
and α ∈ (a, b). Let

g(x) = xa−11(0,1] + xb−1e−x1(1,∞).

Then g ∈ L1(0,∞) and |fα(x)| ≤ g(x) for all x ∈ (0,∞) and α ∈ (a, b). According to Theorem
6.17, Γ(α) is continuous at α0. Since α0 > 0 is arbitrary, so Γ is continuous on (0,∞).

Example 11. If α > 0 then xα−1e−x is integrable on (0, 1]. Moreover

xα−1e−x =
∞
∑

n=0

(−1)n

n!
xn+α−1.
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Let hn(x) =
(−1)n

n!
xn+α−1 which is integrable on [0, 1] for any n = 0, 1, 2, · · · . Moreover

ˆ 1

0

|hn| =
1

n!

ˆ 1

0

xn+α−1dx =
1

n!(n+ α)

so that
∞
∑

n=0

ˆ 1

0

|hn| =
∞
∑

n=0

1

n!(n+ α)
<∞.

Thus, according to MCT (series version)

ˆ 1

0

xα−1e−xdx =
∞
∑

n=0

(−1)n

n!

ˆ 1

0

xn+α−1dx =
∞
∑

n=0

(−1)n

n!(n+ α)
.

Example 12. Consider function f(x) = 1
x
sin 1

x
. For ε ∈ (0, 1) the function is continuous on

[ε, 1] so it is (Riemann) integrable on [ε, 1], and

ˆ 1

ε

1

x
sin

1

x
dx = −

ˆ 1

1
ε

1

t
sin tdt [substitute x =

1

t
]

=

ˆ 1
ε

1

sin t

t
dt→

ˆ ∞

1

sin t

t
dt

exists as ε ↓ 0. On the other hand

ˆ 1

ε

1

x

∣

∣

∣

∣

sin
1

x

∣

∣

∣

∣

dx =

ˆ 1
ε

1

| sin t|
t

dt→ ∞

as ε ↓ 0, so according to MCT, f is not integrable on (0, 1].

If f : E → C is a complex function, then f ∈ L1(E) if and only if Ref and Imf are integrable
on E. In this case the Lebesgue integral

ˆ

E

fdm =

ˆ

E

Refdm+ i

ˆ

E

Imfdm.

It is easy to see that a measurable complex function f on E is integrable if and only if
´

E
|f | <∞.

It is easy to see the DCT, hence its corollaries, may apply to complex functions.

Example 13. Let f ∈ L1(R), and let fy(x) = eiyxf(x) for y ∈ R. fy is measurable and
|fy| = |f |, thus fy ∈ L1(R) for every y. Therefore, according to Theorem 6.17

f̃(y) =

ˆ ∞

−∞

eiyxf(x)dx

is continuous on R.
Let gy(x) =

eiyx−1
ix

f(x). Then

|gy(x)| =
|eiyx − 1|

|x| f(x) =
|2 sin(yx

2
)|

|x| |f(x)|

≤ |y||f(x)| for x 6= 0,
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so that gy ∈ L1(R). Moreover ∂
∂y
gy(x) = eiyxf(x) and

∣

∣

∣

∣

∂

∂y
gy(x)

∣

∣

∣

∣

= |f(x)| ∀y and x.

By Theorem 6.18 we have

d

dy

ˆ ∞

−∞

gy(x)dx =

ˆ ∞

−∞

d

dy

eiyx − 1

ix
f(x)dx

=

ˆ ∞

−∞

eiyxf(x)dx = f̃(y).

That is

f̃(y) =
d

dy

ˆ ∞

−∞

eiyx − 1

ix
f(x)dx.

7 Fubini’s theorem

The Lebesgue measure on Rd, which is the extensions of d-dimensional volumes (areas if d = 2,
volumes if d ≥ 3) to a large class of measurable subsets, can be constructed in a similar way
as we did for R. Another approach is to define the Lebesgue measure m on R2 as the product
measure, and repeat the definition of product measures to define the Lebesgue measure on Rd

for general d.

7.1 Measures on product spaces

Let us explain the idea how to construct the Lebesgue measure on R2 as the product measure
of the Lebesgue measure on R. The same idea actually applies to the general setting of σ-finite
measure spaces only with few modifications. In particular, what we are going to outline applies
to Lebesgue sub-spaces.

Let us take two copies of the real line R, but label them differently, so let X = R and Y = R,
use F to denote the σ-algebra MLeb on X and G the σ-algebra MLeb on Y . Let us use m1 to
denote the Lebesgue measure on (X,F) and m2 the Lebesgue measure on (Y,G), respectively.
The theory we are going to develop relies only on the fact that (X,F ,m1) and (Y,G,m2) are
two (σ-finite) measure spaces. This is the reason why we label the same Lebesgue measure one
as m1 and the other as m2.

The space of all ordered pairs (x, y) where x ∈ X and y ∈ Y is called the (Cartesian) product
of X and Y , denoted by X × Y . For example, R×R = R2, and [0, 1]× [0, 1] = [0, 1]2 is the unit
square in R2.

Suppose A ∈ F and B ∈ G, then A× B ⊂ X × Y is called a measurable rectangle type set,
and its measure is naturally defined to be

m(A× B) = m1(A)m2(B) (7.1)

here we use the convention that 0 · ∞ = ∞ · 0 = 0. There are however different approaches to
define the product measure m such that (7.1) holds for every measurable rectangle type set. One
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way which is natural but is not the simplest and most direct way is to define the outer measure

m∗(E) = inf

{

∞
∑

i=1

m1(Ai)m2(Bi) : Ai ∈ F , Bi ∈ G s.t.
∞
⋃

i=1

Ai × Bi ⊇ E

}

for any subset E ⊂ X × Y . Then m∗ is a outer measure on the product space X × Y :
1) m∗(Ø) = 0 and m∗(E) ≥ 0 if any E ⊆ X × Y ;
2) m∗(E) ≤ m∗(F ) if E ⊆ F ⊆ X × Y ;
3) m∗ is countably sub-additive, that is,

m∗

(

∞
⋃

i=1

Ei

)

≤
∞
∑

i=1

m∗(Ei)

for any Ei ⊆ X × Y where i = 1, 2, · · · .
A subset E ⊂ X × Y is m∗-measurable if E satisfies Caratheodory’s condition:

m∗(F ) = m∗(F ∩ E) +m∗(F ∩ Ec)

for every F ⊂ X × Y . Then, the collection of all m∗-measurable subsets of the product space
X×Y is a σ-algebra on X×Y , denoted by MLeb(X ×Y ) or by MLeb if no confusion may arise.
The outer measure m∗ restricted on MLeb(X × Y ) is a measure, which is denoted by m.

One can show that A× B ∈ MLeb(X × Y ) if A ∈ F and B ∈ G, so that

F ⊗ G = σ {A×B : where A ∈ F and B ∈ G} ⊆ MLeb(X × Y ).

m∗ restricted on F ⊗ G ⊆ MLeb(X × Y ) is of course a measure, thus again denoted by m, and
therefore (X × Y,F ⊗ G,m) is a measure space, called the product measure space of (X,F ,m1)
and (Y,G,m2). In general F ⊗ G is strictly smaller than MLeb(X × Y ).

The measure space (R2,MLeb(R
2),m) is called the (two-dimensional) Lebesgue measure

space.
If E ⊂ R2 is m∗-measurable, that is, E ∈ MLeb, then

MLeb(E) =
{

E ∩ F : F ∈ MLeb(R
2)
}

is a σ-algebra on E, and MLeb(E) ⊂ MLeb(R
2). The restriction of the Lebesgue measure m

on MLeb(E) is a measure on (E,MLeb(E)). (E,MLeb(E),m) is a two dimensional Lebesgue
(sub)-space.

The Lebesgue’s theory of integration is applicable to the measure space (E,MLeb(E),m)
where E ⊂ R2 is measurable. The integral of a non-negative measurable function / integrable
function f on E ∈ MLeb is denoted by

´

E
f(x, y)dxdy or by

´

E
fdm for simplicity. If f is

integrable on E, then we say f ∈ L1(E), and
´

E
f(x, y)dxdy is called the Lebesgue integral of f

on E, also called a double integral.
Suppose E = [a, b] × [c, d] is a closed rectangle in R2, and f : E → R is bounded. Suppose

the double integral in the sense of Riemann
¨

E

f(x, y)dxdy (7.2)

exists, then f ∈ L1(E) and the Lebesgue integral
´

E
fdm coincides with the Riemann double

integral (7.2).
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7.2 Fubini’s theorem and Tonelli’s theorem

Let X, Y ∈ MLeb(R). Then X × Y ∈ MLeb(R
2), and (X × Y,MLeb(X × Y ),m) be a (two

dimensional) Lebesgue space. We have the following simple observation.

Lemma 7.1 Suppose ϕ is a non-negative simple function on X × Y of the following form:

ϕ =
k
∑

i=1

ci1Ai×Bi
, Ai ∈ MLeb(X), Bi ∈ MLeb(Y ), ci ≥ 0,

then
1) for any y ∈ Y , ϕy ∈ S+(X) where ϕy(x) = ϕ(x, y), and F ∈ S+(Y ) where F (y) =

´

X
ϕydm1, and
2) we have

ˆ

Y

Fdm2 =

ˆ

X×Y

ϕdm

that is
ˆ

Y

(
ˆ

X

ϕ(x, y)dx

)

dy =

ˆ

X

(
ˆ

Y

ϕ(x, y)dy

)

dx =

ˆ

X×Y

ϕ(x, y)dxdy.

Proof. According to the definition of the Lebesgue measure on X × Y , we have

ˆ

X×Y

ϕ(x, y)dxdy =
k
∑

i=1

cim(Ai × Bi) =
k
∑

i=1

cim1(Ai)m2(Bi).

On the other hand, for each y,

ϕy = ϕ(·, y) =
k
∑

i=1

ci1Bi
(y)1Ai

which is a non-negative measurable simple function on X, and

F (y) =

ˆ

X

ϕy(x)dx =

ˆ

X

ϕ(x, y)dx =
k
∑

i=1

ci1Bi
(y)m1(Ai)

=
k
∑

i=1

cim1(Ai)1Bi
(y)

which is a non-negative simple function on Y , and its integral

ˆ

Y

Fdm2 =

ˆ

Y

(
ˆ

X

ϕ(x, y)dx

)

dy =
k
∑

i=1

cim(Ai)m(Bi)

=

ˆ

X×Y

ϕ(x, y)dxdy.

43



Proposition 7.2 Let f : X × Y → [0,∞) be measurable. Then
1) x→ f(x, y) is measurable on X for almost all y ∈ Y ,
2) y →

´

X
f(x, y)dx is (define for almost all y) non-negative and measurable on Y , and

3) we have the equality

ˆ

X×Y

f(x, y)dxdy =

ˆ

Y

(
ˆ

X

f(x, y)dx

)

dy =

ˆ

X

(
ˆ

Y

f(x, y)dy

)

dx.

The proof is a careful applications of MCT together with the definition of the outer measure
m∗. We omit the detail of its proof.

Theorem 7.3 (Fubini’s theorem) Let X, Y ∈ MLeb(R) [so X×Y ∈ MLeb(R
2)] and f ∈ L1(X×

Y ). Then
1) for almost all y ∈ Y , fy ∈ L1(X), where fy(x) = f(y, x) for x ∈ X, so F (y) =

´

X
fy(x)dx

is well defined for almost all y ∈ Y , and
2) F defined in 1) is integrable on Y (so in particular, F is Lebesgue measurable), and

ˆ

Y

F (y)dy =

ˆ

X×Y

f(x, y)dxdy.

Therefore

ˆ

Y

(
ˆ

X

f(x, y)dx

)

dy =

ˆ

X

(
ˆ

Y

f(x, y)dy

)

dx =

ˆ

X×Y

f(x, y)dxdy.

Proof. Apply Proposition 7.2 to f+ and f−.

Theorem 7.4 (Tonelli’s theorem) Suppose f : R2 → R is measurable, and suppose either of the
repeated integrals exists and is finite, i.e.

ˆ

R

(
ˆ

R

|f(x, y)|dx
)

dy <∞, or / and

ˆ

R

(
ˆ

R

|f(x, y)|dy
)

dx <∞.

Then f ∈ L1(R2), so that Fubini’s theorem is applicable to both f and |f |.

Proof. According to Proposition 7.2, under the assumptions,
´

R2 |f |dm < ∞, so that f ∈
L1(R2).

7.3 Examples

Let us give several examples to demonstrate how to use Fubini’s Theorem and Tonelli’s Theorem.
I took some examples from Batty’s notes written for 2013H.

Example 1. Let E = [−1, 1]× [−1, 1] and f(x, y) = xy
(x2+y2)2

if (x, y) 6= (0, 0) and f(0, 0) = 0.

f is measurable on E, and for any y 6= 0, x→ xy
(x2+y2)2

is continuous on [−1, 1] so is integrable in

[−1, 1]. Moreover
ˆ 1

−1

xy

(x2 + y2)2
dx = 0 for any y 6= 0
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and therefore
ˆ 1

−1

(
ˆ 1

−1

xy

(x2 + y2)2
dx

)

dy = 0.

Similarly
ˆ 1

−1

(
ˆ 1

−1

xy

(x2 + y2)2
dy

)

dx = 0.

Two repeated integrals exist and coincide, but f is not integrable. In fact, f is not integrable on
(0, 1]× (0, 1] ⊂ E, since

ˆ 1

0

xy

(x2 + y2)2
dy =

1

2x
− x

2(x2 + 1)

which is not integrable on (0, 1], so by Fubini’s theorem, f can not be integrable on (0, 1]2, neither
on [−1, 1]2.

Example 2. The repeated integral

ˆ 1

0

(
ˆ x

0

√

1− y

x− y
dy

)

dx

may be written as

I =

ˆ 1

0

(
ˆ 1

0

√

1− y

x− y
1{y<x}dy

)

dx

so consider f(x, y) =
√

1−y
x−y

1{y<x} on E = [0, 1] × [0, 1]. The function is non-negative and

measurable on E, so according to Proposition 7.2

ˆ 1

0

(
ˆ 1

0

f(x, y)dy

)

dx =

ˆ 1

0

(
ˆ 1

0

f(x, y)dx

)

dy =

ˆ

E

f.

On the other hand

ˆ 1

0

(
ˆ 1

0

f(x, y)dx

)

dy =

ˆ 1

0

(
ˆ 1

0

√

1− y

x− y
1{y<x}dx

)

dy

=

ˆ 1

0

(
ˆ 1

y

√

1− y

x− y
dx

)

dy

=

ˆ 1

0

√

1− y2
√

1− ydy = 1

so f ∈ L1(E) and the repeated integral I = 1.

Example 3. Consider f(x, y) = ye−y2(1+x2) on E = (0,∞) × (0,∞) the first quadrant. f is
continuous, and non-negative on E. Thus f is measurable. The repeated integral

ˆ ∞

0

(
ˆ ∞

0

ye−y2(1+x2)dy

)

dx
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is easy to work out: for x > 0 we have

ˆ ∞

0

ye−y2(1+x2)dy =
1

1 + x2

ˆ ∞

0

ze−z2dz

[Making change of variable
√
1 + x2y = z ]

=
1

2

1

1 + x2

so that
ˆ ∞

0

(
ˆ ∞

0

ye−y2(1+x2)dy

)

dx =

ˆ ∞

0

1

2

1

1 + x2
dx =

π

4
.

Thus f is integrable on (0,∞)× (0,∞). By Fubini’s theorem, the other related integral of f on
E is π

4
as well. Thus

π

4
=

ˆ ∞

0

(
ˆ ∞

0

ye−y2(1+x2)dx

)

dy =

ˆ ∞

0

(

e−y2
ˆ ∞

0

e−y2x2

ydx

)

dy

=

ˆ ∞

0

(

e−y2
ˆ ∞

0

e−x2

dx

)

dy =

(
ˆ ∞

0

e−x2

dx

)2

and therefore
ˆ ∞

0

e−x2

dx =

√
π

2
.

Another way to calculate the integral I =
´∞

0
e−x2

dx can be described as the following.
Consider I2 and write it as

I2 =

ˆ ∞

0

e−y2dy

ˆ ∞

0

e−x2

dx =

ˆ ∞

0

(

e−y2
ˆ ∞

0

e−x2

dx

)

dy

=

ˆ ∞

0

(
ˆ ∞

0

e−(x2+y2)dx

)

dy.

According to Proposition 7.2 and MCT we have

ˆ ∞

0

(
ˆ ∞

0

e−(x2+y2)dx

)

dy =

ˆ

E

e−(x2+y2)dxdy = lim
n→∞

ˆ

E

e−(x2+y2)1{x2+y2≤n2}dxdy.

On the other hand, the integral
´

E
e−(x2+y2)1{x2+y2≤n2} coincides with the Riemann integral which

can be calculated in terms of polar coordinates, so that

ˆ

E

e−(x2+y2)1{x2+y2≤n2}dxdy =

¨

{(r,θ):0<r≤n,0≤θ≤π
2
}

e−r2rdrdθ =

ˆ π
2

0

(
ˆ n

0

e−r2rdr

)

dθ

where the last equality follows Fubini’s theorem. So that

ˆ

E

e−(x2+y2)1{x2+y2≤n2}dxdy =
π

4
(1− e−n2

) → π

4

which again gives I =
√
π/2.
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7.4 Change of variables

We have made changes of variables in order to evaluate Lebesgue integrals which take the same
form as for Riemann integrals. Let us write down a precise statement.

Theorem 7.5 Suppose ϕ : (a, b) → (c, d) is one to one, onto, and differentiable, ϕ′ ≥ 0. If
f : (c, d) → [−∞,∞] is measurable, then f ∈ L1(c, d) if and only if ϕ′f ◦ ϕ ∈ L1(a, b). In this
case

ˆ d

c

f(x)dx =

ˆ b

a

f(ϕ(t))ϕ′(t)dx .

Proof. [The proof is not examinable]. By construction of Lebesgue integrals, we only need to
consider the case that f is non-negative and Lebesgue measurable. However, any non-negative
and measurable function is the limit of an increasing sequence of non-negative simple measurable
functions, by MCT and the linearity of the Lebesgue integration, we only need to show the
statement is valid for f = 1E where E ⊂ (c, d) is a measurable subset. In this case

´ d

c
1Edm =

m(E) < ∞. By definition, for every ε > 0 there is a sequence of intervals (an, bn) such that
∪∞

n=1(an, bn) ⊃ E and
∞
∑

n=1

(bn − an)− ε ≤ m(E) ≤
∞
∑

n=1

(bn − an). (7.3)

On the other hand,

1E(ϕ(t))ϕ
′(t) ≤

∞
∑

n=1

1(an,bn) (ϕ(t))ϕ
′(t)

on (a, b), so that

ˆ b

a

1E(ϕ(t))ϕ
′(t)dt ≤

∞
∑

n=1

ˆ b

a

1(an,bn) (ϕ(t))ϕ
′(t)

≤
∞
∑

n=1

(bn − an)

which follows that, together with (7.3)

ˆ b

a

1E(ϕ(t))ϕ
′(t)dt ≤ m(E) + ε =

ˆ d

c

1E(x)dx+ ε.

Since ε > 0 is arbitrary, we have
ˆ b

a

1E(ϕ(t))ϕ
′(t)dt ≤

ˆ d

c

1E(x)dx

so that
ˆ b

a

f(ϕ(t))ϕ′(t)dt ≤
ˆ d

c

f(x)dx

for non-negative measurable function f . Applying the inequality to the inverse of ϕ we also have
ˆ d

c

f(x)dx ≤
ˆ b

a

f(ϕ(t))ϕ′(t)dt
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so that we must have
ˆ d

c

f(x)dx =

ˆ b

a

f(ϕ(t))ϕ′(t)dt

which completes the proof.

Example 1. Consider the Fourier transform of e−x2
. Note that

e−x2 ≤ 1

1 + x2

so that g(x) = e−x2
is integrable on R. For s ∈ R consider f(x) = e−isxg(x). Then f is

measurable and |f | ≤ g, thus f is integrable. Moreover

f(x) = e−isxe−x2

=
∞
∑

n=0

(−is)n
n!

xne−x2

.

Now xne−x2
is integrable, so that if n = 2m+ 1 is odd then, by DCT we have

ˆ ∞

−∞

x2m+1e−x2

dx = lim
N→∞

ˆ

x2m+1e−x2

1[−N,N ]dx

= lim
N→∞

ˆ N

−N

x2m+1e−x2

dx = 0.

If n = 2m is even,

ˆ ∞

−∞

x2me−x2

dx = 2

ˆ ∞

0

x2me−x2

dx =

ˆ ∞

0

zm− 1
2 e−zdz

[we have made change of variable z = x2 to obtain the last equality], so that

ˆ ∞

−∞

x2me−x2

dx = Γ(m+
1

2
) =

ˆ ∞

0

zm− 1
2 e−zdz

=

(

m− 1

2

)(

m− 1− 1

2

)

· · · 1
2
Γ

(

1

2

)

=
(2m− 1)!!

2m
Γ

(

1

2

)

.

Hence

∞
∑

n=0

ˆ ∞

−∞

∣

∣

∣

∣

(−is)n
n!

xne−x2

∣

∣

∣

∣

=
∞
∑

m=0

s2m

(2m)!

(2m− 1)!!

2m
Γ

(

1

2

)

=
∞
∑

m=0

s2m

m!

1

4m
Γ

(

1

2

)

= e
s2

4 Γ

(

1

2

)

< ∞,

48



and therefore, according to MCT (series version, Example 9 Part c) in Section 6.4 Examples)

f̃(s) =

ˆ ∞

−∞

e−isxe−x2

dx =
∞
∑

n=0

(−is)n
n!

ˆ ∞

−∞

xne−x2

dx

=
∞
∑

m=0

(−is)2m
(2m)!

(2m− 1)!!

2m
Γ

(

1

2

)

= e−
s2

4 Γ

(

1

2

)

.

On the other hand

Γ

(

1

2

)

=

ˆ ∞

0

z−
1
2 e−zdz =

ˆ ∞

0

2e−x2

dz =
√
π

so that the Fourier transform of e−x2
is
√
πe−

s2

4 .

Theorem 7.6 Let G be an open subset of R2, and

T : G→ E = T (G) ⊂ R2

be one-to-one, and differentiable. Suppose f : E → R is measurable. Then f is integrable if and
only if f ◦ T | det JT | is integrable on G, where det JT is the Jacobian of T . In that case

ˆ

E

f(x, y)d(x, y) =

ˆ

G

f ◦ T (u, v)| det JT (u, v)|dudv

Recall that if we write T (u, v) = (x(u, v), y(u, v)) then

JT =

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

.

For example, if we use polar coordinate T (r, θ) = (x, y), where x = r cos θ, y = r sin θ then
| det JT | = r. Suppose that E = T (G) and f is measurable. Then f is integrable on E if and
only if

f(r cos θ, r sin θ)r

is integrable on G.

8 Lp-space and convergences

Let (E,F , µ) be a complete measure space. For example E is a measurable subset of R or R2,
F = MLeb(E) and µ = m is the Lebesgue measure on E. Another example is the discrete model,
where E = N, Z+ = {0} ∪ N or Z, or E can be any discrete set, F is the σ-algebra P(E) of all
subsets of E, and µ({n}) = pn where pn ≥ 0 for all n ∈ E. If in addition

∑

n∈E pn = 1, then µ
is a probability measure.
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8.1 Lp-spaces

Suppose f : E → [−∞,∞] is measurable, and suppose p is a positive constant, then |f |p is
measurable too. If

´

E
|f |pdµ < ∞ then f is called p-th integrable in E. The collection of all

such functions on E is denoted by Lp(E). Lp(E) is a vector space (over the real field). More
precisely, Lp(E) is the space of equivalence classes under the equivalence ∼, where we say f ∼ g,
if µ [f 6= g] = 0, i.e. f = g almost everywhere on E. For simplicity, when dealing with Lp-spaces,
we prefer to identify the equivalence [f ] containing f with any g in the equivalence [f ]. That is,
we view two functions f and g as the same element in Lp(E) if f = g almost everywhere (with
respect to the measure µ) on E.

A complex measurable function f on E is p-th integrable, if both Ref and Imf belong
to Lp(E), which is again equivalent to that

´

E
|f |pdµ < ∞. The space of all p-th integrable

measurable complex functions is denoted again by Lp(E) (sorry we use the same notation as for
real functions). Lp(E) is then a vector space over the complex field. In fact it is obvious that if
f ∈ Lp(E) then αf ∈ Lp(E) for any constant α. Since

|f + g|p ≤ 2p(|f |p + |g|p)

so f + g ∈ Lp(E) if f, g ∈ Lp(E). Thus Lp(E) is a vector space.
For the case that p = 1, define

d1(f, g) =

ˆ

E

|f − g|dµ

which is called the L1distance between f and g. Since
ˆ

E

|f + g|dµ ≤
ˆ

E

|f |dµ+

ˆ

E

|g|dµ

so that the triangle inequality holds

d1(f, g) ≤ d1(f, h) + d1(h, g).

Moreover

d1(f, g) =

ˆ

E

|f − g|dµ = 0

if and only if f = g almost everywhere on E. Therefore, if we identify the functions which are
equal almost everywhere on E [i.e. we identify an integrable function f as its equivalent class:
if f = g almost everywhere on E, then f and g are considered as the same function on E], then
L1(E) is a metric space.

We wish to define the Lpmetric. If f is measurable, then we define

||f ||p =
(
ˆ

E

|f |pdµ
) 1

p

which can be infinity in the case that f is not p-th integrable over E. Thus, a measurable function
f ∈ Lp(E) if and only if ||f ||p <∞. ||f ||p is called the Lp-norm of f .

Define the Lpdistance between f and g by

dp(f, g) = ||f − g||p
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where f, g ∈ Lp(E). It can be proved that dp is a metric on Lp(E) only if p ≥ 1. Therefore, from
now on, we assume that p ≥ 1, unless stated otherwise.

To see that Lp(E) is a metric space under dp for p ≥ 1, we need to show that dp satisfies the
triangle inequality. To this end, we need some elementary facts.

I) Convex functions. We say a function ϕ : (a, b) → R is convex, if

ϕ(λs+ (1− λ)t) ≤ λϕ(s) + (1− λ)ϕ(t) (8.1)

for all s, t ∈ (a, b) and λ ∈ [0, 1]. The convex property is equivalent to the following: for any
a < s < u < t < b we have

ϕ(u)− ϕ(s)

u− s
≤ ϕ(t)− ϕ(u)

t− u
(8.2)

by setting u = λs + (1 − λ)t. It follows that, if ϕ is convex, then the left and right derivatives
ϕ′(t−) and ϕ′(t+) of ϕ at any t ∈ (a, b) must exist, and in fact for every s ∈ (a, b). The previous
inequality implies that

ϕ′(s−) = sup
a<u<s

ϕ(u)− ϕ(s)

u− s

and

ϕ′(s+) = inf
s<t<b

ϕ(t)− ϕ(s)

t− s
.

By definition, ϕ is convex in (a, b) if and only if for a < s < t < u < v < b we have

ϕ(t)− ϕ(s)

t− s
≤ ϕ(v)− ϕ(u)

v − u
. (8.3)

Thus, both derivatives t→ ϕ′(t−) and t→ ϕ′(t+) are increasing functions on (a, b), and ϕ′(t−) ≤
ϕ′(t+) for every t ∈ (a, b). In particular, if ϕ is convex and differentiable on (a, b), then ϕ′ is
increasing on (a, b). Of course a convex function is not necessary to be differentiable. We however
show that a convex function on (a, b) must be continuous on (a, b).

In fact, using (8.3) again we have

ϕ(t)− ϕ(s)

t− s
≤ inf

b>u>v>t

ϕ(u)− ϕ(v)

u− v
≤ ϕ′(u+)

and (applying (8.3) with the order (s, t) and (v, u) exchanged)

ϕ(t)− ϕ(s)

t− s
≥ sup

a<v<u<s

ϕ(u)− ϕ(v)

u− v
≥ ϕ′(v−)

for every a < v < s < t < u < b, which follows that

|ϕ(t)− ϕ(s)| ≤ max{|ϕ′(u+)|, |ϕ′(v−)|}|t− s|

for any a < v < s < t < u < b. Therefore ϕ is locally Lipschitz continuous, so ϕ must be
continuous on (a, b).

On the other hand, if the second derivative ϕ′′ exists on (a, b) and ϕ′′(t) ≥ 0 for every t ∈ (a, b)
then ϕ′ is increasing. By applying MVT to ϕ′ we may conclude that 8.2 holds, thus ϕ is convex
on (a, b).
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A simple example of convex functions is the power function ϕ(t) = tp for t > 0, where p ≥ 1,
then ϕ′′(t) = p(p− 1)tp−2 is non-negative on (0,∞) so that tp is convex on (0,∞). Therefore we
have

(λs+ (1− λ)t)p ≤ λsp + (1− λ)tp (8.4)

for all s, t ≥ 0 and λ ∈ [0, 1].

II) Hardy’s inequality : If p > 1 and q > 1 such that 1
p
+ 1

q
= 1 (such a pair (p, q) of numbers

is called a conjugate pair), then

st ≤ sp

p
+
tq

q
(8.5)

for all s, t ≥ 0.
If t = 0 then there is nothing to prove. Suppose t > 0. The inequality above is equivalent to

that
s

tq−1
≤ 1

p

sp

tq
+

1

q
=

1

p

( s

tq/p

)p

+
1

q
.

Since q
p
= q − 1, (8.5) is equivalent to [with x = s

tq−1 ]

x ≤ 1

p
xp +

1

q
for all x > 0. (8.6)

Let us prove (8.6). Consider h(x) = x − 1
p
xp − 1

q
. Then h(0) = −1

q
< 0, h(x) → −∞, and

h′(x) = 1 − xp−1, thus x = 1 is the global maximum, and h(1) = 0. Therefore h(x) ≤ 0 for all
x > 0, which proves (8.6) and therefore (8.5).

Let us now return to our discussion about Lp-space.

Proposition 8.1 If p ≥ 1, and f, g ∈ Lp(E) then

||f + g||p ≤ ||f ||p + ||g||p. (8.7)

Proof. If ||f ||p or ||g||p vanishes, then ||f + g||p = ||f ||p+ ||g||p, so (8.7) is an equality in this

case. Suppose that ||f ||p 6= 0 and ||g||p 6= 0. Apply (8.4) with s = |f |
||f ||p

and t = |g|
||g||p

to obtain

(

λ
|f |
||f ||p

+ (1− λ)
|g|
||g||p

)p

≤ λ
|f |p
||f ||pp

+ (1− λ)
|g|p
||g||pp

for every λ ∈ [0, 1]. Integrating both sides of the inequality over E we obtain

ˆ

E

(

λ

||f ||p
|f |+ 1− λ

||g||p
|g|
)p

dµ ≤ λ

ˆ

E

|f |p
||f ||pp

dµ+ (1− λ)

ˆ

E

|g|p
||g||pp

dµ = 1. (8.8)

Choose λ such that
λ

||f ||p
=

1− λ

||g||p
i.e.

λ =
||f ||p

||g||p + ||f ||p
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which belongs to [0, 1], and plug the value λ into (8.8) to deduce that
ˆ

E

(|f |+ |g|)p dµ ≤ (||g||p + ||f ||p)p .

Therefore
ˆ

E

|f + g|pdµ ≤
ˆ

E

(|f |+ |g|)p dµ ≤ (||g||p + ||f ||p)p

which yields (8.7).

Proposition 8.2 Let p ≥ 1. Then || · ||p is a norm on Lp(E). That is, the mapping f → ||f ||p
possesses the following three properties:

1) ||f ||p = 0 if and only if f = 0 almost everywhere on E,
2) ||αf ||p = |α|||f ||p if f ∈ Lp(E) and α is a constant,
3) Triangle inequality holds:

||f + g||p ≤ ||f ||p + ||g||p.

Let us derive another important inequality related to Lp-norms.

Proposition 8.3 (Hölder’s inequality) Let 1 < p, q < ∞ be a pair of conjugate numbers in the
sense that

1

p
+

1

q
= 1

(for example, if p = 2, then q = 2, and if p = 3 then q = 3
2
, and etc.), and let f ∈ Lp(E) and

g ∈ Lq(E). Then fg ∈ L1(E), and
ˆ

E

|fg|dµ ≤ ||f ||p||g||q .

Proof. (The proof is not examinable). Let us now prove Hölder’s inequality. If ||f ||p = 0 or
||g||q = 0, then there is nothing to prove, so assume that both ||f ||p 6= 0 and ||g||q 6= 0. Apply
(8.5) with

s =
|f |
||f ||p

and t =
|g|
||g||q

and integrate over E to obtain
ˆ

E

|fg|
||f ||p||g||p

≤ 1

p

ˆ

E

|f |p
||f ||pp

+
1

q

ˆ

E

|g|q
||g||qq

= 1

which yields Hölder’s inequality.
Example 1. Let E be measurable with m(E) < ∞. Suppose 1 < p1 < p2, and suppose f is

measurable. Let p, q be a conjugate pair: 1
p
+ 1

q
= 1, where 1 < p <∞. Apply Hölder’s inequality

to |f |p1 and g = 1, to obtain

ˆ

E

|f |p1 =

ˆ

E

|f |p11 ≤
(
ˆ

E

|f |p1p
) 1

p
(
ˆ

E

1q
) 1

q

= m(E)
1
q

(
ˆ

E

|f |p1p
) 1

p

. (8.9)

53



Choose p > 1 such that p1p = p2 which is possible and p = p2
p1
> 1 by assumption that

p2 > p1. Moreover 1
p
= p1

p2
and

1 =
1

p
+

1

q
=
p1
p2

+
1

q

which yields that
1

q
= 1− p1

p2
=
p2 − p1
p2

and q =
p2

p2 − p1
.

Inserting these values into (8.9) we obtain

ˆ

E

|f |p1 ≤ m(E)
p2−p1

p2

(
ˆ

E

|f |p2
)

p1
p2

and therefore
||f ||p1 ≤ m(E)

p2−p1
p1p2 ||f ||p2 .

Corollary 8.4 1) If m(E) <∞ and 1 ≤ p1 ≤ p2, then L
p2(E) ⊂ Lp1(E).

2) If m(E) = 1, then p→ ||f ||p is increasing, that is, if 1 ≤ p1 ≤ p2, then ||f ||p1 ≤ ||f ||p2.

We end this section with some comments about L∞(E). A measurable function f on E
belongs to L∞(E), if there is a null set A ⊂ E and a constant M such that

|f(x)| ≤M for all x ∈ E \ A. (8.10)

Such a measurable function f is also called essentially bounded on E. The infinimum of M such
that (8.10) holds for some null subset A is called the L∞-norm of f , denoted by ||f ||∞. That is

||f ||∞ = inf

{

sup
x∈E\A

|f(x)| : A ⊂ E such that µ(A) = 0

}

.

||f ||∞ is also called the essential supremum of |f | over E.
Once again, L∞(E) is a vector space, and f → ||f ||∞ is a norm. That is 1) ||f ||∞ ≥ 0, and

||f ||∞ = 0 if and only if f = 0 almost everywhere on E; 2) ||αf || = |α|||f ||∞ for any scalar α
and f ∈ L∞(E); and 3) the triangle inequality holds

||f + g||∞ ≤ ||f ||∞ + ||g||∞.

Therefore L∞(E) is a metric space with the metric (f, g) → ||f − g||∞.
The Hölder inequality applies to p ∈ [1,∞]:

||fg||1 ≤ ||f ||p||g||q

as long as 1
p
+ 1

q
= 1 (with the convention that 1

∞
= 0).

The notation L∞(E) is justified as we have the following

Proposition 8.5 Suppose that E has finite measure (i.e. µ(E) < ∞), and suppose that f ∈
L∞(E), then

||f ||∞ = lim
p→∞

||f ||p .
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Proof. If ||f ||∞ = 0, then there is nothing to prove as ||f ||p = 0 for all p. Assume that
||f ||∞ > 0. Then µ(E) > 0. For every ε > 0 there is a null set A ⊂ E such that |f(x)| ≤ ||f ||∞+ε
for all x ∈ E \ A, hence

||f ||p ≤ (||f ||∞ + ε) (µ(E))
1
p

since (µ(E))
1
p → 1 as p→ ∞,

lim sup ||f ||p ≤ ||f ||∞ + ε,

and since ε > 0 is arbitrary, we must have lim sup ||f ||p ≤ ||f ||∞. On the other hand, for every
ε ∈ (0, ||f ||∞), there is a subset B ⊂ E with µ(B) > 0 and |f(x)| ≥ ||f ||∞ − ε for all x ∈ B.
Therefore

||f ||p ≥
(
ˆ

B

|f |p
) 1

p

≥ (||f ||∞ − ε)µ(B)
1
p → ||f ||∞ − ε

as p → ∞, which yields that lim inf ||f ||p ≥ ||f ||∞ − ε. Letting ε ↓ 0 to obtain lim inf ||f ||p ≥
||f ||∞. This completes the proof.

8.2 Convergence in measure

Recall that we are working with a measure space (E,F , µ) which is complete in the sense that
if µ∗(A) = 0 where A ⊆ E, then A ∈ F . Our basic example is that E is a Lebesgue measurable
subset of Rn, F = MLeb(E), and µ = m is the Lebesgue measure.

Definition 8.6 fn → f almost everywhere on E as n → ∞, if there is a null subset A ⊂ E,
such that fn(x) → f(x) for every x ∈ E \ A.

Suppose fn, f : E → C are measurable, then, x ∈ {fn → f}, if and only if every ε > 0, there
is N such that x ∈ {|fn − f | ≤ ε} for all n ≥ N , that is, if and only if for every ε > 0

x ∈
∞
⋃

N=1

∞
⋂

n=N

{|fn − f | ≤ ε} .

Thus, fn → f almost everywhere on E if and only if for every ε > 0,

µ

(

∞
⋂

N=1

∞
⋃

n=N

{|fn − f | > ε}
)

= 0.

In particular, if µ(E) < ∞, fn, f : E → R are measurable, then fn → f almost everywhere
on E if and only if for every ε > 0

lim
N→∞

µ

(

∞
⋃

n=N

{|fj − f | > ε}
)

= 0.

Therefore, if µ(E) <∞ and fn → f almost everywhere on E, then

µ [|fn − f | > ε] → 0 as n→ ∞.
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Definition 8.7 Let E ⊂ R be a measurable subset, and fn, f : E → R be measurable. Then
fn → f in measure if for every ε > 0

µ ({|fn − f | > ε}) → 0 (8.11)

as n→ ∞, where
{|fn − f | > ε} = {x ∈ E : |fn(x)− f(x)| > ε} .

If µ(E) < ∞, fn → f almost everywhere on E implies that fn → f in measure. Conversely,
we have the following

Proposition 8.8 (F. Riesz) If fn → f in measure, then there is a sub-sequence (fnk
) such that

fnk
→ f almost surely.

Proof. (The proof is not examinable) Since fn → f in measure, by definition, for every
k = 1, 2, · · · , there is nk such that

µ

({

|fn − f | > 1

2k

})

<
1

2k
∀n ≥ nk.

We may choose nk so that n1 < n2 < · · · .
We next show that fnk

→ f almost everywhere on E. To this end, consider

Ek =
∞
⋂

j=k

{

|fnj
− f | ≤ 1

2j

}

where k = 1, 2, · · · , and set G =
⋃∞

k=1Ek. Clearly, if x ∈ G then

|fnj
(x)− f(x)| ≤ 1

2j
for all j ≥ k

for some k. Therefore G ⊂ {fnk
→ f}. On the other hand

E \G =
∞
⋂

k=1

∞
⋃

j=k

{

|fnj
− f | > 1

2j

}

so that

µ(E \G) ≤ µ

(

∞
⋃

j=k

{

|fnj
− f | > 1

2j

}

)

≤
∞
∑

j=k

µ

({

|fnj
− f | > 1

2j

})

≤
∞
∑

j=k

1

2j

for any k. Since
∑∞

j=k
1
2j

→ 0 as k → ∞, therefore µ(E \G) = 0. The proof is complete.
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8.3 Convergence in Lp-space

Recall that for p ≥ 1, Lp(E) is a vector space, and dp(f, g) = ||f − g||p is a metric on Lp(E).

Definition 8.9 Let p ≥ 1. We say fn → f in Lp-norm if ||fn − f ||p → 0 as n→ ∞.

Proposition 8.10 If fn → f in Lp-norm, then fn → f in measure, and therefore there is a
sub-sequence (fnk

) such that fnk
→ f almost everywhere.

Proof. For any ε > 0 we have

µ({|fn − f | > ε}) =
ˆ

E

1{|fn−f |>ε}dµ ≤
ˆ

E

|fn − f |p
εp

1{|fn−f |>ε}dµ

≤ 1

εp

ˆ

E

|fn − f |pdµ =
1

εp
||fn − f ||pp

which goes to zero as n→ ∞. The second claim then follows from Proposition 8.8.

Theorem 8.11 Let p ≥ 1. Lp(E) with the metric dp(f, g) = ||f − g||p is a complete metric
space. That is, if (fn) is a Cauchy sequence in Lp(E): fn ∈ Lp(E) and

||fn − fm||p → 0 as n,m→ ∞

then
1) there is a sub-sequence (fnk

) and f ∈ Lp(E) such that fnk
→ f almost everywhere on E,

and
2) ||fn − f ||p → 0 as n→ ∞.

Therefore Lp(E) equipped with the norm || · ||p is a Banach space.
Proof. (The proof is not examinable) 1) The proof is the modification of that of Proposition

8.8. Since ||fn − fm||p → 0 so for every k = 1, 2, · · · , there is nk such that

||fn − fm||pp ≤
1

2k

(

1

2k

)p

for any n,m ≥ nk.

We can choose nk such that nk is strictly increasing. Then

µ

({

|fn − fm| ≥
1

2k

})

=

ˆ

E

1{|fn−fm|≥ 1

2k
}dµ ≤

ˆ

E

|fn − fm|p
(

1
2k

)p dµ

=
||fn − fm||pp
(

1
2k

)p ≤ 1

2k
∀n,m ≥ nk. (8.12)

Let

Ek =
∞
⋂

j=k

{

|fnj+1
− fnj

| ≤ 1

2j

}

, G =
∞
⋃

k=1

Ek

Then if x ∈ G, |fni+1
(x)− fni

(x)| ≤ 1
2i

for all i ≥ k for some k, so that

|fni
(x)− fnj

(x)| ≤
∞
∑

i=j

|fni+1
(x)− fni

(x)| ≤
∞
∑

i=j

1

2i
=

1

2j−1
∀i ≥ j ≥ k
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and therefore (fnk
(x)) converges to some f(x) for every x ∈ G. On the other hand

E \G =
∞
⋂

k=1

∞
⋃

j=k

{

|fnj+1
− fnj

| ≥ 1

2j

}

so that, by (8.12)

µ(E \G) ≤
∞
∑

j=k

µ

({

|fnj+1
− fnj

| ≥ 1

2j

})

≤
∞
∑

j=k

1

2j
=

1

2k−1

for any k = 1, 2, · · · , hence µ(E \G) = 0. Therefore (fnk
) converges to f almost everywhere.

We next show that f ∈ Lp(E) and ||fn − f ||p → 0 as n → ∞. For every ε > 0 there is N
such that ||fn − fm||p < ε for all n,m ≥ N . Therefore

ˆ

E

|fn − fnk
|pdµ < εp for any k, n ≥ N .

Since |fn − fnk
| → |fn − f | almost everywhere on E, so by Fatou’s Lemma

ˆ

E

|fn − f |pdµ ≤ limk→∞

ˆ

E

|fn − fnk
|pdµ ≤ εp ∀n ≥ N ,

therefore fn − f ∈ Lp(E) and ||fn − f ||p ≤ ε. By definition fn → f in Lp(E) and f ∈ Lp(E).

9 Appendix 1 – From outer measures to measures

The material below is not on the syllabus of A4 Paper Integration, which covers the essential
steps in the construction of Lebesgue measures.

Theorem 9.1 Let R be a ring of some subsets of Ω, that is, R contains the empty set Ø and
is closed under ∪ and ∩. Suppose there is a sequence En (n = 1, 2, · · · ) such that

⋃∞
n=1En = Ω.

Suppose µ : R → [0,∞] satisfies the following conditions: (1) µ(Ø) = 0; (2) µ(A) ≤ µ(B)
for A,B ∈ R and A ⊂ B; and (3) µ is finitely additive: if Ai are disjoint, Ai ∈ R, where
i = 1, · · · , n, then

µ

[

n
⋃

i=1

Ai

]

=
n
∑

i=1

µ (Ai) . (9.1)

Let µ∗ be the outer measure defined by µ:

µ∗(E) = inf

{

∞
∑

i=1

µ(Ei) : Ei ∈ R such that
∞
⋃

i=1

Ei ⊃ E

}

(9.2)

for E ⊂ Ω. Let Gm be the σ-algebra of µ∗-measurable subsets. Then R ⊂ Gm.
If in addition we assume that µ∗(A) = µ(A) for every A ∈ R, then µ∗ is an extension of µ

(to a measure on Gm).
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[But, be careful, µ∗ restricted on Gm is not necessary an extension of µ. In fact, µ∗ restricted
on the ring R does not need to coincide with µ!]

Proof. [The proof is not examinable]. If E ∈ R, in order to show that E is µ∗-measurable,
we show that

µ∗(F ) = µ∗(F ∩ E) + µ∗(F ∩ Ec)

for every F ⊆ R. It is trivial if µ∗(F ) = ∞, so we consider the case that µ∗(F ) < ∞. For every
ε > 0, there is a sequence {Ei : i = 1, 2, · · · }, where Ei ∈ R, such that ∪∞

i=1Ei ⊇ F and

∞
∑

i=1

µ(Ei) ≤ µ∗(F ) + ε.

Let Ai = Ei ∩E and Bi = Ei ∩Ec. Then Ai, Bi ∈ R, Ai ∪Bi = Ei and Ai ∩Bi = Ø, so that, by
finite additivity of µ over the ring R, we have

µ(Ei) = µ(Ai) + µ(Bi).

Since ∪iAi ⊇ F ∩ E and ∪iBi ⊇ F ∩ Ec, so that

µ∗(F ∩ E) ≤
∞
∑

i=1

µ(Ai), and µ
∗(F ∩ Ec) ≤

∞
∑

i=1

µ(Bi).

It follows that

µ∗(F ∩ E) + µ∗(F ∩ Ec) ≤
∞
∑

i=1

µ(Ai) +
∞
∑

i=1

µ(Bi) ≤ m∗(F ) + ε.

Letting ε ↓ 0 to obtain
µ∗(F ∩ E) + µ∗(F ∩ Ec) ≤ µ∗(F )

which shows that E ∈ R is µ∗-measurable.
This theorem will be used to give a complete description of the σ-algebra of Lebesgue measur-

able subsets of R in the next sub-section. Let us prove the extension theorem of Caratheodory’s.

Theorem 9.2 Let R be a ring of some subsets of Ω, such that there is a sequence En (n =
1, 2, · · · ) such that

⋃∞
n=1En = Ω. Let µ : R → [0,∞] be a measure on the ring R. That is,

µ(Ø) = 0; µ(A) ≤ µ(B) for A,B ∈ R and A ⊂ B; and µ is conutably additive: if Ai are disjoint,
Ai ∈ R, where i = 1, 2, · · · , such that

⋃∞
i=1Ai ∈ R then

µ

[

∞
⋃

i=1

Ai

]

=
∞
∑

i=1

µ (Ai) . (9.3)

Let µ∗ be the outer measure associated with µ defined by (9.2), and let Gm be the σ-algebra
of µ∗-measurable subsets. Then R ⊂ Gm andµ∗(A) = µ(A) for every A ∈ R. Therefore µ∗ is an
extension of µ (to a measure on Gm).
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Proof. [The proof is not examinable]. According to Theorem 9.1, we only need to show that
µ∗(E) = µ(E) for every E ∈ R. By definition µ∗(E) ≤ µ(E). Let us prove that µ(E) ≤ µ∗(E).
If µ∗(E) = ∞, then there is nothing to prove, so we consider the case that µ∗(E) < ∞. For
every ε > 0, there is a countable cover of E, {Ei}, where Ei ∈ R for i = 1, 2, · · · , such that

∞
∑

i=1

µ(Ei) < µ∗(E) + ε.

Let A1 = E∩E1, Ai = E
⋂
(

Ei \ ∪i−1
k=1Ek

)

for i ≥ 2. Then Ai ∈ R are disjoint, and
⋃∞

i=1Ai = E,
thus, since µ is a measure on the ring R, we have

µ(E) =
∞
∑

i=1

µ(Ai) ≤
∞
∑

i=1

µ(Ei) < µ∗(E) + ε

for every ε > 0. Letting ε ↓ 0 to obtain µ(E) ≤ µ∗(E). The proof is completed.
Carathéodory’s extension theorem, more explicitly Theorem 9.1, may be applied to the con-

struction of the Lebesgue measure m on R. Recall that the outer measure m∗ is defined on P(R)
of all subsets of R, so the m∗-measurable subsets, called Lebesgue measurable in this case, or
simply measurable in this course if no confusion may arise, form a σ-algebra P(R)m, which will
be denoted as MLeb or MLeb(R). Then the outer measure m∗ restricted on MLeb is a measure,
the triple (R,MLeb,m

∗) is called the Lebesgue measure space.
Our next task is to describe the σ-algebra MLeb of Lebesgue measurable sets on R.
The following lemma is the key technical fact used in the construction of Lebesgue’s measure

m on R.

Lemma 9.3 If A =
⋃n

i=1 Ji, where Ji ∈ C are disjoint, then m∗(A) =
∑n

i=1 |Ji|.

Proof. (The proof is not examinable.) Since {Ji} is a finite cover of A, and Ji ∈ C, so
that m∗(A) ≤ ∑n

i=1 |Ji|. We first prove that m∗(J) = m(J) = |J | for every J = (a, b] ∈ C.
By definition, m∗(J) ≤ |J |. On the other hand, for every ε > 0, there is a countable cover
{Ik = (sk, tk] : k = 1, 2, · · · } of (a, b], such that m∗(J) ≥ ∑∞

k=1 |Ik| − ε. Since [a, b] is closed
and bounded, and

{

(sk − ε
2k+1 , tk +

ε
2k+1 ) : k = 1, 2, · · ·

}

is an open cover of [a, b], there is a finite
sub-cover {(ski − ε

2ki+1 , tki +
ε

2ki+1 ) : i = 1, · · · , N} for some N . [This is a result from Analysis II].
Let us write ai = ski − ε

2ki+1 and bi = tki +
ε

2ki+1 (i = 1, · · · , N) for simplicity, and, if necessary,
rearrange them in the following order

a1 ≤ a2 ≤ · · · ≤ aN .

Then we must have bk ≥ ak+1 (for any k = 1, 2, · · · , N − 1), a1 ≤ a and bN ≥ b, so that
∑N

i=1(bi − ai) ≥ b− a. It follows that

∞
∑

k=1

|Ik| ≥
N
∑

i=1

|Iki | =
N
∑

i=1

(bi − ai)− 2
∞
∑

k=1

ε

2k+1
≥ b− a− ε.

Therefore m∗(J) ≥ (b− a)− ε. Since ε is arbitrary, m∗(J) ≥ b− a.
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Let us now consider the general case. For every ε > 0 there is a sequence Ik ∈ C of intervals
such that ∪∞

k=1Ik ⊇ A and

m∗(A) ≤
∞
∑

k=1

|Ik| ≤ m∗(A) + ε.

Note that Ik ∩ Ji ⊂ Ik and Ik ∩ Ji ∈ C, so that {Ik ∩ Ji : i = 1, · · · , n} are disjoint sub-intervals
of Ik for fixed k, hence

∑n
i=1 |Ik ∩ Ji| ≤ |Ik|. On the other hand

|Ji| = m∗(Ji) = m∗ (∪∞
k=1Ik ∩ Ji)

≤
∞
∑

k=1

m∗(Ik ∩ Ji) =
∞
∑

k=1

|Ik ∩ Ji|

and therefore

n
∑

i=1

|Ji| ≤
n
∑

i=1

∞
∑

k=1

|Ik ∩ Ji| =
∞
∑

k=1

n
∑

i=1

|Ik ∩ Ji|

≤
∞
∑

k=1

|Ik| ≤ m∗(A) + ε.

Since ε > 0 is arbitrary, we may conclude that
∑n

i=1 |Ji| ≤ m∗(A). Hence m∗(A) =
∑n

i=1 |Ji|.
Let R be the collection of all subsets of R which can be written as a disjoint union of finite

many elements in the π-system C, i.e. E ∈ R if E = ∪n
i=1Ji where Ji ∈ C are disjoint for some

m. Then R is a ring of subsets of R, that is, R contains the empty ∅ and is closed under ∪ and
∩.

If E = ∪n
i=1Ji ∈ R, where Ji ∈ C are disjoint, so that m∗(E) =

∑n
i=1 |Ji| does not depend on

the representation of E as finite disjoint union of elements in C. m∗ : R → [0,∞] possesses the
following properties:

1) m∗(∅) = 0,
2) m∗ is finitely additive on the ring R: if E1, · · · , En ∈ R are disjoint, then m∗(∪n

j=1Ej) =
∑n

j=1m
∗(Ej),

3) m∗ is countably sub-additive.
In fact 1) and 3) hold as m∗ is an outer measure on P(R). 2) follows from Lemma 9.3

immediately. In fact, suppose Ej = ∪nj

k=1I
(j)
k where I

(j)
k ∈ C are disjoint, so that

n
⋃

j=1

Ej =
n
⋃

j=1

nj
⋃

k=1

I
(j)
k

is a disjoint decomposition of ∪n
j=1Ej and therefore, by Lemma 9.3,

m∗

(

n
⋃

j=1

Ej

)

=
n
∑

j=1

nj
∑

k=1

|I(j)k | =
n
∑

j=1

m∗(Ej)

which proves 2).
With the help of these facts about the outer measure m∗, we have the following
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Lemma 9.4 The Lebesgue outer measure

m∗(E) = inf

{

∞
∑

i=1

m∗(Ei) : where Ei ∈ R such that
∞
⋃

i=1

Ei ⊃ E

}

(9.4)

for any subset E ⊆ R, where the inf runs over all countable covers {Ei : i = 1, 2, · · · } ⊂ R of E.

Proof. For E ⊆ R, let us use ϕ(E) to denote the right-hand side of (9.4). We want to show
that ϕ(E) = m∗(E). Since the π-system C ⊂ R, so that, by definition of the outer measure
m∗(E), we have ϕ(E) ≤ m∗(E). Let us prove that m∗(E) ≤ ϕ(E). If ϕ(E) = ∞, then there is
nothing to prove, so we consider the case that ϕ(E) < ∞. For every ε > 0, there is a countable
cover of E, {Ei}, where Ei ∈ R for i = 1, 2, · · · , such that

∞
∑

i=1

m∗(Ei)− ε < ϕ(E) ≤
∞
∑

i=1

m∗(Ei).

Since Ei ∈ R, Ei =
∑ni

j=1 I
(i)
j where I

(i)
j ∈ C and are disjoint for each i. Putting all these together

{I(i)j } with two indices (i, j), which is again countable, and thus forms a countable cover of E.

By Lemma 9.3 m∗(Ei) =
∑ni

j=1 |I
(i)
j | for each i, so that

∞
∑

i=1

m∗(Ei) =
∑

i,j

|I(i)j |.

According to definition of m∗(E), we have

m∗(E) ≤
∑

i,j

|I(i)j | =
∞
∑

i=1

m∗(Ei) < ϕ(E) + ε

for every ε > 0. Letting ε ↓ 0 to obtain m∗(E) = ϕ(E), so the proof is completed.
We are now in a position to show the following main structure theorem for the Lebesgue

measure space.

Theorem 9.5 R ⊆ MLeb, and therefore σ{R} ⊆ MLeb .

This follows directly from Theorem 9.1.
We are now in a position to describe the structure of the σ-algebra of MLeb.
The σ-algebra σ{R} over R generated by the ring R (or equivalently by the π-system C,

σ{C}) is the Borel σ-algebra B(R) (also denoted by MBor for good reason). Any interval J ∈
B(R), so are the open and closed subsets of R. Any subset in B(R) is called Borel measurable.
Therefore Borel measurable sets are Lebesgue measurable, open subsets and closed subsets are
Borel measurable, so are Lebesgue measurable.

If J is an interval then J is Borel measurable (so must be Lebesgue measurable), and m(J) =
|J | the length of J . In fact, if J is infinite interval, then there is a number a such that (a,∞)
or (−∞, a] ⊆ J , so that m(J) ≥ m((a, a + n]) (or m((a − n, a])), thus m(J) ≥ n for every
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n ∈ N. Therefore m(J) = ∞. Suppose now J is an interval with two ends a ≤ b. Then
(a+ ε, b− ε] ⊆ J ⊆ (a− ε, b+ ε], so that

b− a− 2ε = m((a+ ε, b− ε]) ≤ m(J) ≤ m((a− ε, b+ ε]) = b− a+ 2ε

for every ε > 0. Letting ε ↓ 0 to obtain m(J) = b− a.
Therefore

m∗(E) = inf

{

∞
∑

k=1

|Jk| : where Jk are intervals such that ∪∞
k=1 Jk ⊇ E

}

for every subset E ⊆ R.
We can show that any open set U of R can be written as a union of at most countable many

disjoint open intervals
U = ∪∞

j=1(aj, bj).

By the countable additivity we have

m(U) =
∞
∑

j=1

(bj − aj) .

Therefore, Lebesgue measure m is really an extension of the notion of length to measurable sets.
As another application of Theorem 4.3 and Theorem 9.2, we may build a complete measure

space from a given measure space.

Theorem 9.6 Let (Ω,F , µ) be a measure space, and let µ∗ be the outer measure associated with
µ defined by

µ∗(E) = inf

{

∞
∑

j=1

µ(Ei) : Ei ∈ F s.t. ∪∞
i=1 Ei ⊃ E

}

for every E ⊂ Ω. Let Fm be the σ-algebra on Ω consisting of all µ∗-measurable subsets. Then,
according to Theorem 4.3, (Ω,Fm, µ∗) is a measure space, and according to Theorem 9.2, F ⊆
Fm and µ = µ∗ on F . Moreover,Fm contains all µ∗-null sets.

The measure space (Ω,Fm, µ∗) is called the Carathéodory extension of (Ω,F , µ).
Thanks to Theorem 9.6, given a measure space (Ω,F , µ), we naturally extend it (in many

applications, without further comments) to its completion (Ω,Fµ, µ∗), where Fµ = σ{F ,N}
where N ⊂ F∗ the collection of all µ∗-null sets. Then Fµ ⊆ Fm which contains all µ∗-null
subsets.

Definition 9.7 A measure space (Ω,F , µ) is called complete, if for every A ∈ F with µ(A) = 0,
then any subset of A also belongs to F .

According to definition, if (Ω,F , µ) is a measure space, then its completion (Ω,Fµ, µ∗) is a
complete measure space. If E is Lebesgue measurable, then the Lebesgue space (E,MLeb,m) is
complete.
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10 Appendix 2 – Further results on Riemann integrals

[This part is not examinable in paper A4 Integration.] The section is devoted to the proof of an
interesting result about Riemann integrals, by means of Lebesgue’s measure.

The Riemann integral of a function f : [a, b] → R, in most text books, is defined to be the
limit of Riemann sums

lim
|D|→0

n
∑

j=1

f(ξj)(xj − xj−1)

where the limit runs over all possible finite partitions D : a = x0 < x1 < · · · < xn = b, and
ξj ∈ [xj−1, xj ], where |D| = maxj=1,··· ,n(xj − xj−1). f is Riemann integrable if the above limit

exists, and its limit is denoted by
´ b

a
f(x)dx. While the limiting procedure is of course not in

the ordinary sense as for sequences, but the idea of limits for functions and sequences can be
adopted to Riemann sums directly. More precisely, f is Riemann integrable on [a, b] if there is a
number I, for every ε > 0, there is δ > 0, such that for whatever finite partition D of [a, b] and
for whatever choices of ξj ∈ [xj−1, xj ], as long as |D| < δ, we have

∣

∣

∣

∣

∣

∑

j

f(ξj)(xj − xj−1)− I

∣

∣

∣

∣

∣

< ε.

The limit I is called the Riemann integral of f on [a, b], denoted as
´ b

a
f(x)dx.

Lemma 10.1 If f : [a, b] → R is Riemann integrable on [a, b], then f is bounded on [a, b].

Proof. We can prove this by contradiction. Suppose otherwise, that is, f were unbounded
on [a, b]. Then there is a sequence {pn} in [a, b] such that f(pn) → ∞. Since [a, b] is a closed
interval, without losing generality, we may assume that {pn} is convergent, and pn → p. Of
course p ∈ [a, b]. Since f is Riemann integrable on [a, b], there is δ > 0 such that

∣

∣

∣

∣

∣

∑

j

f(ξj)(xj − xj−1)− I

∣

∣

∣

∣

∣

≤ 1

for any finite partition D = {a = x0 < · · · < xn = b} such that |D| < δ and for any choices of
ξj ∈ [xj−1, xj ]. Apply this to the equal partition xN,j = a + j

N
(b − a) for every natural number

N such that 1
N
(b− a) < δ, where j = 0,· · · , N . Then

∣

∣

∣

∣

∣

N
∑

j=1

f(ξj)
b− a

N
− I

∣

∣

∣

∣

∣

≤ 1 (10.1)

for any ξj ∈ [xN,j−1, xN,j ]. Let us fix such N such that 1
N
(b − a) < δ. Certainly p belongs to

(at most two) some interval [xN,j0−1, xN,j0 ]. Since pn → p, so there are N1 and j0 (at least one,
at most two) such that there is a sub-sequence pnl

∈ [xN,j0−1, xN,j0 ] for all l. Let us choose
ξj ∈ [xN,j−1, xN,j ] for j 6= j0 and fix them, and choose ξj0 = pl in Inequality (10.1) to obtain

∣

∣

∣

∣

∣

N
∑

j 6=j0

f(ξj)
b− a

N
+
b− a

N
f(pnl

)− I

∣

∣

∣

∣

∣

≤ 1.
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Letting l ↑ ∞ to obtain ∞ ≤ 1 which is a contradiction.
Suppose f : [a, b] → R is bounded, then the following limit exists:

S = lim
|D|→0

n
∑

j=1

Mj(xj − xj−1)

where again D runs through all possible finite partition a = t0 < t1 < · · · < tn = b, and
Mj = sup[xj−1,xj ]

f the supremum of f over [xj−1, xj ]. That is, there is a number S such that for
every ε > 0, there is δ > 0 such that

∣

∣

∣

∣

∣

∑

j

Mj(xj − xj−1)− S

∣

∣

∣

∣

∣

< ε

as long as the finite partition D = {a = x0 < · · · < xn = b} satisfying that |D| < δ. This

limit S is called the upper integral of f over [a, b], denoted by ¯´ b
a
f(x)dx. Similarly, by replacing

the supremum Mj by mj = inf [xj−1,xj ] f we may define the lower integral
´ b

a
f(x)dx. Then, f is

Riemann integrable on [a, b], if and only if its upper integral ¯
´ b

a
f(x)dx coincides with its lower

integral
´ b

a
f(x)dx, and the common value is exactly the Riemann integral

´ b

a
f(x)dx. In Prelims

Analysis III, we have used a different approach by using step functions to define upper and lower
integrals, and we can show that the two methods lead to the same upper and lower integrals,
and thus the Riemann integrals.

Lemma 10.2 f : [a, b] → R is Riemann integrable on [a, b], if and only if

lim
|D|→0

∑

j

(Mj −mj)(xj − xj−1) = 0

where Mj = supx∈[xj−1,xj ]
f(x) and mj = infx∈[xj−1,xj ] f(x) for j = 1, · · · , n for any given finite

partition D = {a = x0 < · · · < xn = b}.

Proof. In fact, if f is Riemann integrable, then f is bounded as proved in the previous
lemma. We here provide another proof. By definition, there is δ > 0 such that for any positive
integerN such that 1

N
(b− a) ≤ δ we have

ˆ b

a

f(x)dx− 1 ≤
N
∑

j=1

f(ξj)
b− a

N
≤
ˆ b

a

f(x)dx+ 1 (10.2)

for any ξj ∈ [xN,j−1, xN,j ], j = 1, · · · , N , where xN,j = a + j
N
(b− a) as before. Fix such N . Let

C1 = maxj=1,··· ,N |f(xN,j−1)|. Then, for any fixed j0 = 1, · · · , N , applying the previous inequality
to ξj = xN,j−1 for j 6= j0, we have

f(ξj0)
b− a

N
≤
ˆ b

a

f(x)dx+ 1−
N
∑

j 6=j0

f(xN,j−1)
b− a

N

≤
ˆ b

a

f(x)dx+ 1 +
N − 1

N
(b− a)C1
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and similarly, we have

f(ξj0)
b− a

N
≥
ˆ b

a

f(x)dx− 1− N − 1

N
(b− a)C1.

Therefore

N

b− a

(
ˆ b

a

f(x)dx− 1

)

−NC1 ≤ mj0 ≤Mj0 ≤
N

b− a

(
ˆ b

a

f(x)dx+ 1

)

+NC1

where mj and Mj are infinimum and supremum of f over [xN,j−1, xN,j ]. But this is true for any
j0 = 1, · · · , N , so that

N

b− a

(
ˆ b

a

f(x)dx− 1

)

−NC1 ≤ inf
[a,b]

f(x) ≤ sup
[a,b]

f(x) ≤ N

b− a

(
ˆ b

a

f(x)dx+ 1

)

+NC1

which provides explicit bounds for f in terms of its integral.
Since f is Riemann integrable on [a, b], for every ε > 0, there is δ > 0 such that for any finite

partition D : a = x0 < · · · < xn = b such that |D| < δ we have

ˆ b

a

f(x)dx− ε ≤
n
∑

j=1

f(ξj)(xj − xj−1) ≤
ˆ b

a

f(x)dx+ ε.

For any but fixed ξj ∈ [xj−1, xj] for j = 2, 3, · · · , n, taking supremum and infinimum over
ξ1 ∈ [x0, x1] in the above inequality we obtain

ˆ b

a

f(x)dx− ε ≤ m1(x1 − x0) +
n
∑

j=2

f(ξj)(xj − xj−1)

≤M1(x1 − x0) +
n
∑

j=2

f(ξj)(xj − xj−1) ≤
ˆ b

a

f(x)dx+ ε

and repeat the process n times we obtain that

ˆ b

a

f(x)dx− ε ≤
n
∑

j=1

mj(xj − xj−1) ≤
n
∑

j=1

Mj(xj − xj−1) ≤
ˆ b

a

f(x)dx+ ε. (10.3)

In particular
n
∑

j=1

(Mj −mj)(xj − xj−1) ≤ 2ε

and therefore, by definition,

lim
|D|→0

n
∑

j=1

(Mj −mj)(xj − xj−1) = 0.

From the previous inequality (10.3), we may also conclude that

lim
|D|→0

n
∑

j=1

mj(xj − xj−1) = lim
|D|→0

n
∑

j=1

Mj(xj − xj−1) =

ˆ b

a

f(x)dx.
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Conversely, if it holds that

lim
|D|→0

n
∑

j=1

(Mj −mj)(xj − xj−1) = 0,

then for every ε > 0, there is δ > 0 such that

0 ≤
n
∑

j=1

(Mj −mj)(xj − xj−1) < ε

for any finite partition D = {a = x0 < · · · < xn = b} such that |D| < δ. In particular, applying
the above to any but fixed partition D with |D| < δ, the inequality above implies that both mi

and Mi are finite, so that f is bounded on [a, b]. Moreover

0 ≤
¯ˆ b

a

f(x)dx−
ˆ b

a

f(x)dx ≤
n
∑

j=1

(Mj −mj)(xj − xj−1) < ε

so that
¯ˆ b

a

f(x)dx−
ˆ b

a

f(x)dx = 0.

By definition, f is Riemann integrable on [a, b].
If J = 〈a, b〉 is a finite interval with ends a < b, but not necessary closed one, then naturally,

we say f is Riemann integrable on J , if f1[a,b] is Riemann integrable, where g = f1[a,b] is the
extension of f so that g(a) and / or g(b) = 0 if f(a) and / or f(b) are not defined. In Prelims
Analysis III, we have proved the following: if f is Riemann integrable on [a, b], and g is a function
on [a, b] which agrees with f except for finite many points, then g is also Riemann integrable on

[a, b] and
´ b

a
f(x)dx =

´ b

a
g(x)dx. It is also proved that a bounded function f on [a, b] which is

continuous on (a, b) is Riemann integrable. With the help of Lebesgue’s measure, we are now in
a position to prove the final result of this kind of statements about Riemannian integrals.

To this end, let us introduce some notations which are used in the proof of our main result
about Riemann integrals.

Suppose f is a bounded function on [a, b]. For every n, we define the dyadic partition a =

x
(n)
0 < x

(n)
1 < · · · < x

(n)
2n = b, where x

(n)
k = a+ k

2n
(b−a) for k = 0, 1, · · · , 2n. Define two sequences

of step functions ϕn(x) = m
(n)
k and ψn(x) = M

(n)
k if x ∈ (x

(n)
k−1, x

(n)
k ] and ϕn(a) = ψn(a) = f(a),

where m
(n)
k = inf{f(x) : x ∈ [x

(n)
k−1, x

(n)
k ]} and similarlyM

(n)
k = sup{f(x) : x ∈ [x

(n)
k−1, x

(n)
k ]}. Then

ϕn ↑ and ψn ↓. Moreover ϕn ≤ f ≤ ψn on [a, b] for every n. Let finf = limϕn and fsup = limψn.
Then both finf and fsup are measurable functions on [a, b], and are bounded on [a, b], so they
must be Lebesgue integrable. Moreover finf ≤ f ≤ fsup on [a, b]. Suppose C is a bound of |f |,
then |ϕn|, |ψn| ≤ C. Therefore, by Lebesgue’s Dominated Convergence theorem, we have

ˆ

[a,b]

finfdm = lim
n→∞

ˆ b

a

ϕn(x)dx =

ˆ b

a

f(x)dx

and
ˆ

[a,b]

fsupdm = lim
n→∞

ˆ b

a

ψn(x)dx =
¯ˆ b

a

f(x)dx.
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It follows that

0 ≤
¯ˆ b

a

f(x)dx−
ˆ b

a

f(x)dx =

ˆ

[a,b]

(fsup − finf)dm.

Therefore we have the following

Lemma 10.3 Let f be a bounded function on [a, b]. Then
1) both functions fsup and finf are bounded and measurable on [a, b], and therefore both are

Lebesgue integrable on [a, b];
2) finf ≤ f ≤ fsup on [a, b];
3) f on [a, b] is Riemann integrable if and only if

ˆ

[a,b]

(fsup − finf)dm = 0

which is equivalent to that fsup = f = finf almost everywhere on [a, b].

Let D =
{

x
(n)
k : k = 0, · · · , 2n, n = 1, 2, · · ·

}

be the subset of all possible dyadic points in

[a, b]. Then D is countable, so that m(D) = 0.

Lemma 10.4 Under the above notations and assumptions. If x ∈ (a, b)\D, then f is continuous
at x if and only if fsup(x) = finf(x).

Proof. Let x0 ∈ [a, b]. Then, for every ε > 0, there is N such that

ϕn(x0) ≤ finf(x0) ≤ ϕn(x0) + ε

and
ψn(x0)− ε ≤ fsup(x0) ≤ ψn(x0)

so that
0 ≤ ψn(x0)− ϕn(x0) ≤ fsup(x0)− finf(x0) + 2ε.

for all n ≥ N . Suppose in addition that x0 ∈ (a, b) \ D, then, for every n, there is a unique

integer kn ∈ {0, · · · , 2n − 1} such that x0 ∈ (x
(n)
kn−1, x

(n)
kn

). Let

δ = min{x0 − x
(N)
kN−1, x

(N)
kN

− x0}

which is positive (as x0 /∈ D). Then, for any x such that |x− x0| < δ, we have

|f(x)− f(x0)| ≤ sup
|y−x0|<δ

f − inf
|y−x0|<δ

f

≤M
(N)
kN

−m
(N)
kN

= ψN(x0)− ϕN(x0)

so that
|f(x)− f(x0)| ≤ fsup(x0)− finf(x0) + 2ε

for any x such that |x− x0| < δ. Therefore, if fsup(x0) = finf(x0), then f is continuous at x0.
On the other hand, we have

0 ≤ fsup(x0)− finf(x0) ≤ ψn(x0)− ϕn(x0)
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for any n and x0. If f is continuous at x0, then for every ε > 0, there is δ > 0 such that
|f(x)−f(x0)| < ε

2
for any x ∈ (x0−δ, x0+δ). Thus |f(x)−f(y)| < ε for any x, y ∈ (x0−δ, x0+δ).

Choose positive integer N such that b−a
2N

< 1
2
δ, then, if x0 /∈ D, for any n ≥ N there is a unique

ln = 0, · · · , 2n − 1 such that x0 ∈ (x
(n)
ln−1, x

(n)
ln

) ⊆ (x0 − δ, x0 + δ), so that

M
(n)
ln

−m
(n)
ln

≤ sup
x,y∈(x0−δ,x0+δ)

|f(x)− f(y)| ≤ ε.

Therefore, for n ≥ N

0 ≤ fsup(x0)− finf(x0) ≤ ψn(x0)− ϕn(x0)

=M
(n)
ln

−m
(n)
ln

≤ ε

that is 0 ≤ fsup(x0)− finf(x0) ≤ ε for every ε > 0, thus we must have fsup(x0) = finf(x0), which
completed the proof.

Theorem 10.5 Let f : [a, b] → R be a function. Then f is Riemann integrable on [a, b], if and
only if f is bounded and f is continuous almost everywhere on [a, b].

Proof. Let A = {fsup 6= finf}. If f is Riemann integrable on [a, b], then f must be bounded
on [a, b], and fsup = finf almost everywhere on [a, b], so that m(A) = 0, and therefore A ∪D is
null. According to Lemma 10.4, f is continuous on (a, b) \ (A ∪ D). Therefore f is continuous
almost everywhere on [a, b]. Conversely, if f is continuous almost everywhere and bounded on
[a, b], then fsup = finf almost surely, so that f is Riemann integrable on [a, b] according to Lemma
10.3

Corollary 10.6 If f is Riemann integrable on [a, b], then f = fsup = finf almost everywhere on
[a, b], so that f must be bounded and measurable on [a, b]. Moreover

ˆ

[a,b]

fdm =

ˆ

[a,b]

fsupdm =

ˆ

[a,b]

finfdm = (R)

ˆ b

a

f(x)dx.

Let us consider an example, the Dirichlet function f on [0, 1], where f(x) = 0 if x ∈ (0, 1) is
irrational , and f(x) = 1

p+q
if x = p

q
in lowest term, where p ≥ 0 and q > 0 are two integers. Then

f is continuous at any irrational in [0, 1], thus f is continuous almost everywhere on [0, 1], so that

f is Riemann integrable. Moreover, since f = 0 a.e., thus its Riemann integral
´ 1

0
f(x)dx = 0.
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