STRING THEORY I

Lcoture 1

Xenia de la Ossa

[Chapter 1] Introduction

- (a few words about what string theory is and some motivation)
- 11.21 Historical inhoduction

	What is	shing	theores?		
The star	uting point	of string	theory is	that it mechanic	cal strings
In QFT:	Jundamer	ital postides	point li	te object	S
	point like ponticles			0 † 1	world line
Instead		\$			
	strings				ItI dim world sheet

Perturbative string theory is first quantited 5-matrix theory

best developed formulation 2nd quantited

theory would be

string field theory

framework

postaban lew ten whire introductions ten

May se some in STIT

Kung scaturo

- · constantly in corporate gravity etimes mutmans to orante a &
- "unique" theory
- · invaporates many other interesting & dhenomenslogically relevant inopredients from QFI & posticle physics
 - .. non-Abelian zange symmetries with chival matter
 - ·· "unitication"

This carrow:

Lo missing thory

Lo missing some of the sectores mentioned above and suffers from serious defects be inconsistencies

Lo horsever illustrates law ideas be techniques

STII: learn monstring theory which has been compilered as a condidate to some day describe our would.

11.2 Historical motivation

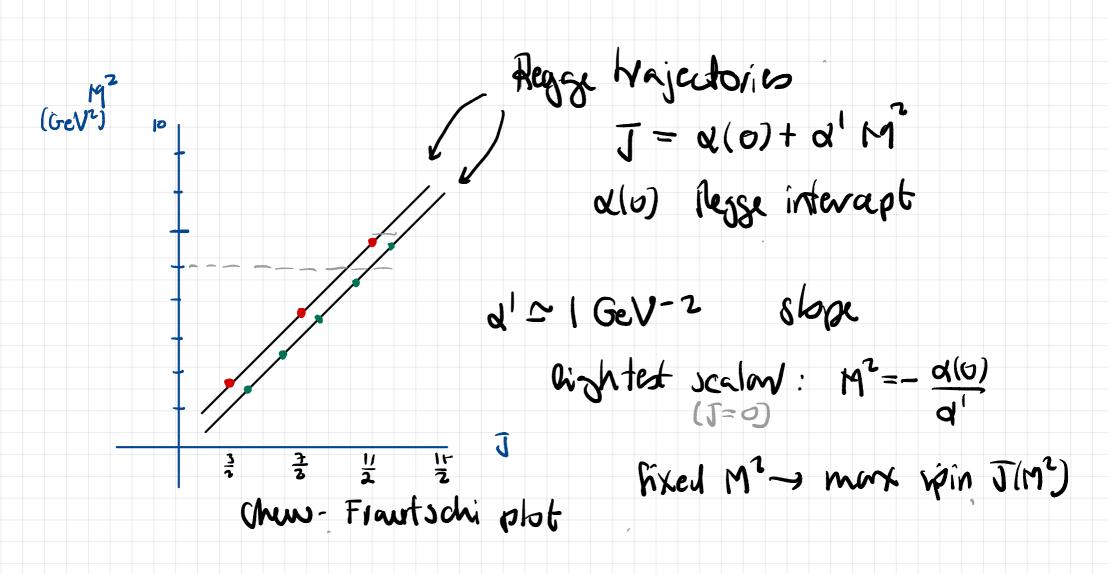
String thorn appeared hirst in the loss as a theory of strong interactions (the dual resonance models)

200 april a constitution of thouse interactions because

- D'the expression of the lawy at the lawy and the lawy and the number of the lawy hadron with large masses & spins
- 3 UV (loop) divergences in the commutation of perturbative scattering complitudes

 particularly for high spin particles

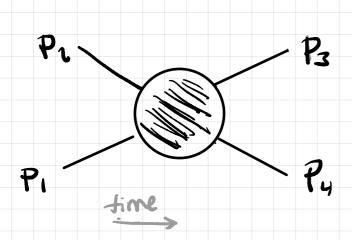
On of the most important obstructions was that hadronic resonances appeared in Lamilies



- · There where drubts that all these particles where fundamental.
 - . remar malizable known QFTS: J=0, \frac{1}{2}, 1

Instead people wolked within the context of the S-matrix program: comstruct the S-matrix uning a number of general principles like unitarity & amalyticity, together with experimental data

Consider (for example) the elastic scattering



Signature (-1,+1,+1,-) 80 $M^2 = -p^2$ $\lambda_i = Slawow quantum rumbuo i=1,2,7,4$

Compute: term in scattering amplifude of to (1, 1, 1, 1, 1, 1)

Compute: term in scattering amplifude of to (1, 1, 1, 1, 1, 1)

Compute: term in scattering amplifude of to (1, 1, 1, 1, 1, 1, 1)

Mandelstam variables

$$S = -(\rho_1 + \rho_2)^2 \quad (>0 \text{ for physical elastic scattering})$$

$$t = -(\rho_1 + \rho_2)^2 \quad (<0 \quad | 1|$$

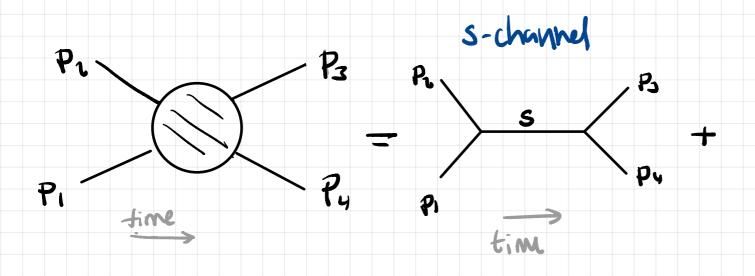
$$u = -(\rho_1 + \rho_2)^2 \quad (>0 \quad | 1|)$$

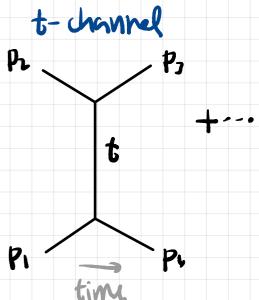
with s+t+u = 2mi2

Amplitude A(s,t)

Mangelstam Soniables

leading contributions





t-channel exchange of a spir T particle T φ φ ~ 24 (\$ 24 - 142 \ \sigma \ \s $A(s,t) \sim -\frac{q_{J}^{2}(-s)^{J}}{t-M_{J}^{2}}$ for t fixed s tue, lange Remarks: if J=6 ausic supring ~ go (4° \$) 5 $\Rightarrow A(s_1t) \sim -\frac{q^2}{t-M_0} \rightarrow 0 \implies t \rightarrow \infty$ To upon to temporate and more divergent for larger T

(2 Apin to July at high S) This UV behaviour is mt what was observed

Euro work in loop din proms:

$$\sim \frac{d^{2}p}{(an)^{2}} \frac{P}{(p^{2})^{4}}$$

Ydim: , J=0

· 1=1

. 7>1

safe for scalms

bally divergence potentiallo removadi zable

If there one particles of various priss exchanged in t-channel

The Time of C-ST ~ STMAX high energy behavior dominated by Too to Time to Time of the time of time of time of

Bad: - vero distent wom somvation

· no s-channel polo

The story might be different if there are infinitely many exchange diagrams:

$$A_t|s_it) = -\frac{2}{5} \frac{2\pi (-s)^T}{t-M_T^2} \sim ?$$

As the sum is infinite purhaps 5- channel poles wise automatically ?

Dolen-Horn-Schmid duality (1968)

In QFT: red both s & t channel annihution

 P_{1,λ_1} P_{3,λ_3} $A(S_1t) to (\lambda_1 \lambda_2 \lambda_3 \lambda_4) + \cdots$ P_{1,λ_3} P_{1,λ_3}

together with A(s,t) = At (s,t) + As(st) drannel satisfiens

We have
$$A_t(s,t) = -\sum_{j} \frac{q_j^2 (-s)^j}{t-M_j^2}$$
, $A_s(s,t) = \sum_{j} \frac{q_j^2 (-t)^j}{s-M_j^2}$

due to the stat symmets

Inhinite sum: $A_{+}(s,t)$ might have diswipmens at b me hinte values of s b solve in s-channel

=> mt obvious that As(s,t) reed to be added suparately

Instead DHS Momsed

Dud model

$$A(s,t) = A_t(s,t) = A_s(s,t)$$

dual deswiption of same physics

In 1969 Veneziamo: uning the channel duality nortulated

$$A(s,t) = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))} = B(-\alpha(s), -\alpha(t))$$

· Vonezions motulated $\alpha(s) = \alpha(0) + \alpha's$

•
$$\Gamma(z) = \int_0^z t^{z-1}e^{-t} dt$$
, $(le(z)>0)$ Enter Γ -function

• $B(\pi, W) = \frac{\Gamma(\pi) \Gamma(W)}{\Gamma(\pi+W)}$ Enlew beta-function

Consider the singularities:

$$A(s,t) = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))} = B(-\alpha(s),-\alpha(t))$$

- · P(++1) = & P(k)
- · P(t) has no tevas

P(1)

simple poles

$$\Gamma(t) = \frac{\Gamma(t_{1}+n+1)}{t_{1}(t_{1}+n-1)(t_{2}+n)} \sim \frac{(-1)^{n}}{n!} \frac{1}{t_{1}+n}$$

$$A(s,t) = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))} = B(-\alpha(s), -\alpha(t))$$

$$B(t,w) = \frac{\Gamma(t)\Gamma(w)}{\Gamma(t+w)}$$
 has simple poles only (at $t=-n$ or $w=-m$ where n,m are $+ve$ integral)

so san we have:

$$A(s,t) = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))} = B(-\alpha(s),\alpha(s))$$

t-channel mb:
$$t = \frac{1}{d'}(-\alpha(0)+n)$$

S-channel mles:
$$S = \frac{1}{d} \left(-\alpha(0) + n \right)$$

Does
$$A(s,t)$$
 satisfy the DHS duality? Yes

 $A(s,t) = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))} = B(\alpha(s),-\alpha(t))$

Compide $B(a,w) = \frac{\Gamma(a)\Gamma(w)}{\Gamma(a+w)}$

Then new a fingularity at $w = -n$
 $B(a,w) \sim \frac{1}{a+n} \frac{(-1)^n}{n!} (w-1)(w-1) \cdots (w-n)$

Claim: $B(a,w) = \sum_{n=0}^{\infty} \frac{1}{a+n} \frac{(-1)^n}{n!} (w-1)(w-1) \cdots (w-n)$

so sum (solutions all the inapplication of B but it precisely B!

[Warm the fact that $B(a,w) = \int_0^1 dx \ x^{k-1} (1-x)^{k-1} dx \ x^{k-1} (1-x)^{k-1} \int_0^1 dx \ x^{k-1} (1-x)^{k-1} dx \ x^{k-1} dx \ x^{$

$$A(s,t) = -\sum_{n=0}^{\infty} \frac{1}{n!} (\alpha(s)+1)(\alpha(s)+1) - -(\alpha(s)+n) \frac{1}{\alpha(t)-n}$$

& DHS duality mans

$$\star A(s,t) = A(t,s) = -\sum_{n=0}^{\infty} \frac{1}{n!} (\alpha(t)+1)(\alpha(t)+2) - (\alpha(t)+n) \frac{1}{n!}$$

For the t-channel exchange

$$A(s,t) = -\sum_{n=0}^{\infty} \frac{1}{n!} (\alpha(s)+1)(\alpha(s)+1) - -(\alpha(s)+n) \frac{1}{\alpha(t)-n}$$

$$(\alpha(t) = \alpha(0) + \alpha(t)$$

- singularities are simple robe alliten thankel exchange of particles with mms M2= 1 (-d(0)+n)
- I cridul at the role $\alpha(t) = n : n$ -th order polynomial in s->> particles of mans $M^2 = \frac{1}{\alpha}(-\alpha(o) + n)$ Remark spin J = n

High ever grabehaviour of A(s,t): does this solve the UV problem? A(s,t) in the negge limit (s>>1, t<0 lixed) 1(x)~ Vut 2 2-4 e-2 ming Stirling formula $A(s,t) = \frac{P(-\alpha(s)) M - \alpha(t))}{P(-\alpha(s) - \alpha(t))}$ $\frac{\partial}{\partial t} \sim \left(\frac{1}{2} - \alpha(t) \right) \left(\frac{1}{2} - \alpha(t$ Compare with $A_J(s,t) = \frac{\alpha^2(-s)^J}{t-M^2} \sim s^J$, $J = \alpha(t)$ (law $s = t - M^2$) with regalice pin J- alt) incinito mumbro of postile exchanses "Regge -on"

son a fixed scattering angle (so t/s fixed).

A(S, E) ~ (F(Os)) - d(s)

L Sunction of the scattering omble Qs

so Salls of exponentially foot with 5!

* Veneziamo model

- · rostro UV behaviour than amo QFT
- · in sorporates particles of high spin without W divergnos

Com right must be Vene tions annotatione at high everying for a fixed scattering angle and s>1 with $\frac{t}{s}$ fixed $A(s,t) \sim \left(\frac{F(O_s)}{F(O_s)}\right)^{-\alpha(s)}$ Legendran of the scattering angle O_s salls of exponentially fast with s!

Veneziamo model has softos UV behaviour than amo QFT and in experated particles of high spin without UV divergences

Vivanoro (09), Mapiro (70) model

$$A(s,t,u) = \frac{\Gamma(-\alpha_c(s))\Gamma(-\alpha_c(t))\Gamma(-\alpha_c(u))}{\Gamma(-\alpha_c(s)-\alpha_c(t))\Gamma(-\alpha_c(t))\Gamma(-\alpha_c(u))\Gamma(-\alpha_c(u))\Gamma(-\alpha_c(u))}$$

$$d_c(x) = \alpha(0) + \frac{1}{4}\alpha^{1}x \qquad d^{1}(s+t+u) = -1c\alpha(0)$$

$$s - channel poles \qquad S = 4(-\alpha(0)+n), \quad n = 0,1,2,--$$

$$t - channel poles \qquad t = "$$

$$u - channel poles \qquad u = "$$

$$duality between all 3-channels$$

$$max spin @ m^2 = 4(-\alpha(0)+n) \qquad is J = 2n$$

Varias granalitation Vineri mo mobel lebon origan?-oraniv

1969-1970

Those included

- extrand particles other than the lightest scalar

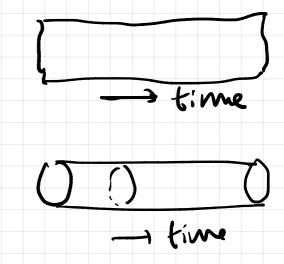
4 theory of 2things

John Dosillan bring the 1914 + remail ofel

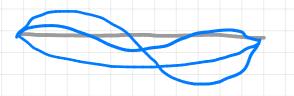
Ly Veneziamo Q Vivaroro + Shapito models (and their aprenditations can be (re) interpreted in terms of a theory where elementary particles are replaced by v. brating relativistic string

OBM IKIND

bad string



speatrum:



quantited Shotuntions of a relativistic strings

interactions:

Fol example

3-point had throwell particle vertice

an

3 opm-thing veitex

Of time

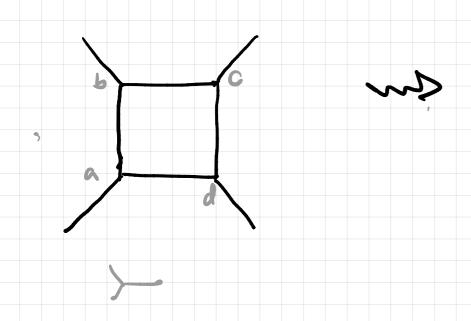
3 dox 11-string

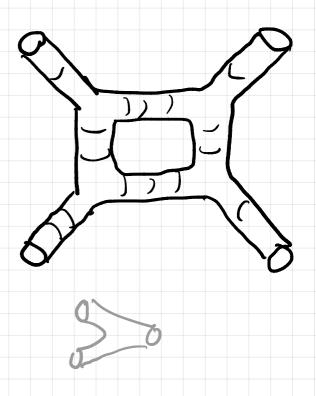
This gives a heuristic justification for the various york properties

duality.



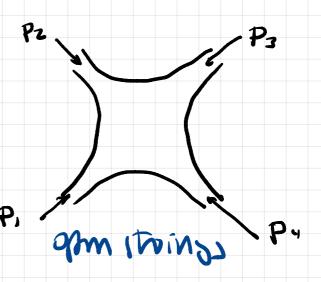
high energo behavious





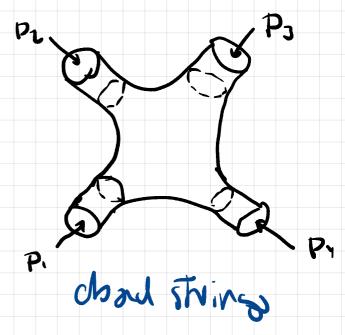
Veneziamo

A(s,t):



drightl-oranil

A(s,t,u):



Problems

pre dicted marshor partidos

Spin 1 Venetiano model

Spin 2 Virano - Shapiro (done thring)

* required more space-time dimensions

Venetians make of boxons $\Rightarrow D = QC$ Parnord-Neveau-Schwart

model of boxons & firming (30)

D=10

tagiment to estimate unt the complitude est manifest

Dual 100 nanu model, abandoned in the 70's in favour of QCD

QCD solves UV differently

Gravity and the string scale Veneziano & Vivaroio-Shapiro amplitudo depend on two parameters: d(0) k d' dimension hu! original îdra în dual resonance models a'~1(GeV)-2 (moder physics erry o scale) - a(0) = massof lightest scrlaw = mi However: the fact that all closed strings constain a massless spoin 2 particle suggested the idea that purhaps the theory strings was a thougof mavity as long as 2'~(10'9 GeV)-2'

John to a company (b other freeze of (quantum) gravity (b other thory of (quantum) quavity) (b other theory of (quantum) quavity)

$$S_{\text{pro-sibpt}} = -\int d^{\nu}x \sqrt{g} \left(\frac{1}{16\pi G_{1}} R + \frac{1}{2} 2^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi \right)$$

$$S_{\text{timit}} = -\int d^{\nu}x \sqrt{g} \left(\frac{1}{16\pi G_{1}} R + \frac{1}{2} 2^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi \right)$$

$$S_{\text{timit}} = -\int d^{\nu}x \sqrt{g} \left(\frac{1}{16\pi G_{1}} R + \frac{1}{2} 2^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi \right)$$

$$S_{\text{timit}} = -\int d^{\nu}x \sqrt{g} \left(\frac{1}{16\pi G_{1}} R + \frac{1}{2} 2^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi \right)$$

the level Einstein gravity + scalar theory.

Chapter (2) - classical theory of strings Next: