STRING THEORY I

Lecture 2

Xenia de la Ossa

Chapter 2 Classical Mativistic String
2.1 Classical) relativistic point particle
2. 2 Classical relativistic string: Action principle 2.3
12.1 Classical relativistic point particle

Action for a relativistic powtide of mass m moving in d - dim space time M

$$
S[\gamma]=-m \int_{\gamma} d s
$$

Treat this as a " $\mathrm{O}+1$ " dimensional field thes/n with

- $\overline{-}$ - local time parameter on the world line
- γ comndeved as a curve embedded in $\mu(\gamma \subset \mu)$ has coordinates $X^{M}(\tau)$, the world him fields
ic $\quad \gamma: \mathbb{R} \longrightarrow M$

$$
\tau \longmapsto X^{\mu}(\tau)
$$

In turn of these

$$
S\left[x^{m}(\tau)\right]=-m \int_{\tau_{i}}^{\tau_{f}} \sqrt{-g_{m \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d t}} d \bar{\tau}=-m \int_{\tau_{i}}^{\tau_{f}} d \tau \sqrt{-n}
$$

Eulor-Lagranje eqs \Rightarrow classical motion of the point particle is along geodesics.

Symmetries of the action:

- The isometry group of M caves inuavinat the line element If $g_{\mu \nu}=\eta_{\mu \nu}$ (flat Minksoskimetwio) \Rightarrow space time Poincare invariance $x^{m}(\tau) \rightarrow \Lambda^{\mu} \nu x^{v}(\tau)+b^{m}$ where $\Lambda \in S O(1, d-1), b \in \mathbb{R}^{1, d-1}$ More gmevaly, the space-fime isometry group is realised as internal symmetries of the would-live theory.
- 1-dimenvional reparametvization in uaviance

$$
\begin{gathered}
\tau \longrightarrow \tilde{\tau}\left(\tau_{1}\right) \\
X^{\mu}(\tau) \longrightarrow \tilde{X}^{\mu}(\tilde{\tau})=x^{\mu}(\tau)
\end{gathered}
$$

True because S is a function of $\gamma \subset M$ and we donot cave about the powametritation of γ
This is a gangs symmetry (rechundancus of the descrinton)
S is a yod classical action but
There owe two problens with this action:

- it has a square-rost \Rightarrow difficult to quantize
- what happens if $m=0$?

Consider instead the action

$$
\widetilde{S}=\frac{1}{Q} \int\left(e^{-1} g_{n v} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \bar{U}}-e m^{2}\right) d \tau
$$

where ecru] is an extra field on the world lime (am "einstein" $e: \mathbb{R}_{\tau} \rightarrow \mathbb{R}_{>0}$ on the woseline)

EOM for e ave $e^{2}=-\frac{1}{m^{2}} g_{\mu \nu} \frac{d x^{\mu}}{d t} \frac{d x^{\nu}}{d \tau}$
substituting this back into \tilde{S} we gut S $\therefore \quad \hat{5}$ \& s are classically equivalent.

Symmetries of \tilde{S}

- spacetime issmetries (Poincarí for Minkouski) and $e(c)$ inuaviant
- repowametrizafion of the world line

scalass on $\gamma x^{\mu}(\tau) \longmapsto \tilde{x}^{N}(\tilde{\tau})=x^{\mu}(\tau)$ einbein on $\gamma \quad e(\tau) \mapsto \tilde{e}(\tilde{\tau})=\frac{d \tau}{d \tilde{\sigma}} e(\tau)$
in Ginitrimal change

$$
\tau \longmapsto \sigma-\xi(\tau)
$$

$$
x^{\mu} \mapsto x^{\mu}+\xi \frac{d x^{n}}{d \sigma}
$$

$e \mapsto e+\frac{d}{d t}(\xi e)$
com use reparametrization to gangefix.
$\underline{m \neq 0}:$ set $e(\tau) \equiv \frac{1}{m}$

$$
\widetilde{S}_{\text {fixed }}=\frac{1}{2} m \int_{\gamma}\left(g_{n v} \frac{d x^{M}}{d \tau} \frac{d x^{\nu}}{d \bar{\tau}}-1\right) d \tau
$$

Equations of motion give geoderic equation

$$
\frac{d x^{M}}{d \tau^{2}}+\Gamma_{\alpha \beta}^{M} \frac{d x^{N}}{d \bar{\tau}} \frac{d x^{\beta}}{d \tau}=0
$$

\& worm the vielbin equation of motion
$\operatorname{gn} \nu \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}+l=0 \Rightarrow \frac{d x^{\mu}}{d \tau}$ is the TL 4-velocity with $\bar{i}=$ proper fire (Tl gro desic)
$\underline{m=0}$: com ganges fix $e=1$ and we recover the grodesic equation together with $g_{n \nu} \frac{d x^{\mu}}{d \bar{\tau}} \frac{d x^{\nu}}{d \bar{\tau}}=0 \Rightarrow$ null geodesic

- \tilde{S} is a good starting point for quantization
- Could add interactions build up Feynman diagrams in a first-quantized theory.
2.1 Clasnical relativistic string

Geveralite to a string which sweeps out a ir targat two dimmional worlsheet Σ in rpace-fime M

Nambn-Goto

Introduce the worldineet parameters (τ, σ) and (Treat this as] a "I+1"dimansional field theory with fields

$$
X^{\mu}: \sum_{(\sigma, \sigma)} \longmapsto M^{\mu} \longleftrightarrow X^{\mu}(\sigma, \tau) \text { "target" space }
$$

In cum of then we have:

$$
\begin{aligned}
& S_{N G}\left[x^{m}(\tau, \sigma)\right]=-T \int_{\Sigma}\left[\left(-\partial_{\tau} x \cdot \partial_{\sigma} x\right)\left(\partial_{\sigma} x \cdot \partial_{\sigma} x\right)+\left(\partial_{\partial} x \cdot \partial_{\sigma} x\right)^{2 / 2} d \tau d \sigma \quad \begin{array}{l}
\text { Nambu-Goto } \\
\text { action }
\end{array}\right.
\end{aligned}
$$

where $u \cdot v=g_{u \nu} u^{n} V^{v}$ for space time vectors
dastical motion of the string abiny
Enler-lagrange eqs \Rightarrow minimal area surfaces
What is T ? T inteopreted as string tenvion
S is dimenrionless be mass of the itwing ow unit lnggth
To "see" this set $X^{0}=\tau, \quad \partial_{\tau} X^{\mu \neq 0}=0 \quad g_{0}=0 \quad \mu \neq 0$
$\Rightarrow \quad$ static \Rightarrow tring in static geometros

$$
\begin{aligned}
& S=-T \int_{\Sigma} \sqrt{\partial_{\sigma} x \cdot \partial_{\sigma} x} d \sigma d \bar{\tau}=-T \int_{\tau}(\text { stringlength }) d \tau \\
& \stackrel{O T O H}{=} \int_{\sigma}^{2}\left(\text { raratic evergy-notmitial energr } Y_{0}^{\tau} d \tau\right. \\
& \frac{1}{a} \partial_{t} x^{i} a_{i j} x^{i} \text { notential enewro } \sim T \times \text { emgth }
\end{aligned}
$$

Lectuve mts bo D.Tonng (recommended !) quailable web

Nemanks:
(1) One com seethis als hy comidwing the non-relativiltic limit (se BeckertBeckew+Schwawz exercixe 2.7 with soletion!]
(2) $T=\frac{1}{2 \pi \alpha^{\prime}}$
© (anivasal) legge sbop pavameto
see K Stelle hepth 1203.4689 sect 2.2 .
$\left[\alpha^{\prime}\right]=$ mass $^{-2}$
$M_{s}=\left(\alpha^{\prime}\right)^{-1 / 2}$ sting mass scale
$l_{s}=2 \pi \sqrt{\alpha^{\prime}}$ stwing lensth scale

Symmetries of the NG-action

- The irometros group of M reaves invaviment the arc element If $g_{\mu \nu}=\eta_{\mu \nu}$ (flat Minksurkimetwis) \Rightarrow spacetime Poincavć invariance $x^{m}(\tau, \sigma) \rightarrow \Lambda^{\mu} \nu x^{\nu}(\tau, \sigma)+b^{\mu}$, where $\left.\Lambda \in \operatorname{soll}, d-1\right), b \in \mathbb{R}^{1, d-1}$ more groevaly, the space-time isometry group is realised as internal symmetries of the would-live theory
- 2-dimenvional repawamevization invariance

$$
(\tau, \sigma) \longrightarrow(\tilde{\tau}(\tau, \sigma), \tilde{\sigma}(\sigma, \sigma))
$$

Worldsheet icalors $\rightarrow X^{\mu}(\sigma, \sigma) \rightarrow \tilde{X}^{m}(\tilde{\tau}, \widetilde{\sigma})=X^{m}(\tau, \sigma)$
True beaux S is a function of $\Sigma \subset M$ and we donot cave about the powametritation of Σ R epowametritation are a gangs rommetry
S gives a nice dannical theory but not clear how to quantize

The Bolyakov action: consider

$$
\begin{array}{r}
S_{p}\left[\gamma_{a b}, X^{\mu}\right]=-\frac{T}{2} \int_{\Sigma} d \sigma d \sigma \sqrt{-\gamma} \gamma^{a b} \frac{d X^{\mu}}{d \xi^{a}} \frac{d X^{\nu}}{d \xi^{b}} g_{\mu \nu} \\
=G_{a b}-\xi^{\text {induad manic in } \Sigma \in(\sigma, \sigma)}
\end{array}
$$

where we have introduced now fields on Σ
$\gamma_{a b}=$ lorentzian world-sheet metric (anxiliars field)

$$
\gamma=\operatorname{det}\left(\gamma_{a b}\right)
$$

One can piorethat, solving EOM Sol the Woredsheel metic $\gamma_{a b}$ and then arsing this in S_{p} ore gets that s_{p} e $S_{N O}$ owe classically equivalent.

Symmetries of the Polyakos action
ws ampetive space time ipometrivs
$\rightarrow \rightarrow$ mpobative (Poincaví inuaviance when M - Minkouski) rominety and γ dses mot tuansform

- Word shect reparametritation $\xi^{a} \longmapsto \tilde{\xi}^{a}(\xi)$

$$
\begin{aligned}
& \gamma_{a b}(\xi) \longmapsto \tilde{\gamma}_{a b}(\tilde{\xi})-\gamma_{c d}(\xi) \frac{\partial \xi^{c}}{\partial \xi^{a}} \frac{\partial \xi^{d}}{\partial \xi^{b}} \\
& x^{m}(\xi) \mapsto \tilde{x}^{m}(\tilde{\xi})=x^{M}(\xi) \quad \text { Ws sca }
\end{aligned}
$$

b
spevial. Werg inuaviance ie escal scale (Vanifoumations of the adim metric on Σ

- $\gamma_{a b} \longmapsto e^{2 \omega(0, \sigma)} \gamma_{a b}, \quad X^{n}$ invaviant
[$\left.\sqrt{|\gamma|} \mapsto e^{2 \omega} \sqrt{\gamma} ; \gamma^{a b} \mapsto e^{-2 \omega} \gamma^{c b}\right]$
Werb inuariance is also a gange rommetry
$(p+1)$-enturted object $\left\{\gamma^{\alpha} \sqrt{|\gamma|} \rightarrow e^{-10} \gamma^{a b} e^{(p+1) \omega} \sqrt{|\gamma|}\right.$ Bed $\gamma_{\text {metic }}$ on WV

Aemauk on dimenvional amalyris:
We have a mtion of emnsth scales a units in both the WS \sum and space-time M

Can om e add terms to action which ave and compatible with power sunning renomalizabitits

- consistent with the sgmmatris of the action.
M = Minkowski space, no the heeds
* $S_{1}=\lambda_{1} \int_{\Sigma} \underbrace{\sqrt{-\gamma} d \tau d \sigma}$ vs sumplogical constant terns on Σ nt Wen invariant inshbistant EOM (BBS) $\Rightarrow \lambda_{1}=0$

$$
\alpha^{\prime}=\alpha+\text { hat al devin. }
$$

Integromed is (locally) a total derivative
\Rightarrow does mt affect the classical equations of motion $S_{H E}$ is topological Cussed Jingo $S_{H E}=\lambda \mathbb{K}(\Sigma)$)

Ignore for mo buts it is an important term in string perturbation theory.

Gauge fixing the Polyaks action
chron a csnvenimt gauge to simplify the action
repancumetritations: $\gamma_{a b} \rightarrow e^{2 \omega(0, \sigma)} \eta_{a b}$ conformal gauge $\begin{aligned} & 3 \text { index } \\ & \text { digress a merton }\end{aligned} \eta=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
Wert: $\quad e^{2 \omega(\sigma, \gamma)} \eta_{a b} \rightarrow \eta_{a b} \quad$ unit gauge
(Vas has 3 in dependent components. Using the com ssimal gauge leaves only ore. Finally, using a Weyl toms bumation one can gangs away the remaining degree of Weeds)
Remark: locally one can prove that one can always choose this gauge tab = nab.
Howeuw we do mt know if this can be done gbbally on Σ !
There ore in fact topological ositructions which ave better undervitood in Euclidean signature. To deal with brention signatures one bes a "wide rotation" to Euclidean signature

Polyaks action in confrumal gange, $M=$ Minksuski

$$
S_{\rho}^{c G}\left[X^{\mu}\right]=-\frac{T}{Q} \int d \tau d \sigma\left(-\partial_{\tau} X \cdot \partial_{\sigma} X+\partial_{\sigma} X \cdot \partial_{\sigma} X\right)
$$

\Rightarrow thov of D massless scalar hields in flat ($1+1$ (1)-dim rpace (though on tarm with the wrong rign)
We als have the equation of n stion of the WS metrit

$$
\frac{\delta S_{p}}{\delta \gamma^{a b}}=0
$$

The a-dim energy momentum tensor is given by

$$
T_{a b}:=-\frac{2}{T} \frac{1}{\sqrt{-\gamma}} \frac{\delta S_{e}}{\delta 0^{a b}}=0
$$

In cantronod game

$$
T_{a b}=\partial_{a} X \cdot \partial_{b} X-\frac{1}{2} \gamma_{a b} \gamma^{c d} \partial_{c} X \cdot \partial_{d} X
$$

core cam use this in so to get SNG lo show that these action give classicallo equiv. theories)

Components of Jab:

$$
\begin{aligned}
& T_{\tau \sigma}=\frac{1}{2} \partial_{\sigma} X \cdot \partial_{\tau} X+\frac{1}{2} \partial_{\sigma} X \cdot \partial_{\sigma} X \\
& T_{\sigma \sigma}=\partial_{\tau} X \cdot \partial_{\sigma} X \\
& T_{\sigma \sigma}=\frac{1}{2} \partial_{\tau} X \cdot \partial_{\sigma} X+\frac{1}{2} \partial_{\sigma} X \cdot \partial_{\sigma} X
\end{aligned}
$$

$$
\Rightarrow \quad \gamma^{a b} T_{a b}=T_{\sigma \sigma}-T_{\sigma c}=0
$$

this is due to hey l invariance
ic T is traceless identically
\Rightarrow only two romstavints to impose
One can low that innrossing the constraints ore obtains the Nambu-Goto action (see eg GSW set 2.1.3)

Gauge fixing the Nambu-Goto action
Ore can (lux resow memetvisations to fix the Nambu-Goto action to the conssumal gave
The induced metric G ab on \sum (by the fact that $\Sigma \subset M$) is

$$
\left.\begin{array}{rl}
G_{a s} & =\partial_{a} X \cdot \partial_{b} X \\
S_{N G}=-T \int \sqrt{-G} d \tau d \sigma & =-T \int\left[-\left(\partial_{\sigma} X \cdot \partial_{\sigma} X\right)\left(\partial_{\sigma} X \cdot \partial_{\sigma} X\right)-\left(\partial_{\sigma} X \cdot \partial_{\sigma} X\right)^{2}\right]^{1 / 2} d \tau d \sigma \\
\text { Wecan fix: } \quad G_{\sigma \sigma} & =\partial_{\tau} X \cdot \partial_{\sigma} X=0 \\
G \tau \tau+G \sigma \sigma & =\partial_{\tau} X \cdot \partial_{\sigma} X+\partial_{\sigma} X \cdot \partial_{\sigma} X=0
\end{array}\right\} \begin{aligned}
& \text { conformal } \\
& \text { gangs }
\end{aligned}
$$

vase these constraints in SNG

$$
\begin{aligned}
S_{N G} & =-T \int\left[-\frac{1}{2} 2\left(\partial_{\sigma} x \cdot \partial_{\sigma} x\right)\left(\frac{1}{2} \cdot \cdot 2\left(\partial_{\sigma} x \cdot \partial_{\sigma} x\right)-\left(\partial_{\sigma} x \cdot \partial_{\sigma} x\right)^{2}\right]^{1 / 2} d \vec{\sigma} d \sigma\right. \\
& =-T \int\left[-\frac{1}{4}\left(\partial_{\sigma} x \cdot \partial_{T} x-\partial_{\sigma} x \cdot \partial_{\sigma} x\right)\left(\partial_{\sigma} x \cdot \partial_{\sigma} X-\partial_{\sigma} x \cdot \partial_{\sigma} x\right)\right]^{1 / 2} d \sigma d \sigma
\end{aligned}
$$

$$
\Rightarrow S_{N G}=-\frac{T}{2} \int\left(-\partial_{\tau} x \partial_{\tau} X+\partial_{\sigma} x \partial_{\sigma} X\right) d \sigma d \sigma
$$

- dassically equivalent to Polyakov.
- PS 1 : morc on SNG

Next

Chapter 2 Classical relativistic string
2.1 Classical) relativistic point particle
2.2 Classical relativistic string \rightarrow Sing. Sp l symmetries
2.3 General danial solution

