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Lecture 13: The Ising Model (I) — Definition and
Applications
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Lattice models

A big thing in SM is models on networks and lattices.

Such models have a variable at each site of some sort of networks
(e.g., a regular grid) and a Hamiltonian or evolution law for each
variable.

Ising model has been used for many physical systems, including:
magnetism, binary alloys, and liquid-gas transition.

o It is the most extensively studied lattice model in physics.

o Useful for lots of things (see preview Sethna p. 217).

Simple system at the micro-level to study behaviour of large systems

Work horse of statistical mechanics that also drove the development
of renormalisation group theory (based on the observation that at
coarser levels, the structure of e.g. the Ising model reproduces itself).
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Definition of the Ising model(s)

@ A network (e.g., a lattice) of N sites ¢ with a single 2-state DOF
s; € {—1,1} on each site:

e Hamiltonian is H = — Zij Jijsisj — hzi Si
o (J;;) is the coupling matrix:
e J;; = 0: sites ¢ and j are not interacting;

e J;; > 0: interaction is ferromagnetic;
e J;; < 0: interaction is anti-ferromagnetic.

o Nearest neighbour interaction (only)

Jij = J = const., if i and j are nearest neighbours
0, otherwise

=H= Z(z]} JSiSj — hzl Si,
where (ij) means that ¢ and j are nearest neighbours.
e Example: Ising model on a 2D lattice (next page)
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Example: 2D Lattice

Figure: 1= +1 = light, /= —1 = dark

@ 4 centre squares have 4 nearest neighbours each;
@ Non-corner edge ones have 3, and corner ones have 2.

@ In finite systems, one can use periodic BCs so every square has 4
nearest neighbours.
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@ Original use of Ising model.

@ Each s; is called a spin, A is the external field, and M := ZZ s; is
the magnetization.
e This is where ferromagnetic (J;; > 0) and antiferromagnetic
(Jij < 0) terminology comes from.
@ Energy J;js;5; of 2 neighbouring spins is
o —J,; if the spins are parallel (both +1 or both —1)
e +J;; if they are antiparallel (one +1 and one —1).

Andreas Miinch (Mathematical Institute) Statistical Mechanics 2020/21 HT 2021 219 /255



Magnetism (2)

@ Consider the nearest neighbour coupling matrix with

Jij = J, nearest neighbours
0, else

e J > 0 favours parallel spins and these will mostly point in one direction
[ferromagnetic phase];

e J < 0 favours anti-parallel spins and these will mostly orient
themselves in a checkerboard pattern [anti-ferromagnetic phase];

o At high temperatures (for both signs of J), we expect entropy to
dominate: spins fluctuate wildly in a paramagnetic phase
and the magnetization per spin m(T) = % ~ 0.
e There is a phase transition at a critical temperature T, = 4.5.
1 T T T T T T 7
S Ising magnetization in a 3D cubic
£ | Ferromagnetic \ Paramagnetic] lattice Ising model.
0 | | \ (Sethna 2020)
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Binary Alloys

e Consider square lattice of atoms of type A and B (A = +1,B = —1)
of numbers N4 and Np (N := N4y + Np).

@ Interaction energies (i.e., bond strengths) are E44, Epp, Eap, and
the numbers of such bonds are N44, Ngg, Nag.

o = H=—-FsaNaa — EppNpp — EapNas.

o This is the nearest-neighbour Ising model with
J = %(EAA + EBB — QEAB) and h = EAA — EBB
(see footnote 8 on (Sethna, pg.165)).

@ A phase transition occurs from a high-temperature state (where the
species freely interchange their positions) to a low-temperature stage
(species are organised in an 'antiferromagnetic’ i.e. 'checkerboard’
style). For brass (1:1 Copper:Zinc) the transition is at 733°C.

@ Can generalize by

e including atomic relaxation effects

e incorporating thermal fluctuations into H to make it a free energy
(see footnote 9 on (Sethna, pg. 165)),

e or by considering more elaborate coupling such as large-range
interactions.
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Liquids, Gases and the critical point

@ Ising model is also used to study liquid-gas transition.
e In this lattice gas interpretation, s; = +1 for sites of atoms and
s; = —1 for sites w/o atoms.
e The gas has mostly s; = —1 spins (negative 'magnetization’) and the
liquid phase has mostly s; = +1.
@ Near gas phase, seems ok; but in "liquid" phase, it is really more like
a crystal, so it is not a good model there.

@ But Ising model is good for probing behaviour near a critical point.
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The critical point

Critical

onim

Pressure P

Critical
point
Temperature

External field H

Triple Gas
point

Temperature T
P-T Phase diagram aka bifurcation diagram
for a typical material (Sethna 2020)

P-T phase diagram for the Ising model
(Sethna 2020)

@ (1) solid/liquid boundary amounts to a change in symmetry and cannot end
@ (2) gas/liquid boundary typically does end
(One can go continuously from liquid phase to gas phase by increasing

pressure above P, increasing temp. above T, then lowering P again.)

@ The behaviour near the critical points in these two situations (realistic one
above and model one below) is remarkably similar; this leads to the notion
of universality [See chapter 12 of Sethna]. In many ways the behaviour at
the liquid-gas critical point is described exactly by the 3D Ising model.
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Lecture 14: The Ising Model (1) — Analytic and
computational solutions

Andreas Miinch (Mathematical Institute) Statistical Mechanics 2020/21 HT 2021 224 /255



How to solve the Ising Model?

© 1D case can be solved analytically.

@ Be very clever: Onsager solved a 2D version (very technical) for
square lattices; 3D is open even in square lattice.
(For a treatment of the 2D version, see for example:
M. L. Glasser (Am. J. Phys. 38, 1033 (1970)).)

© Monte Carlo computational techniques.
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Ising 1D-Model — Transfer-Matrix Method

Ising Model with periodic boundary conditions

= —JZ&SHl - = Z (si + Si41) m(o) = %Z‘S’

Transfer-Matrix Notatlon

1 . 0 .
Si = (0) If S; = +1, Si = <1> If S; = —1,

3 , (PU+B) =8I
T(si;si41) = exp [BJ3i5i+1 +5B(si+ 5i+1)] =5, ( o—BJ 66(13)) 1

=7
Partition function:

N
ZB) =Y e =N " J[T(si:5i1)

gEY s1==*x1 sy=*x1:=1

= > > SIT(S.8HT ... SNTS:
s1==+1 sy==1

= Z SfTNsl = trace TV :Af—l—Aﬁ[
s1==%1
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Ising 1D-Model — Transfer-Matrix Method (2)

Eigenvalues:

Ap =e <cosh(ﬁB) + \/sinh?(8B) + e4ﬁj>

Average magnetisation

1 0In(Z) Oln(Ay) sinh(5B)

Eﬂ73(m) = — —
N 3B 8B \/Slnh2(BB) + 6_4/8']

for N — oo.
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How to solve the Ising Model?

© 1D case can be solved analytically.

@ Be very clever: Onsager solved a 2D version (very technical) for
square lattices; 3D is open even in square lattice.
(For a treatment of the 2D version, see for example:
M. L. Glasser (Am. J. Phys. 38, 1033 (1970)).)

© Monte Carlo computational techniques.
Some material courtesy Dirk Peschka

‘ Homework: Read section 8.2 in Sethna. ‘
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Numerical Approach

How to compute the average

of a random variable f with the probability distribution

o) — ER(=BH ()
Z
numerically?

Problem: Too many microstates!
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Numerics — Monte-Carlo-Method

Ansatz: Replace

S fowle) = S flow)

with the Markow chain o,, transition rate py n—1 = P(on|on—1).

Requirement: The transition rate must lead to the distribution
plo) = Z~" exp(~BH).
How to: Metropolis Algorithm?
pv.v-1(0) = min (1,exp(~BAH(0)))  AH(o) = H(on) — H(on-1)

Notice: Subsequently, the realisation f(o,,) will be called a measurement.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller und E. Teller: Equation of State Calculations by Fast Computing
Machines.(doi:10.1063/1.1699114)
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The Monte-Carlo Method: The heat bath algorithm

2D-Case — 1D very similar.
@ Pick a site i = (x,y) at random
@ Check how many neighbour spins are pointing up:

mi= Y s;=4,2,0,-2,—4
(i)
for 4,3,2,1,0 neighbours up, respectively.
o Calculate £y = —Jm; — H and E_ = Jm; + H, the energy for the
spin i to be +1 or —1 given its current environment.
@ Set spin i up with probability  (reminder: Here and earlier, = 1/k5T)

exp (—BE;)
exp (—BEs) + exp (—BE-)
and down with probability.

exp (=BE-)
exp (—BE4) +exp (—BE_)

Andreas Miinch (Mathematical Institute) Statistical Mechanics 2020/21 HT 2021 231 /255



Numerics 1D — Code

% isingld.m % Function: mcld.m
nx = 50; 4N % Markow step P(n+1,n)

% 1D linear mesh, length nx
monte_carlo_steps = 100; % N_mc
monte_carlo_substeps = 100; function s=mci1d(s,j,B,beta,nx )
beta = 0.5; % 1/(k*T) for x=1:nx
j = 1.0; % Coupling parameter
B = 0.1; % external field

% neighbouring positions

s=2*round(rand (nx, 1))-1; xml = mod(x-2+nx,nx)+1;
for ni=1:monte_carlo_steps xpl = mod(x,nx)+1;

for n2=1:monte_carlo_substeps
s=mcld(s,j,B,beta,nx );

end

m(n1)=mean(s(:)); % neighbouring spins
end s1=s(xml ) s2=s(xpl )
plot(m)

% heat bath algorithm for p = exp(-betaxH):

% set s=+1 if rand < w=exp(bA)/(exp(bA)+exp(-bA))
% otherwise s=-1

A=j*(s1+s2 )+B;

w=exp(beta*A)/ (exp(betaxA)+exp(-beta*A));

s(x )=(rand(1)<w)*2-1;
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Numerics 2D — Code

% ising2d.m % Function: mc2d.m
nx = 50; %N % Markow Step P(n+1,n)
ny = 50; % 2D mesh size (nx) x (ny)
monte_carlo_steps = 100; % N_mc
monte_carlo_substeps = 100; function s=mc2d(s,j,B,beta,nx,ny)
beta = 0.5; % 1/(k*T) for x=1:nx
J = 1.0; % Coupling parameter for y=1:ny
B = 0.1; % external field
% neighbouring positions

s=2*round(rand (nx,ny))-1; xml = mod(x-2+nx,nx)+1;
for ni=1:monte_carlo_steps xpl = mod(x,nx)+1;

for n2=1:monte_carlo_substeps yml = mod(y-2+ny,ny)+1;

s=mc2d(s, j,B,beta,nx,ny); ypl = mod(y,ny)+1
end
m(n1)=mean(s(:)); % neighbouring spins
end sl=s(xml,y ); s2=s(xpl,y );
plot(m) s3=s(x ,yml); s4=s(x ,ypl);

% heat bath algorithm for p = exp(-betaxH):

% set s=+1 if rand < w=exp(bA)/(exp(bA)+exp(-bA))
% otherwise s=-1

A=j*(s1+s2+s3+s4) +B;

w=exp(beta*A)/ (exp(betaxA)+exp(-beta*A));
s(x,y)=(rand(1)<w)*2-1;

end
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Numerics 1D — Typical micro states

Typical states with 5 =0.0,5=0.1,...,6=1.9,6=2.0
(8 =1/(ksT))
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Numerics 2D — Typical micro states

Typical states with 3 = 0.0,...,3 = 0.8
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Numerics 1D — The magnetisation as
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Numerics 1D — dependence on B and (8

E(m)

sinh(B8B)

\/sinh2(BB) + e—48J

Eg,p(m) =
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Numerics 2D — The magnetisation as a random variable.

Andreas Miinch (Mathematical Institute) Statistical Mechanics 2020/21 HT 2021 238 /255



Phase Diagram

B

crit

E(m)>0 T
E(m)<0 T

B =1/(kT)
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Lecture 15: Phase Transitions
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lllustration of abrupt phase transitions

@ Most phase transitions are abrupt; at the transition, the system has
discontinuities in most physical properties

@ Also, in most cases, these transitions happen with no indication that
a change is about to occur: Pure water turns directly to ice- not to
slush first and then to ice.

HT 2021 241 /255
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lllustration of abrupt phase transitions (continued)

@ However, boiling away a pan of water is not abrupt- this is because
one is not controlling the temperature directly but rather is adding
energy at a constant rate.

e Consider insulated, flexible container of H>O at fixed pressure and we
slowly add energy to it.

o When system first reaches liquid-gas transition, a small bubble of gas
forms at the top; the bubble grows gradually, inflating and filling the
container over a range of energies.

e The transition from liquid to gas at fixed energy passes through an
intermediate two-phase region; the temperature of the system stays
constant until the last liquid is gone.

@ Alternatively, one can see a two-phase region by fixing the
temperature and varying (e.g. increasing) the volume.
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Phase Diagram

N1 o

o| 2 / %
=1 . O
~N— .J y N

g Two—
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S mixture

[ \

Volume V

(Sethna 2020 — All figures in this lecture from Sethna’s book)
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Gibbs free energy

To avoid two-phase mixtures, let us fix (control) the pressure and
temperature of the system. Such systems are well described by the
Gibbs free energy G,

G(T,P,N)=FE —TS + PV = uN,

using, for the second equality, Euler relation £ =TS — PV 4+ uN,
(see exercise 6.9 in Sethna).

A transition for such a system occurs spontaneously if it decreases the
total Gibbs G free energy.

System can lower G by moving material to the phase with the lower
chemical potential. = state with lower chemical potential is favoured,
and the phase transition occurs when pjiq = figas.

Using thermodynamic shorthand dFE = TdS — PdV + udN

gives dG' = —SdT' + VdP + pdN.

Varying temperature at fixed pressure and number of particles gives

oG
aripv=-5 (%
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Latent heat

N<

g\")

e,

NSy,

2N \/(,’(_7

QU N,
N

G(T,P,N)

Liquiq

@ The difference in the slopes of the 2 lines is given by the difference in
entropies between the liquid and the gas (see (x)).

@ The thermodynamic definition of entropy says AS = % that the entropy

difference is
LN

T,’
where L is the latent heat per particle, and T, the transition temperature.

AS =

@ Abrupt phase transitions have jumps in the first derivatives of their free
energies.
e Discuss old terminology: first vs. second order transition.
(Footnote 7 in Sethna.)
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Maxwell Construction

Metastable
vapor

~
Liquid

\

T
~

Metastable
quy/f—‘
\\\\
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Ny
’a[,/e \
Q
2

Figure: Pressure vs. volume as we expand/compress material at constant

temperature. The dots represent points where pressures and chemical potentials
are equal and gas and liquid coexist.

@ Liquid (gas) turns metastable as V' increases (decreases) when the pressure
reaches the vapour pressure P, for that volume.

@ Metastable states are well defined only near vapor pressure, where nucleation
is slow and lifetime of the state is long (but finite!)

@ Dashed line in (a) shows a completely unstable region: a mixture of
molecules prepared uniformly in space in this region will spontaneously
separate into (a finely inter-tangled network of) the two phases.
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Questions

=
Pl &
— Metastable
P vapor
7
- 5
2 /g
3 /S Gas
2 /S
SE
23
\%4

@ What is the vapour pressure P,?

(Answer: The pressure at which the liquid and the gas (vapour) phase
coexist i.e. are in equilibrium with each other.)

@ How can we find the vapour pressure P, at which liquid and gas
coexist at this temperature?
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Coexistence line

@ Coexistence line occurs when Gibbs free energies agree: Giiq = Ggas;

dG = —=SdT + VdP + udN, so at constant temperature and number of
molecules we get

AG = / V(P)dP
C

Prin Punst
— [T [T
Piq Prin
——
<0 >0

N—— S—— =~ P

>

Prax Pgas
Punst Prax
0

<0

X
SRR
SRR
i
AU 5555
R IIEIS

e N ot oot el
129000900209 Ta %Y ta %Y ta%e e a%a%e !

Pressure Pliquid
@ Note Pjiq = Punst = Pgas at coexistence, but volumes are different! Hence
the path integral is non-zero.

08

2%

@ First 2 terms subtract to give the lower left hatched area and last 2 terms
subtract to give minus the area in the upper right hatched area.

@ — the 2 areas must be equal at the vapor pressure. This is called the
Maxwell equal-area construction.
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Part 2
Nucleation: Critical Droplet Theory
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Nucleation: Critical Droplet Theory

@ On a humid night, as temperature drops, the air can become
supersaturated with water vapour. How does this metastable vapour
turn into drops of dew or tiny water droplets to make up fog or
clouds?

@ The Gibbs free energy (hence chemical potential) difference between
gas and liquid grows as temperature decreases below T,. Estimate:

gg oy =-S5 and AS= I}]:[
= Au= (Ggas]; Gliq) _ Jb(a(Gga(;; Gliq) ‘P,NAT)
_ ASAT (LN)(E) _ LAT
N  \T,/\ N/ T,

@ Supersaturation means Ay > 0, so why doesn't vapour just condense
to liquid (releasing heat) beforehand?

@ The obstacle impeding the formation of droplets is the surface
tension.
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Surface tension

@ Surface tension is given by

o = Gibbs free energy per unit area of interface between liquid and gas

_ Gy — 5(Gu + Gyy)
- A

(See footnote 12 in Sethna section 11.3)

o Gibbs free energy grows as the area A and bulk free energy gain grows
as volume V/, so tiny droplets cost the system more than they gain.
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Energy barrier & Critical droplet radius

@ Consider spherical droplet of radius R; the surface Gibbs free energy
is o A; if the liquid has pjiq particles per unit volume and each particle
provides a free energy gain of Ay = AT then the bulk free energy

Ty
gain is V piiq.
4 LAT
Gdroplet(R) =0A - VpigAp = ATR*c — (37TR3> Pliq T
v
16n6°T "13p’LAT’
sl :
g
i
H R
&) }C
20T /pLAT
R

@ The gas remains a gas until a rare thermal fluctuation pays the critical
energy cost to reach the top of the barrier, making a critical droplet.
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Energy barrier & Critical droplet radius (2)

16n6°T 213p" L’ AT
sl .
&
| R
£ R
&) }C

26T IpLAT \

c
R

@ One finds the critical droplet radius R, and the height of free energy
barrier B by maximizing G(R):

8Gd let LAT
agpe . =8mo R, — 47rp|iq< T, )’I” =0
N 20T, _ 16m0°T7 1
© 7 pigLAT’

307,L% (AT)?
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Nucleation rates

@ The net droplet nucleation rate per volume is
I = (const.) x exp (7=7).
@ Note the following:

o Critical droplet radius R, x ﬁ; if you undercool the gas by a tiny
amount, you need a large droplet to overcome the surface tension.
e Bx (AT)Z The energy barrier for nucleation diverges at T,.
o Critical droplet theory calculates the rare fluctuations that take us
over the energy barrier (Read note 14 in Sethna, section 11.3)

@ The rates we have calculated are for homogenous nucleation, the
rate of forming a new phase in a clean system w/o boundaries.

@ Since nucleation is suppressed very strongly by surface tension, the
system tries to bypass at least part of the free energy barrier; this is
why droplets usually form on grass or your windows rather than
forming in the air and dropping down.
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Coarsening

@ Tiny objects merging into bigger ones (e.g., salad dressing after one stops
shaking, and numerous examples in materials science and geophysics).

@ This can also be seen in abstract situation like the Ising model

Figure: Snapshot of a coarsening system; most features here have a
characteristic length scale of radius R ~ L(t), L(t) =time dependent
length scale of the smallest features.

@ Coarsening involves the smaller features shrinking to zero, leaving only the
larger scales behind.

@ Coarsening is driven by surface tension: the system can lower its free energy
by lowering the interfacial area between different domains.
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