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Preface

These notes accompany the section C course on statistical mechanics, C5.3. The
notes have been revised and updated since those used in 2016 (which in any case
are longer visible on the re-vamped course web page). Some sections are incomplete,
particularly chapter 2 whose material is only included for reference. Comments and
reports of errors would be very welcome.

A. C. Fowler
July 24, 2020
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Chapter 1

Mechanics, probability, diffusion,
chaos

1.1 Classical mechanics

We consider a family of point particles of mass m (all the same, though this is not
necessary). Particle position is denoted by r, particle velocity is v = ṙ, momentum
is p = mv, and then Newton’s second law for an individual particle is

ṗ = F, (1.1)

where F is the force acting on the particle.
Now suppose we have a finite number of particles, indexed by a suffix i. It is

often the case in mechanical systems that additional forces fi, known as forces of
constraint, exist in order to restrict the motion in some way: thus the corresponding
form of Newton’s law is

ṗi = Fi + fi, (1.2)

where Fi is the external force on particle i. An example of such restricted motion
is the simple pendulum, in which the bob of the pendulum is constrained to move
on the arc of a circle (or the surface of a sphere) by means of a tension exerted
along the string or rod connected to the bob. In the absence of friction, it is notable
that this tension does no work, and this observation leads us to the consideration
of systems in which the constraint forces do no work, which, as we will see, allows
us to formulate the equations of motion in terms of generalised coordinates which
automatically accommodate the constraints.

D’Alembert’s principle follows from the assumption that the ‘constraining’ forces
fi allow no work under a virtual displacement δri, meaning that∑

i

fi.δri = 0. (1.3)

A virtual displacement is distinguished from an actual displacement which might
occur under the action of Newton’s law, as it represents an externally imposed dis-
placement. It is as if the particles are represented in their positions by flags on a
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map, and the virtual displacement occurs when the flags are moved by the observer.
Specifically, δri 6= vi δt.

The assumption of zero virtual work by the constraint forces leads to D’Alembert’s
principle: ∑

i

(ṗi − Fi).δri = 0. (1.4)

Note that although this is a consequence of Newton’s second law, it is essentially
equivalent to it, since it applies for any virtual displacement.

1.1.1 Generalised coordinates: Lagrange’s equations

Most generally, cartesian coordinates may not be the most natural set of coordinates
to use. For example, a simple pendulum swinging in three dimensions is most nat-
urally described by spherical polar angle coordinates θ and φ, with the polar radius
r being fixed; use of cartesian coordinates is possible but unwieldy. This observation
leads to the idea of generalised coordinates, which we will denote as q, and generally
we will have r = r(q, t).

Now we wish to derive the form of Newton’s equations in generalised coordinates,
and to do this we repeatedly use the chain rule. Thus we have

vi =
∂ri
∂t

+
∑
k

q̇k
∂ri
∂qk

(1.5)

(note that now v = v(q, q̇, t)), and∑
i

Fi.δri =
∑
k

Qk δqk, Qk =
∑
i

Fi.
∂ri
∂qk

, (1.6)

and also (allowing for different mass of particles)∑
i

ṗi.δri =
∑
i,k

mir̈i.
∂ri
∂qk

δqk. (1.7)

Taking the qj and q̇j derivatives of (1.5) and noting that
∂q̇k
∂qj

=
∂2qk
∂qj∂t

=
∂

∂t
δjk = 0,

we have

∂vi
∂qj

=
∂2ri
∂qj∂t

+
∂

∂qj

∑
k

q̇k
∂ri
∂qk

=
∂2ri
∂qj∂t

+
∑
k

q̇k
∂2ri
∂qj∂qk

=
d

dt

(
∂ri
∂qj

)
,

∂vi
∂q̇j

=
∂ri
∂qj

, (1.8)
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and thus ∑
i

ṗi.δri =
∑
i,k

mir̈i.
∂ri
∂qk

δqk

=
∑
i,k

[
d

dt

(
miṙi.

∂ri
∂qk

)
−miṙi.

d

dt

(
∂ri
∂qk

)]
δqk

=
∑
i,k

[
d

dt

(
mivi.

∂vi
∂q̇k

)
−mivi.

∂vi
∂qk

]
δqk

=
∑
k

[
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

]
δqk, (1.9)

where the kinetic energy T is defined as

T =
∑
i

1
2
miv

2
i . (1.10)

Comparing this with (1.6), we see that D’Alembert’s principle implies that Newton’s
equation generalises to the form (since the generalised coordinates qj are independent)

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj. (1.11)

For the particular common case where the external force field is derived from
a potential V (r, t), which we may also consider to be a function of the generalised
coordinates, V = V (q, t), that is,

Fi = −∇iV, (1.12)

where we write ∇i ≡∇ri , then also

Qj = −∂V
∂qj

, (1.13)

and we obtain Lagrange’s equations:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0, (1.14)

where we have defined the Lagrangian

L = T − V. (1.15)

1.1.2 The principle of least action

A variational principle, sometimes called the principle of least action, also forms the
basis for Lagrange’s equations. Define the action

I =

∫ t2

t1

Ldt, (1.16)
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and suppose that q (= q1 and q2) is specifed at the two endpoints. Hamilton’s
principle states that the trajectory which the generalised coordinates take in moving
from (q1 to q2) is that which causes I to be stationary (and in fact a minimum).

To see this, we form the first variation

δI =

∫ t2

t1

δL dt =

∫ t2

t1

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt, (1.17)

and after integrating by parts and using the boundary conditions, we find that a
stationary value, δI = 0, is only obtained if (1.14) applies.

Hamilton’s principle does not carry any useful physical meaning, in particular
as it involves specification of boundary conditions in time, whereas in reality initial
conditions are appropriate.

1.1.3 Hamilton’s equations

A further very useful variant follows from defining, in an obvious way, the generalised
momenta1

pi =
∂L

∂q̇i
, (1.18)

from which it follows that

ṗi =
∂L

∂qi
. (1.19)

Effectively we change the coordinates from qi, q̇i to qi, pi, and consider the Hamilto-
nian

H =
∑
i

piq̇i − L(qi, q̇i, t); (1.20)

we think of H as a function of qi, pi and t. Under a virtual displacement, the
incremental change of H is

dH =
∑
i

∂H

∂qi
dqi +

∑
i

∂H

∂pi
dpi +

∂H

∂t
dt; (1.21)

equally, we have from (1.20), using (1.18),

dH =
∑
i

q̇i dpi −
∑
i

ṗi dqi −
∂L

∂t
dt; (1.22)

consequently we obtain Hamilton’s equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (1.23)

1A confusion may arise here, as we have used two sets of subscripts, i for particle number, and k
for component of q, but we are going to use the single subscript i to cover both sets. That is, the
i in (1.18) ranges over both particle number and vector components. Sometimes, we can avoid the

ambiguity by writing, for example, pi =
∂L

∂q̇i
, but we shall not be too fussy about this.
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as well as
∂H

∂t
= −∂L

∂t
. (1.24)

Note further that if T (q̇i, qi) is quadratic in q̇i (the usual case) and V is independent
of q̇i, then

H = T + V (1.25)

is simply the energy of the system. In particular, the energy is conserved for au-

tonomous systems, for which
∂H

∂t
= 0, so that trajectories reside on constant energy

surfaces in the (q,p) phase space. Typically these surfaces are diffeomorphic to
spherical surfaces.2

1.1.4 Canonical transformations

The type example of a Hamiltonian system is a (nonlinear) oscillator such as the
equation

ẍ+ V ′(x) = 0, (1.26)

where V is the potential. The energy integral

E = 1
2
ẋ2 + V (x) (1.27)

suggests the definition of the Hamiltonian as

H = 1
2
p2 + V (q), (1.28)

and we can identify x = q, ẋ = p. The equation (1.26) is trivially solvable, since the
first integral (1.27) enables the solution as a quadrature

t = ± 1√
2

∫ x dξ

[E − V (ξ)]1/2
, (1.29)

but this is not very useful: which square root should we select, for example?
When V is convex (V ′′ > 0), the solutions oscillate, and a more natural set of

coordinates other than q and p would be θ and I, which are more or less polar coordi-
nates, and in which θ represents the angle of rotation and I the amplitude, typically
some function of E. This idea underlies the concept of the canonical transformation,
which seeks to find a change of coordinates from q and p to θ and I, such that the
new Hamiltonian H(θ, I) retains the Hamiltonian structure, thus

θ̇ =
∂H

∂I
, İ = −∂H

∂θ
, (1.30)

but such that in fact H = H(I). In that case, θ̇ = ω = H ′(I) and I is constant,
so that in a bounded system, we can interpret θ as an angle, and trajectories are
circles. More generally, if q and p are n-dimensional, the same principle applies, but

2For example, if T is quadratic and positive definite, and V is convex.
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the solutions are the cartesian product of n circles, or n-tori. If the transformation
to a Hamiltonian K(I) can be made, then the system is said to be integrable.

How does one find a canonical transformation that preserves the Hamiltonian
structure? First note that Hamilton’s equations are equivalent to the variational
principle in (1.17), and in view of (1.20), this is equivalent to

δ

{∫ t2

t1

pi dqi −H dt

}
= 0. (1.31)

Now let us define new generalised coordinates θi, Ii by means of a (generating) function
S(q, I), such that

pi =
∂S

∂qi
, θi =

∂S

∂Ii
; (1.32)

it follows that if we define3

H

(
q ,

∂S

∂q

)
= K(I), (1.33)

then
pi dqi −H dt = d[S − θiIi] + Ii dθi −K dt, (1.34)

and therefore in view of (1.31), the Hamiltonian structure is retained for θ and I,
and Hamilton’s equations imply

θ′ = ω =
∂K

∂I
, (1.35)

while I is constant. The variables I, θ are called action-angle variables, and give the
solution of this integrable system.

It seems some magic has occurred somewhere, but in fact all we have done is
to replace one hard problem (solving 2n ordinary differential equations in (1.23)) by
another (solving a first order partial differential equation for a function of 2n variables
in (1.33)). There is not even any guarantee that a solution of (1.33) exists, since the
system may not in fact be integrable.

1.1.5 Perturbation theory

A way to proceed is by perturbation theory. In this, we assume that there is an
unperturbed Hamiltonian system with Hamiltonian H0(I), and that this is perturbed
to

H = H0(I) + εH1(θ, I), (1.36)

where ε� 1, and we then seek a near-identity canonical transformation θ, I→ φ,J
determined through the generating function S = θ.J + . . .. Because θ is a vector
of angles (and thus periodic), we can write H1 as a Fourier series, and S1 can be
explicitly determined. In principle, the procedure can be repeated.

A problem arises when the different components ω0i of the underlying frequency
vector H ′0(I) are resonant, which occurs when m.ω0 = 0 for any vector m with

3We are assuming that H is independent of t, but this assumption can be relaxed.
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Figure 1.1: Standard map section: iterates of (1.37), for K = 0.85. The continuous
sub-horizontal curves represent primitive invariant tori, the island chains are formed
by resonance, and chaotic motion can be seen near the top and bottom of the figure.
Figure courtesy of Mark McGuinness.

integer components. Resonance occurs sparsely but densely (like the distribution of
the rationals in the reals), and the achievement of the celebrated KAM theorem (for
Kolgomorov, Arn’old and Moser) is to show that despite this, most invariant tori are
perturbed under the perturbation. On the other hand, resonance causes the break-up
of tori into discrete chains of invariant loops, in whose vicinity chaotic behaviour can
occur. Generally as ε increases, these chaotic regions take over the phase space.

Figure 1.1 shows an example of the break-up of invariant tori for a map called the
standard map:

θn+1 = θn + In+1,

In+1 = In +K sin θn, (1.37)

here K is a parameter. One might wonder how this map relates to a Hamiltonian
system. For a two degree of freedom near-integrable Hamiltonian, the phase space
is four-dimensional, with two angle variables and two action variables; however, any
given motion conserves the energy, which restricts the motion to a three-dimensional
subspace with only one independent action variable, I say. An invariant torus thus
correpsonds to motion on an actual two-torus (like a doughnut) with two angle vari-
ables θ and φ, and the action variable can be taken as measuring the radius. The
dynamics of the motion can then be understood by selecting a Poincaré section at
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φ = 0 mod 2π, say, and intersections of the trajectory with the section define a
two-dimensional area-preserving Poincaré map on the plane, parameterised by the
essentially polar coordinates I and θ; (1.37) is simply one artificial example of such a
map.

1.2 Probability

Probability concerns the laws of chance and uncertainty, and carries with it an element
of philosophy, lack of understanding of which is one cause of the public’s lack of
understanding of science. As for applied mathematics, the philosophy is easy to
deal with, once one realises that the theory is not reality itself, but only a mirror, a
representation, an image of reality. The statement, there is a 40% probability that
it will rain in Oxford tomorrow, is not in itself very meaningful, although it can be
made so with respect to ensemble predictions. The connection of probability with
reality is through the law of large numbers, but probability theory is an abstraction,
just as a mathematical model is.

Probability deals with a set of events, forming an event space or sample space
E. To each event a ∈ E, we associate a number P (a) ∈ [0, 1], called the probability,
which is additive, i. e., P (a ∪ b) = P (a) + P (b) for distinct events a and b, and∑

E

P (a) = 1, (1.38)

i. e., something happens. A probability of one indicates certainty, and of zero indicates
impossibility. Roughly, we associate the actual value of the probability of a as being
equal to the proportion of times a occurs in a (large) number of trials. More precisely,
this is the law of large numbers, which we come to later. For example, in coin tossing,
excluding the possibility of landing on its side, the event space consist of the two events
h (heads) and t (tails), each of which has a probability of 1

2
, so that in a sequence

of 1,000 trials, we would expect about half to be heads. This expectation is framed
mathematically as a limit, where the number n of trials becomes very large; however,
the likelihood of obtaining exactly 1

2
n successes in n trials is not actually very large

(and indeed tends to zero at large n).
The conditional probability (the probability of A given B, where now A and B

are a possibly overlapping set of events) is defined following common sense as

P (A|B) =
P (A ∩B)

P (B)
, (1.39)

and similarly two sets A and B are independent if

P (A ∩B) = P (A)P (B). (1.40)

We next have the concept of a random variable, simply a variable X which takes
values in E. Typically, we are interested in a succession of trials Xk, k = 1, 2, . . ., and
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then P (Xk = a) = P (a). Often we are interested in the total number of successes,
i. e.,

Sn =
n∑
1

I(Xk), (1.41)

where the indicator function satisfies

I(a) = 1; I(x) = 0, x 6= a. (1.42)

In some sense, we expect
Sn
n
→ P (a) as n→∞, but the limit is a probabilistic limit,

as explained below.
Random variables may be continuous, where a typical sample space would be

Rm, and in this case we define a probability density function f(x), where f(x) dx
is the probability of X being in a neighbourhood of x of volume dx. For discrete
random variables, the probability density is a sum of delta functions, and a typical
sample space is Z, which we use for illustration below. There are various named
distributions, which can be found in any probability text. An important one is the
normal distribution of mean µ and variance σ2, written N(µ, σ2), whose density is

f(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
; (1.43)

more on it below.
The mean of a probability distribution is the average value, or expectation, written

variously as

X̄ = E(X) = µ =

∫
E

xf(x) dx =
∑
E

xP (X = x) (1.44)

for continuous and discrete distributions, respectively. We also define higher mo-
ments4 as

Xn = E(Xn) =

∫
E

xnf(x) dx =
∑
E

xnP (X = x), (1.45)

and the variance is defined as

σ2 = E[(X − X̄)2] = E(X2)− µ2; (1.46)

it is a measure of the spread of the distribution about its mean, and its square root
σ is called the standard deviation. Again, looking ahead, we can expect the way in

which the average number of successes
Sn
n

tends to µ to involve a non-zero standard

deviation which, however, tends to zero at large n.
The moment generating function is defined as

G(s) = E(sX), (1.47)

4By analogy with the moment exerted about the origin by a beam of density f(x).
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and is used mostly for discrete distributions, where (over Z), it is just

G(s) =
∑
Z

pns
n, (1.48)

where pn = P (X = n). As an example, consider the random walk on the integers (of
which more later), where at each step j, there is a probability of 1

2
of stepping left or

right. Defining X as position and pn,j = P (X = n at step j), we have the difference
equation

pn,j = 1
2
pn−1,j−1 + 1

2
pn+1,j−1, (1.49)

from which we derive the difference equation for the generating functions Gj(s) =∑
Z pn,js

n,

Gj = 1
2

(
s+

1

s

)
Gj−1, (1.50)

with solution

Gj(s) =

{
1
2

(
s+

1

s

)}j
, (1.51)

assuming a start at the origin.
For continuous distributions, it is more common to use the characteristic function,

defined by

φ(t) = E(eitX) =

∫
E

f(x)eitx dx, (1.52)

which is just the Fourier transform of f (and so φ determines f uniquely through the
inverse transform). As an example, the normal distribution N(0, 1) has characteristic
function exp(−1

2
t2). Note that

φ(t) = 1 + iµt− 1
2
(σ2 + µ2)t2 + . . . . (1.53)

Now suppose a sequence of n trials are carried out, generating a sequence {Xk}
whose vales are independent and drawn from a distribution with mean µ and variance
σ2, and let Sn =

∑n
1 Xi. We define

Un =
Sn − nµ
σ
√
n

, Y =
X − µ
σ

, (1.54)

so that φY = 1− 1
2
t2 . . .. The independence of the trials then shows that

φUn(t) =

[
φY

(
t√
n

)]n
, (1.55)

and from this it follows that φUn → e−
1
2
t2 as n→∞. It follows that

Sn − nµ
σ
√
n

D
→ N(0, 1) as n→∞, (1.56)

10



meaning the distribution of Sn tends to a normal distribution5 N(µn, σ2n), indepen-
dently of the distribution of X. This is the central limit theorem, of enormous use in
statistics. It encompasses the law of large numbers, which states that

Sn
n

D
→ µ (or δ(x− µ)) as n→∞, (1.57)

and this is the underlying point connecting reality to theory, as it provides an exper-
imental tool for estimating probability.

1.3 Fluid mechanics

The motion of a fluid is described by laws of conservation of mass, momentum and
energy, and these provide equations for the variables of the motion, which are the
density ρ, velocity u and temperature T , which is itself a measure of internal energy
e. A further quantity, the pressure p, is determined by means of a constitutive law,
which for example prescribes density as a function of pressure and temperature.

t = 0 t > 0

xξ

Figure 1.2: The map induced by the velocity field is assumed to be smooth.

We conceive of blobs of fluid, sometimes termed parcels, or fluid elements, moving
around coherently, in such a way that a region V (0) at time t = 0 is mapped smoothly
to a region V (t) at time t > 0. If ξ is the coordinate parameterisation of the element
at time t = 0, then the map from ξ to x at time t is smooth, that is to say, x(ξ, t) is
a continuously differentiable function (see figure 1.2).

This is the continuum assumption, and as we shall see later, it is not one that is
immediately reasonable. Providing we accept it, however, we can deduce appropriate
governing equations more or less axiomatically.

First we need to define the material derivative. This distinguises time derivatives
holding ξ fixed and holding x fixed. The Lagrangian, or material, time derivative,

written
d

dt
, is related to the Eulerian time derivative

∂

∂t
by the relation

∂

∂t

∣∣∣∣
ξ

≡ d

dt
=

∂

∂t

∣∣∣∣
x

+ u.∇, (1.58)

5More precisely, the probability distribution function F (x) =
∫ x

−∞ f(x) dx tends to the distribu-
tion function of the normal distribution; the actual discrete density is always actually a sum of delta
functions.
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which follows from the chain rule (here ∇ = ei
∂

∂xi
), and where the velocity field is

u ≡ ∂x

∂t

∣∣∣∣
ξ

. (1.59)

The material derivative is the time derivative following the fluid element.
We can derive an equation of conservation of mass in two ways. The straightfor-

ward way uses the usual volume integral conservation law. If V is a volume fixed in
space, then from first principles, we have

d

dt

∫
V

ρ dV = −
∫
∂V

ρun dS, (1.60)

where un = u.n is the normal velocity at the surface ∂V . Taking the time derivative
inside the integral, using the divergence theorem, and assuming ρ and u are con-
tinuously differentiable (∈ C1) leads us to the point form of the equation of mass
conservation,

ρt + ∇. (ρu) = 0. (1.61)

A useful alternative derivation uses the material derivative. Suppose now that
V (t) is a material volume element; in particular, its boundary ∂V always consists of
the same fluid particles. Conservation of mass is simply

d

dt

∫
V

ρ dV = 0. (1.62)

Now notice that dV changes in time; a first principles argument shows that

d(dV )

dt
= ∇.u dV, (1.63)

and thus (1.62) implies, for ρ, u ∈ C1,

dρ

dt
+ ρ∇.u = 0, (1.64)

and this is readily seen to be equivalent to (1.61). A particular case of importance is
that of the incompressible fluid, for which the density is conserved following the fluid,
so that consequently

∇.u = 0. (1.65)

Momentum conservation is an expression of Newton’s second law. We will ignore
body forces such as gravity. The only force acting on a fluid element is then that due
to the surrounding fluid, and this acts on the surface ∂V of the element. We suppose
that the force per unit area in the i component direction on a surface element dS with
normal n is denoted σin. Consideration of the force balance (Newton’s third law) on
a tetrahedron, as shown in figure 1.3, implies that

σin dS =
∑
j

σijdSj, (1.66)
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Figure 1.3: Force balance on a tetrahedron.

where dSj is the face with normal in the j direction. Since additionally dSj = nj dS,
where n is the normal to the oblique face dS, it follows that

σijnj = σin, (1.67)

where, as is common in this subject, repeated suffixes indicates summation (the sum-
mation convention).

The elements σij define a tensor σ, which is a frame indifferent quantity just as a
vector is, and with an obvious interpretation, (1.67) defines σin = σ.n, and Newton’s
second law takes the simple form

d

dt

∫
V

ρu dV =

∫
∂V

σ.n dS, (1.68)

where V is a material volume. The point form is derived in the usual way (noting
that ρ dV is constant):

ρ
du

dt
= ∇.σ. (1.69)

The issue now is to constitute the strss tensor σ. Two particular choices are well
known. The first is when σ is isotropic and the fluid is inviscid (frictionless):

σij = −pδij, (1.70)

where p is the pressure and δij is the Kronecker delta; this leads to the Euler equation

ρ
du

dt
= −∇p. (1.71)

More realistically, the fluid is viscous, and the assumption of a Newtonian fluid, where
the stress is linearly dependent on strain rate, leads to

σij = −pδij + τij, τij = η

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
∇.u δij

)
. (1.72)
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For the particular case of an incompressible fluid, for which ∇.u = 0, this leads to
the common form of the Navier–Stokes equations:

∇.u = 0,

ρ
du

dt
= −∇p+ η∇2u; (1.73)

the quantity η is known as the (dynamic) viscosity. Note that we must interpret

∇2u = ∇ (∇.u)−∇×∇× u (1.74)

for coordinates other than cartesian.
The energy equation describes conservation of energy. Notice that in Newtonian

particle mechanics, conservation of energy (where the forces are derived from a po-
tential) is a consequence of Newton’s second law. This is no longer true for fluid flow,
and the reasons for this have to do with the nature of the continuum approximation,
and will only emerge when we consider the statistical mechanics of particles.6 Apart
from the kinetic energy per unit mass, 1

2
u2, there is an internal energy e, which is

associated with the fluctuations of motion of the molecules of the fluid about the
macroscopic mean velocity. Starting from an integral conservation law of kinetic and
internal energy, we are led to the conservation law

∂

∂t

[
1
2
ρu2 + ρe

]
+ ∇.

[(
1
2
ρu2 + ρe

)
u
]

= ∇. [σ.u]−∇.q, (1.75)

where the terms on the right represent the rate of work done on a volume element
by the viscous forces, and the heat or internal energy flux q, which in the present
context arises phenomenologically due to spatial gradients of temperature or internal
energy. Simplification of this using the Navier-Stokes equation leads to the form

ρ
de

dt
= σij ε̇ij −∇.q, (1.76)

where we use the summation convention on repeated indices. The kinetic energy pool
feeds the internal energy pool through the first term on the right, which is called the
viscous dissipation and is positive, while the second term representing heat transport
provides a dissipative mechanism which spreads this created heat spatially. In practice
(but not always) the frictional heating term is generally small, but heat conduction
is commonly significant.

The vigour of a viscous flow is measured by a number called the Reynolds number,
which is defined by

Re =
ρUL

η
, (1.77)

6Actually, the presence of the viscous term in the Navier-Stokes equation is a manifestation of
the same feature, since the underlying equations of Newtonian mechanics possess no such dissipative
terms. The transition from a microscopic conservative system to a macroscopic dissipative one is
associated with a change from reversible to irreversible, and introduces a direction to the arrow of
time, which provides one of the fundamental philosophical difficulties of statistical mechanics.
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where U and L are typical sizes of velocity and size for the flow; for example, flow in
a pipe is characterised by the mean velocity and the pipe diameter. When Re < 1,
the flow is slow, and the acceleration terms are negligible; for values Re � 1, the
flow is rapid, and viscous terms are negligible except in boundary layers adjoining
solid surfaces. More importantly, when Re >∼ 103, the flow becomes disordered and
chaotic; this is turbulence. One of the central problems of fluid mechanics is to
understand the mechanism whereby turbulent flow occurs. It is generally thought that
turbulence in fluids is a manifestation of chaos in the underlying governing (Navier-
Stokes) equations, but little is known about chaos in partial differential equations,
and the problem is not yet resolved.7

The practical modelling of turbulent flows uses a method of averaging, whereby
the velocity and pressure fields are split into mean and fluctuation:

ui = ūi + u′i, p = p̄+ p′, (1.78)

where overbar denotes mean and prime denotes fluctuation. The question arises, what
sort of mean is defined here? A natural definition would be a local space average or
a local time average, but these have the possible disadvantage of requiring a distinct
separation of scales. A more natural choice is the ensemble average, which represents
an average over many different realisations of the flow.

An issue now arises: since we are dealing with solutions of a partial differential
equation with, it is hoped, a unique solution, how can one average over different
realisations, given this uniqueness once the initial condition is prescribed. The res-
olution of this lies in the fact that the averaging procedure allows the same initial
state for averaged quantities, although the small scale chaotic fluctuations can differ.
The connection between ensemble, space and time averages lies in the hope that all
three will be equivalent, which would be a consequence of the ergodic theorem, which
essentially says that a single trajectory of a chaotic system on an invariant set in the
phase space has the same probability of being in a region on this set as a large num-
ber of trajectories over a finite time; this equates ensemble averages to time averages;
if the density is uniform over the set, it includes also space averages. The ergodic
theorem is intuitive and reasonable, but it is an assumption, and in practice can not
be generally proved.

Averaging of the Navier–Stokes equations leads to the Reynolds equations (for an
incompressible flow):

∇. ū = 0,

ρ
dū

dt
= −∇p̄+ η∇2ū + ∇. τRe, (1.79)

where the Reynolds stresses τRe are defined by

τRe
ij = −ρu′iu′j. (1.80)

7Indeed, even the existence of solutions of the equations is not certain, and the proof of ex-
istence or non-existence forms one of the Clay Institute’s seven millennium prize questions (see
http://www.claymath.org/millennium/).
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Turbulence modelling in this way always has the problem of closure: the Reynolds
stresses must be constituted, and a common simplistic assumption is to define an eddy
viscosity ηT such that

τRe
ij = ηT

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. (1.81)

In order of magnitude, ηT ∼ UL� η, and is not realistically constant.
Higher order models can be obtained by averaging second moments of the mo-

mentum equation, to obtain equations for the Reynolds stress, which then involves
closure by prescription of averages of third degree terms. This leads to the popular
‘k–ε’ models which have been used computationally. It is worth emphasising that,
although common undergraduate courses deal largely with laminar (non-turbulent)
flow, turbulence is by far the more common case: rivers, winds, ocean currents, are
all turbulent; laminarity is the exception.

1.4 Brownian motion

Brownian motion, named for Robert Brown who first reported it in 1828, is the
apparently random motion of small particles suspended in a fluid (Brown observed
the motion of pollen grains). The explanation advanced by Einstein in 1905 and von
Smoluchowski in 1906 is based on the idea that the motions are caused by a constant
battering of the particles by the molecules of the fluid, and they model this effect by
considering the displacement of a particle in a small time interval to be a continuous
random variable ∆, with a density function φ(∆). Suppose the number of particles
per unit volume at time t is f(x, t), then Einstein’s model computes the change of f
in a small time interval ∆t as

f(x, t+ ∆t) =

∫
R3

f(x + ∆, t)φ(∆) d∆, (1.82)

where we assume displacements are symmetric, φ(∆) = φ(−∆), and in fact we may
take φ = φ(∆) for an isotropic medium. Expanding for small ∆ and ∆t, we derive
the result

∂f

∂t
= D∇2f, (1.83)

assuming ∫
R3

φ d∆ = 1,

∫
R3

φ∆ d∆ = 0, (1.84)

where

D =
1

6∆t

∫
R3

∆2φ(∆) d∆. (1.85)

The equation (1.82) actually indicates that f (more precisely f/n) is a probability
density, so that (1.83) is an evolution equation for the density of particles.
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1.4.1 The Langevin equation

A different approach to the same problem considers the Newtonian mechanics of
a particle subjected to a stream of molecular impacts. We may conceive of the
molecular velocities as consisting of a (spatial) average, here taken as zero, together
with a fluctuating component. The acceleration of the particle of mass m is then
represented in the form

mr̈ = −λṙ + X, (1.86)

where the terms on the right hand side represent the forces due to the average motion
of the molecules and due to the fluctuations. The first is a linear damping term, which
is appropriate for small Reynolds number, and the value of λ appropriate for Stokes
flow past a sphere is

λ = 6πηa, (1.87)

where a is the particle radius. From (1.86), we have

1
2
m(r̈2)−mv2 = −3πηa(ṙ2) + X.r, (1.88)

where v = ṙ, and taking an ensemble average over a large number of particles, we
have

1
2
m(r̈2)−mv2 = −3πηa(ṙ2) + X.r. (1.89)

At this point we make two assumptions; later we will find that the temperature is
defined by the relation

kT = 1
3
mv2, (1.90)

where k is Boltzmann’s constant, and we are tacitly assuming that the mean square
fluctuation velocity of the molecules is the same as that of the Brownian particle,
though this seems at first sight somewhat arbitrary. If we conceive of the particle
as equivalent to a volume of molecules with an impermeable surface, the argument
becomes more reasonable, however. So we assume (1.90).

The other assumption we make is that

X.r = 0. (1.91)

The basis of this assumption is the randomness of the impact force X, and its inde-
pendence of particle position r. This seems reasonable, but note that from (1.86), we

have, after a rapid transient of length t ∼ m

6πηa
,

v2 =
X.ṙ

6πηa
, (1.92)

which from the above discussion is evidently not zero.

With these assumptions, we can then solve (1.89). The transient time t ∼ m

6πηa
is typically around 10−8 s, after which we have the diffusive mean square drift

r2 ≈ 6Dt, (1.93)

where

D =
kT

6πηa
. (1.94)
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1.4.2 Random walks

Yet another approach to diffusion is to model the motion of a particle as a random
walk. To do so, we consider a particle which moves in discrete steps on a one-
dimensional lattice with locations at the integers. The extension to three dimensions
is essentially trivial, assuming motions in each direction are independent. Let pk,j be
the probability that the particle is at point k at time step j, and suppose that the
particle moves to right or left with equal probability. It then follows by conditioning
on the previous step that

pk,j+1 = 1
2
pk−1,j + 1

2
pk+1,j, (1.95)

and if the particle originates at the origin at time step 0, then

pk,0 = δ00, (1.96)

where δrs is the Kronecker delta.
We can solve (1.95) using a generating function Gj(ξ) =

∑∞
k=−∞ pk,je

ikξ, whence
we find

Gj+1 = Gj cos ξ, G0(ξ) = 1, (1.97)

whence
Gj(ξ) = cosj ξ. (1.98)

To find the solution at large time (large j), we write

ξ =
ζ√
j
, k =

√
jK, ∆K =

1√
j
, pk,j =

1√
j
PK,j, (1.99)

so that ∑
K

PK,je
iKζ∆K =

[
1− ζ2

2j
+ . . .

]j
, (1.100)

where the sum over K is in increments of ∆K � 1. For large j and small ∆K,
writing PK,j = Pj(K), we have approximately

P̂j(ζ) = e−
1
2
ζ2 , (1.101)

where P̂ is the Fourier transform, and the inverse is

Pj(K) =
1√
2π
e−

1
2
K2

, (1.102)

and in terms of the original variables,

pk,j =
1√
2πj

exp

(
−k

2

2j

)
. (1.103)

Alternatively, we can consider the lattice points to be separated by a ‘small’
distance ∆x, and the time steps to be of ‘small’ duration ∆t, and then writing

x = k∆x, t = j∆t, pk,j = ∆xu(x, t), (1.104)
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(1.95) can be written in the form8

u(x, t+ ∆ t)− u(x, t) = 1
2

[u(x−∆x, t)− 2u(x, t) + u(x+ ∆x, t)] ; (1.105)

expanding this in a Taylor series up to quadratic terms yields

∆t ut + 1
2
(∆t)2utt + . . . = 1

2
(∆x)2uxx + . . . , (1.106)

whence at leading order (ignore the small second time derivative term) we obtain the
diffusion equation

ut = Duxx, (1.107)

where

D =
(∆x)2

2∆t
. (1.108)

Note that in terms of (1.104), (1.103) is just

u =
1

2
√
πDt

exp

[
− x2

4Dt

]
, (1.109)

which is the similarity solution of the diffusion equation following initial release of a
delta function at the origin.

Finite spread

One of the more obvious things about the exact solution for the random walk and its
approximating diffusion equation is that the walker’s position probability spreads at
a finite rate, specifically pk,j = 0 for |k| > j, whereas the diffusion equation allows
immediate propagation to infinity. This discrepancy arises because the approximation
(1.101) is not uniformly valid; specifically (1.101) assumes ζ ∼ O(1), whereas it is
clear from (1.98) that the approximation is invalid when ξ = 1

2
π, and more generally

when ζ ∼
√
j. It is a bit impenetrable to see what to do with the difference equation,

but a simple recipe follows by consideration of the expansion of (1.105). We simply
retain the second derivative term in (1.106), so that the diffusion equation (1.107) is
replaced by

ut + τutt = Duxx, (1.110)

where τ = 1
2
∆ t. This is a form of the telegraph equation; it is hyperbolic, and

information propagates at finite speeds. The diffusion equation is accurate while
u ∼ O(1), but fails when u is small, when the problem can be treated further using
asymptotic methods. For more details, see Keller (2004).

1.5 Chaos

Chaos refers to the behaviour of a dynamical system which is erratic and ‘unpre-
dictable’. Chaos occurs in discrete systems (maps) and in continuous systems (differ-
ential equations), and indeed the two are intertwined, because the use of a Poincaré

8The scaling for u is to represent the initial condition as a delta function.
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section allows a differential equation to be converted to a map, although not usually
explicitly.

The central property of a chaotic system is that it has sensitive dependence on ini-
tial conditions: two arbitrarily close initial conditions diverge, usually exponentially,
in time. This is not enough on its own, as instanced by the system

ẍ+ zx = 0, ż = 0, (1.111)

and various extra ingredients are usually appended, for example that there are an
infinite number of periodic and aperiodic orbits.

1.5.1 Maps

Maps come in two principal flavours: area-preserving and dissipative. But in both
cases, the central architect of chaotic behaviour is that there is simultaneous expansion
and contraction. The simplest example arises in the logistic equation

xn+1 = λxn(1− xn), (1.112)

for which the transition to chaos is nicely illustrated by the bifurcation tree in figure
1.4.

Figure 1.4: The bifurcation tree for the logistic map.

The tree is constructed by plotting the solution (after an initial transient, which
is excised) for a sequence of different λ values. The single value for λ < 3 indicates a
(stable) fixed point {xn} = {x0, x0, . . .}, which then bifurcates at λ = 3 to a period
two cycle {xn} = {x1, x2, x1, x2, . . .}, and subsequently to cycles of period 4, period
8, and so on. This period-doubling sequence accumulates until at λ ≈ 3.57, the
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trajectories become chaotic: all periodic solutions are unstable, and the trajectories
become ‘smeared out’ in the tree. As λ increases further, the size of the chaotic region
increases, until at λ = 4 it is the whole interval [0, 1]. It can be seen also that this
progression is interrupted by a number (actually infinite) of ‘windows of stability’;
the most obvious is the stable period 3 orbit which emerges at λ ≈ 3.81.

The fully chaotic régime when λ = 4 is easily analysed by putting

xn = sin2 πφn, (1.113)

from which we see that if we define

φn+1 = 2φn mod 1, (1.114)

then xn satisfies (1.112) with λ = 4.9 This map is simply analysed by means of the
following stratagem. Write the initial value of φn as

φ0 = .a1a2a3 . . . ≡ 1
2
a1 + 1

4
a2 + . . . , (1.115)

being the binary fraction representation of φ0; it is then clear that

φ1 = .a2a3a4 . . . ,

φ2 = .a3a4a5 . . . , (1.116)

and so on, and thus the map (1.114) is encoded by the shift map σ on the space of
semi-infinite sequences of two symbols Σ+

2 = {.a1a2 . . . ; ai = 0 or ai = 1}:

σ(.a1a2a3 . . .) = (.a2a3a4 . . .). (1.117)

It is immediate to see that the trajectories are completely encoded by the initial
value, and that there is a countably infinite number of periodic orbits (φ0 rational),10

an uncountable number of aperiodic orbits (φ0 irrational), and that trajectories are
sensitive to initial conditions: these are the harbingers of chaos.

The logistic equation is an example of a dissipative map, and it is non-invertible.
The Poincaré maps which arise from conservative Hamiltonian systems are invertible,
but typically they too exhibit chaos. A simple but beautiful example of this is the
baker map. This is illustrated in figure 1.5. The square is compressed, then cut in two
and reassembled, thus mimicking the action of the baker in kneading a loaf (though
the baker folds rather than cuts).

9The same is also true for the tent map φn+1 = 1− |1− 2φn| which has the advantage of being
continuous, and was also famously used as an example by Lorenz (1963) in his seminal work on
chaos in differential equations.

10Any rational number φ = m/n where n is not a power of two has the form .a1 . . . apa1 . . ., and
this corresponds to a period p cycle. To show this, suppose for simplicity that n has no factors of
two, and can thus be written as a product of odd prime factors (possibly repeated) n = p1 . . . pj .
Fermat’s theorem in number theory states that each pi | 2pi − 1 (pi divides 2pi − 1), and therefore
n | 2

∑
i pi − 1, i. e., qn = 2p − 1 for some integers q and p =

∑
i pi. From this we can deduce the

statement above.
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Figure 1.5: The baker map on the unit square.

The map can be written as

xn+1 = 2xn mod 1,

yn+1 = 1
2
yn + 1

2
H(xn − 1

2
), (1.118)

where H is the Heaviside step function11. Note that the map is area-preserving and
indeed invertible. It can also be explicitly solved just as we did for the logistic map.
Let the initial value of x be written as the binary fraction

x0 = .a1a2a3 . . . ; (1.119)

then each succeeding iterate simply shifts the binary point to the right and excises
the leading digit; thus x1 = .a2a3 . . ., and in general

xn = .an+1an+2 . . . . (1.120)

Note that an+1 = 0 if xn <
1
2
, and an+1 = 1 if xn >

1
2
. Therefore

yn+1 = 1
2
yn + 1

2
an+1, (1.121)

and the solution for yn can be written in terms of the inverted n-th rational approxi-
mant

qn = .anan−1 . . . a1 (1.122)

as
yn =

y0

2n
+ qn. (1.123)

The solutions can be encoded in the same way as for the logistic equation. We
denote the initial value of yn as the binary fraction

y0 = .a0a−1a−2 . . . ; (1.124)

11Some extra book-keeping is necessary if xn = 1
2 , which we will ignore.
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then the solutions of the baker map are encoded by the shift map on the space Σ2 of
bi-infinite sequences of two symbols,

σ(. . . a−2a−1a0.a1a2a3 . . .) = (. . . a−1a0a1.a2a3a4 . . .). (1.125)

From this we can see that the solutions give all the characteristics of chaos. There
is clearly sensitive dependence on initial conditions, there are countably many periodic
solutions (repeating sequences φ ∈ Σ2), and there are uncountably many aperiodic
orbits (non-repeating sequences).

What is the evolution of a small cloud of points in a small box of side 1
2n

? If we
select all the points in the box (thus we know a−(n−1), a−(n−2), . . . , a0, a1, . . . , an), then
after n iterations the y values sit in a small interval of length 2−2n, while the x values
have expanded to fill the unit interval. This just looks like an enhanced version of the
baker map, with expansion and contraction by 2n, and no cut. However, the following
iterate introduces the cut, and the y range is split into sub-intervals near .0an . . . a1

and .1an . . . a1. After 2n iterates, the O(2−n) knowledge of the initial neighbourhood
is completely lost.

At this point, mathematical nicety and practical prediction diverge. We come
back to the question: why is an invertible map in practice chaotic and not invertible?
The answer to this lies in the fundamental nature of what a model is. We think
the baker map is invertible because we know the initial position as a pair of infinite
binary fractions. But already we are in a fictitious model place. There is no such
thing as an infinite precision prescription of the coordinates of a point. The reality is
that we can only measure initial positions to some finite level of accuracy. The myth
of invertibility is something which diverts us because we mistake the mathematical
precision of the real number system for reality, whereas it is no such thing.

1.5.2 Circle maps

In section 1.1.5 we alluded to the use of two-dimensional maps in describing the
break-up of invariant tori in Poincaré maps for Hamiltonian systems. Much of the
behaviour mentioned there can be understood by the study of circle maps of the form

Θ→ Θ + 2πΩ + β sin qΘ. (1.126)

Here Θ is the polar angle on a circle, and Ω and β are parameters. (1.126) arises in
the context of dissipative systems, and specifically in the analysis of secondary Hopf
bifurcations, when a limit cycle becomes oscillatorily unstable. In that case, Ω is the
ratio of the bifurcation frequency to that of the underlying limit cycle, and β is a
measure of nonlinearity, discussed further below. In the derivation of (1.126), the
parameter β = 0 unless the ratio of frequencies Ω = p/q is rational, in which case
β ∼ µ(q−2)/2. The occurrence of the extra term is due to resonance between the two
frequencies of the motion. In the analysis of (1.126) for small µ and Ω close to p/q,
it is fairly straightforward to show that stable period q cycles occur if∣∣∣∣Ω− p

q

∣∣∣∣ ≤ cµ(q−2)/2, (1.127)
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µ

µ

Ω

changing 

Figure 1.6: Arn’old tongues. Within the shaded regions, the motion is periodic, and
elsewhere it is quasi-periodic; in general, Ω will change as µ increases, so that the
system passes through a number of periodic windows; such behaviour is commonly
seen in practice.

where we write β = 2πcµ(q−2)/2, and take q ≥ 5 as part of the condition that (1.126)
applies. The result of this is shown in figure 1.6. From each rational value of Ω,
an Arn’old tongue emerges, within which the trajectories are periodic, and outside
which they are quasi-periodic. Because the tongues are of finite but small width, and
emerge from the rational values of Ω when µ = 0, we have the paradox that periodic
motion is structurally stable, but extremely unlikely to occur, whereas quasi-periodic
motion has the inverse property. The same applies to the break-up of invariant tori
in Hamiltonian systems, essentially for the same reason: most invariant tori remain,
but it is the island chains which are structurally stable.

Continued fractions

Between the tongues and their periodic orbits, the trajectories are quasi-periodic and
in fact dense in the unit circle, that is to say, they come arbitrarily close to every
value of Θ. To see this, we take an excursion into number theory.

Begin with two relatively prime positive integers n > m, and successively apply
the Euclidean algorithm:

n = a1m+ r1,

m = a2r1 + r2,

r1 = a3r2 + r3,

. . .

rk−1 = ak+1rk + 1. (1.128)

Here, ai are positive integers, and m > r1 > r2 . . . is a decreasing sequence of positive
integers which are mutually relatively prime. The sequence must terminate with
rk+1 = 1, otherwise m and n would have a common factor.
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From this we construct successively

m

n
=

1

a1 +
r1

m

,

m

n
=

1

a1 +
1

a2 +
r2

r1

,

. . . ,

m

n
=

1

a1 +
1

a2 +
1

. . .+
1

ak+1 +
1

rk

, (1.129)

and this is called the continued fraction representation of
m

n
. Exactly the same algo-

rithm produces an infinite continued fraction representation of an irrational number.
The approximants

p1

q1

=
1

a1

,
p2

q2

=
1

a1 +
1

a2

, . . . , (1.130)

have a number of useful properties. By direct calculation, (pi, qi) = 1 for i = 1, 2, 3
(i. e., these pairs are relatively prime). Next, suppose inductively that

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2; (1.131)

again, direct calculation shows this to be true for n = 3. To calculate
pn+1

qn+1

, we may

simply note that it is obtained from
pn
qn

by replacing an by an +
1

an+1

. Carrying out

the calculation, we find
pn+1

qn+1

=
anpn + pn−1

anqn + qn−1

, (1.132)

and the inductive step is proved providing the definitions

pn+1 = anpn + pn−1, qn+1 = anqn + qn−1 (1.133)

have (pn+1, qn+1) = 1. To show this, note that

pnqn+1 − pn+1qn = −(pn−1qn − pnqn−1), (1.134)

whence in fact
pnqn+1 − pn+1qn = (−1)n+1 (1.135)
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(via evaluation at n = 1), and the relative primeness of (pn+1, qn+1) follows inductively.
(1.135) tells us other things also. The sequence of approximant differences is an

alternating series, and thus the error of the approximant
p

q
is less than

1

q2
, and this

clearly applies more generally to the continued fraction representation of an irrational
number α.

As we suggested, this observation has its uses in understanding the dynamics
of circle maps, of which the simplest example is the pure rotation θ → θ + φ, or
equivalently x→ x+ α mod 1. Clearly if α is rational, then the trajectories consist
of periodic orbits; and clearly if α is irrational, there are no periodic orbits. We might
then expect the resultant trajectory to be dense in the unit interval, i. e., to approach
any particular value y ∈ (0, 1) arbitrarily closely.

To see this, we first use continued fractions to choose relatively prime p and q such

that

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
, and then also r such that

∣∣∣∣y − r

q

∣∣∣∣ < 1

q
. Now because p and q are

relatively prime, the values of np mod q for p = 0, 1, . . . , q− 1 cycle non-repetitively
through the integers q = 0, 1, . . . , q− 1. Thus there is a value n < q such that np = r

mod q, and hence for some integer m, |nα − m − y| < 2

q
. Since q → ∞ as the

approximants converge to α, we see that indeed the rotation map for irrational φ/2π
has trajectories which are dense on the circle. See also question 3.1.

1.6 Notes and references

Reynolds (1895)
Brown (1828)12 Einstein (1905) and Smoluchowski (1906)
In the context of dynamical systems, continued fractions are discussed expertly

and compactly by Arn’old (1983). But their study is an old subject, and useful sources
are the books by Todhunter (1875) and the classic by Birkhoff and MacLane (1965).
Todhunter’s book illuminates by its subtitle, ‘for the use of colleges and schools’; a
good deal of it is present day second year undergraduate material, and it indicates
the extent to which educational prowess has changed in the intervening period.

Exercises

1.1 A number of particles with positions ri are subjected to internal forces Fij,
where Fij is the force exerted by particle j on particle i.

What is meant by a virtual displacement? And what does it mean to say that
a virtual displacement does no virtual work?

Show that if the forces have the form

Fij = f(rij)rij,

12The reference is given incorrectly by Gardiner (2009), and even on one online repository!
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where rij = ri−rj, and if the particles are connected as a rigid body, the virtual
work is zero.

1.2 Use the chain rule to show that for a change of variable r = r(q, t),

d

dt

(
∂ri
∂qj

)
=

∂vi
∂qj

,

∂vi
∂q̇j

=
∂ri
∂qj

,

where vi = ṙi, and deduce that Newton’s equations can be written in the form

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj,

where you should define the generalised forces Qj and the kinetic energy T .

Hence deduce the form of Lagrange’s and Hamilton’s equations.

Show that Lagrange’s equations also follow from a variational principle for the
action

I =

∫ t2

t1

Ldt,

where t1 and t2 are fixed, as are the values of qi at these times. Why do q̇i not
have to be specified at the endpoints of the interval?

1.3 For a Lagrangian L, why does it make sense to define the generalised momenta
as

pi =
∂L

∂q̇i
?

Show how the definition of the Hamiltonian function

H =
∑
i

piq̇i − L(qi, q̇i, t),

together with Lagrange’s equations, can be used to derive Hamilton’s equations.

Show also how Hamilton’s equations can be derived from a variational principle
for the action

I =

∫
C

∑
i

pi dqi −H dt,

under variations of the trajectory C in (qi, pi, t) space such that the values of qi
and t are fixed at the endpoints.

A homogeneous function f(r) of degree n satisfies f(λr) = λnf(r). Prove Euler’s
theorem on homogeneous functions,

r.∇f = nf.

Using this result, show that if the kinetic energy T is quadratic in the generalised
velocities q̇i, and the potential V = V (qi), then H = T + V .
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1.4 A particle undergoes a random walk on the integers Z, and the probability of
being at position n at step j is pn,j. Suppose the events move left, move right,
remain stationary, have probabilities l, r and 1 − l − r respectively. By using
conditional probabilities, show that

pn,j = lpn+1,j−1 + (1− l − r)pn,j−1 + rpn−1,j−1,

and if the particle starts at the origin, show that

pn,0 = δn0,

where δij is the Kronecker delta. Find an equation for the generating function

Gj(s) =
∑
Z

pn,js
n, (∗)

and hence show that

Gj(s) =

[
l

s
+ (1− l − r) + rs

]j
. (†)

For the case l = r = 1
2
, find the large time behaviour of the distribution as

follows. Write

s = exp

(
it√
j

)
, n =

√
jx, pn,j =

1√
j
f(x),

and find two approximations for Gj from (∗) and (†), one as a Fourier integral.
Hence deduce that f is a normal distribution, independently of j. What are its
mean and variance?

Find the equivalent result for general l and r.

1.5 Find the characteristic functions φ(t) for the following distributions:

Normal, f(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
;

Gamma, f(x) =
λsxs−1e−λx

Γ(s)
on (0,∞);

Cauchy, f(x) =
1

π(1 + x2)
.

What are the mean and variance of each distribution?

1.6 Let {Xi} be a series of independent trials from a distribution of mean µ and
variance σ2, and let Sn =

∑n
1 Xi. By consideration of appropriate characteristic

functions, show that

Sn ∼ N(µn, σ2n) as n→∞,
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and deduce the law of large numbers,

Sn
n

D
→ δ(x− µ) as n→∞.

Explain how this result can be used to provide a practical tool for the estimation
of probability of an event a ∈ E.

1.7 Show from first principles that if dV = dx1 dx2 dx3 is a material volume element,
then

d(dV )

dt
= (∇.u) dV,

where u is the velocity field. Show this in two ways: using Eulerian coordinates,
and using Lagrangian coordinates.

By consideration of Newton’s second law applied to an infinitesimal tetrahedron,
explain why Newton’s third law applies, and deduce that the surface force on a
volume element can be written in the form σ.n.

Hence derive the Navier-Stokes equation in the form

ρ
du

dt
= ∇.σ.

1.8 In cartesian coordinates, and using the summation convention, the term ∇2u is
defined by

∇2u ≡ ei
∂2ui
∂xj∂xj

,

where ei is an orthonormal basis for R3. Use the definitions of

∇φ = ei
∂φ

∂xi
,

∇. a =
∂ak
∂xk

,

∇× v = εijkei
∂vj
∂xk

,

where εijk is the alternating tensor:

εijk =


+1, {ijk} = {123}, {231}, {312},
−1, {ijk} = {132}, {213}, {321},
0 otherwise,

to show that
∇2u ≡∇(∇.u)−∇×∇× u,

which thus provides a coordinate-free definition of this term.

Hint: the alternating tensor satisfies the relation

εijkεipq = δjpδkq − δjqδkp.
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1.9 Write down an integral form of the conservation of kinetic and internal energy
for a fluid flow, allowing for work done by viscous stresses and for a heat flux
vector due to spatial internal energy gradients. By reducing this to point form,
and making use of the Navier-Stokes equations, show that the energy equation
can be written in the form

ρ
de

dt
= σij ε̇ij −∇.q.

1.10 Starting from the Navier–Stokes equations in the form

∇.u = 0,

ρ

[
∂u

∂t
+ ∇. (uu)

]
= −∇p+ η∇2u,

derive average equations for the mean velocity and pressure by writing

u = ū + u′, p = p̄+ p′,

where the overbar denotes an ensemble average and the prime denotes fluctu-
ations (thus u′ = 0, p′ = 0). Show that the Reynolds shear stress at a solid
surface, where the fluid velocity vanishes, is necessarily zero, and hence explain
why, if an eddy viscosity closure is assumed, the eddy viscosity should vanish
at a solid surface.

1.11 A large number of particles undergo Brownian motion in one spatial dimension
x, and the probability density function p(x, t) of being at position x at time t
is determined by a probability density φ(∆) of moving a distance ∆ in a small
time τ . Using conditional probability and the independence of successive events
in time τ , write down an equation for p(x + ∆, t), and assuming ∆ and τ are
small, show that p satisfies a diffusion equation, where the diffusivity is

D =
1

2τ

∫ ∞
−∞

∆2φ(∆) d∆.

Find the solution if all the particles are initially at x = 0, and hence show that
the mean square displacement

x2 = 2Dt.

For motion in three dimensions, the density satisfies the diffusion equation

∂p

∂t
= D

[
∂2p

∂r2
+

2

r

∂p

∂r

]
,

together with p = δ(r) at t = 0. Noting that∫ ∞
0

4πr2p dr ≡ 1,
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find a suitable similarity solution for p, and hence show that

r2 = 6Dt.

Is this consistent with the one-dimensional result?

1.12 Show that if p, q are relatively prime integers, then the Diophantine equation

np−mq = 1

has integer solutions n and m.
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Chapter 2

Stochastic processes

2.1 The Chapman–Kolmogorov equation

A Markov process is one for which successive events X1, X2, . . . have conditional
probabilities which only retain ‘most recent memory’. Thus

P (Xn |Xn−1, Xn−2, . . .) = P (Xn |Xn−1). (2.1)

Here {Xn} can be either a discrete or continuous (Xt) process.
We consider sequential events z, y, x at respective times t3 < t2 < t1, with associ-

ated probability density functions denoted by f (of various arguments). The laws of
conditional probability then state that for a Markov process

f(x, y, z) = f(x | y, z)f(y, z) = f(x | y)f(y | z)f(z). (2.2)

Strictly, we should have various subscripts on the fs. Dividing by f(z) and integrating

over the range Y of y, we have (since

∫
Y

f(x, y, z) dy = f(x, z))

f(x | z) =

∫
Y

f(x | y)f(y | z) dy; (2.3)

this is the Chapman–Kolmogorov equation.
For a discrete time series, we define the n-step transition probability

p
(n)
ij = P (Xm+n = i |Xm = j), (2.4)

and then the Chapman–Kolmogorov equation takes the form

p
(m+n)
ij =

∑
k

p
(m)
ik p

(n)
kj , (2.5)

for any positive integers m,n.
In the above, we have assumed the conditional probabilities or densities are inde-

pendent of time, i. e., the processes are stationary. This is not essential, but we will
assume it in the sequel. In this case, we can write the conditional density

f(xt | zτ ) = Tt−τ (x | z), (2.6)
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where the subscripts on the variables x and z denote the time of observation. Tt
is called the transition probability, and depends only on the time interval between
observations. Note in particular that∫

X

Tt(x | z) dx = 1 (2.7)

for any t or z, through one of the axioms of probability, and also

T0(x | z) = δ(x− z). (2.8)

The Chapman–Kolmogorov equation now takes the form

Tt−τ (x | z) =

∫
Y

Tt−t′(x | y)Tt′−τ (y | z) dy, (2.9)

for any t′ ∈ (τ, t). Much of stochastic dynamics is concerned with the solution of this
equation, under a variety of simplifying assumptions, which we detail in subsequent
sections.

An incremental form of (2.9) is

Tt+∆t(x | z) =

∫
Y

T∆t(x | y)Tt(y | z) dy. (2.10)

Additionally, (2.8) implies

Tt(x | z) =

∫
Y

T0(x | y)Tt(y | z) dy, (2.11)

hence we can deduce that

∂Tt(x | z)

∂t
=

∫
Y

S(x, y)Tt(y | z) dy, (2.12)

where we define (if we can)

S(x, y) = lim
∆t→0

[
T∆t(x | y)− T0(x | y)

∆t

]
. (2.13)

It is convenient to write the differential form of the Chapman–Kolmogorov equa-
tion (2.12) in terms of either an evolving probability distribution, or in terms of an
initial distribution of points. If we let φ(x, t) denote the probability density function
of X at time t, then

φ(x, t) =

∫
Z

Tt(x | z)φ0(z) dz, (2.14)

where φ = φ0(x) at t = 0, and

∂φ

∂t
= Sφ ≡

∫
Y

S(x, y)φ(y, t) dy. (2.15)
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In terms of the operator S, the solution of (2.15) is simply

φ = etSφ0, (2.16)

although this is of little use unless the eigenvalues of S are known. The equivalent
for the discrete case (both in time and sample space) follows from (2.5). Defining the
matrix

P = (p
(1)
ij ) (2.17)

and the state vector of probabilities at step n to be un, with prescribed u0, then the
solution of (2.5) is simply (analogously to (2.16))

un = Pnu0. (2.18)

2.2 The master equation

There are two essential types of process which lead to simplifications of (2.10). These
can be called jump processes and diffusive processes. In the former we allow finite
jumps from z to x in small time intervals. An example of this is the process of suc-
cessive fragmentation of rocks (e. g., Kolmogorov 1941). An initial rock, or collection
of rocks, is successively fragmented. At each stage of the process, new fragments can
be created which are not necessarily close to the size of the parent rock.

In a Poisson-like assumption, we assume that for x 6= z,

T∆t(x | z) = W (x, z)∆t, x 6= z; (2.19)

it is then a consequence of (2.7) that

T∆t(x | z) = W (x, z)∆t+

{
1−∆t

∫
X

W (x′, z) dx′
}
δ(x− z). (2.20)

Substituting this into (2.10) and taking the limit ∆t → 0 then leads to the master
equation

∂Tt(x | y)

∂t
=

∫
Y

[W (x, y)Tt(y | z)−W (y, x)Tt(x | z)] dy, (2.21)

or, in terms of the density of X,

∂φ(x, t)

∂t
=

∫
Y

[W (x, y)φ(y, t)−W (y, x)φ(x, t)] dy. (2.22)

As mentioned above, a practical application of the master equation lies in the
fragmentation of rocks. As ever, there is also a discrete analogue of (2.22). If pn(t) =
P (Xt = n), for example (here the state space is discrete but time is continuous), then
the master equation takes the form

ṗn =
∑
k

(Wnkpk −Wknpn) . (2.23)
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Examples of this are the random walk on the integers

ṗn = 1
2
(pn−1 + pn+1), (2.24)

whose generating function

G(s, t) =
∑
Z

pns
n (2.25)

is

G = exp

[
1
2
t

(
s+

1

s

)]
, (2.26)

and the birth-death-immigration process where n is the size of a population at time
t, each of whose souls can die, stay alive or reproduce with probability λ∆t in time
∆t, and in so doing produce r individuals from the previous one with probability qr
(r = 0, death; r = 1, stay alive; r > 1, stay alive and produce r − 1 offspring). In
addition we suppose immigration of an individual occurs with probability ν ∆t. This
leads to the master equation

ṗn = −(ν + nλ)pn + λ
n∑
0

(n−m+ 1)qmpn−m+1 + νpn−1, (2.27)

which is of the form (2.23) with

Wn,k = λkqn+1−k, k ≤ n+ 1, k 6= n− 1,

Wn,n−1 = λ(n− 1)q2 + ν. (2.28)

The evolution of the population p.d.f. in this case can lead to negative binomial
distributions (Bartlett 1960), of relevance in human infectious diseases (Anderson
and May 1991).

2.3 The Fokker–Planck equation

The Fokker–Planck equation is an approximate form of the (continuous) master equa-
tion which arises when only near-neighbour transitions are allowed. Its origins lie in
the explanation of Brownian motion by Einstein at the beginning of the twentieth
century. We start with the master equation in the form (2.22):

∂φ(x, t)

∂t
=

∫
Y

[W (x, y)φ(y, t)−W (y, x)φ(x, t)] dy. (2.29)

Now define
W (x, y) ≡ w(y, x− y), (2.30)

whence also W (y, x) ≡ w(x, y − x). Substituting into (2.29) and putting y = x −∆
in the first integral and y = x+ ∆ in the second leads to

∂φ

∂t
=

∫
R

[w(x−∆,∆)φ(x−∆, t)− w(x,∆)φ(x, t)] d∆, (2.31)
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where we may take Y = R whether it is or not, as we assume w(ξ, η) is only non-zero
for small η. More precisely, w is rapidly varying in η but not in ξ.

A formal Taylor series expansion in powers of ∆ about x (expand the first argu-
ment in w and φ but not the second) leads to the Kramers-Moyal expansion

∂φ

∂t
=
∞∑
n=1

(−1)n

n!

∂n

∂xn
[Mnφ], (2.32)

where the moments Mn are

Mn =

∫
R

∆nw(x,∆) d∆. (2.33)

Because ∆ is small, Mn decreases sharply wth n, and the series can be truncated;
the Fokker–Planck equation follows from retaining only the first two moments, thus

∂φ

∂t
+
∂(M1φ)

∂x
=
∂2(M2φ)

∂x2
. (2.34)

The advective term is referred to as the drift term, while the second is the diffusive
term. In the description of Brownian motion, the odd moments are zero if there is
no bias in the molecular random impacts, and then we simply obtain the diffusion
equation.

2.4 Stochastic differential equations

A stochastic differential equation is one of the form

ẋ = ax+ bξ, (2.35)

where a and b may be functions of x and t, and ξ represents a random noise term. The
presence of the term ξ renders the meaning of (2.35) opaque, and it is more common
to consider a sequence of values x to form a (random) process for the random variable
X, in which the increments ∆x satisfy

∆x = a∆t+ b∆W, (2.36)

where commonly W is defined to be a Wiener process, that is to say it is continuous,
not differentiable, and W (t) is a Gaussian random variable with mean zero and vari-
ance t. Our object is to determine a master equation to describe the evolution of the
density of X.

We begin by supposing that a and b are constant, so that the process X is sta-
tionary, and our previous discussion is relevant. From (2.10), we have

φ(x, t+ ∆t) =

∫
Y

T∆t(x | y)φ(y, t) dy, (2.37)
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and we wish to calculate the transition probability density T∆t(x | y). To do this we
use the fact that

∆x = x− y = a∆t+ b∆W, (2.38)

and thus

T∆t(x | y) dy = f

[
∆W =

x− y − a∆t

b
| y
]
d

{
x− y − a∆t

b

}
= f

[
∆W =

x− y − a∆t

b

]
dy

b
, (2.39)

if we assume that the Wiener process is independent of X and symmetric (as it is).
It follows that

T∆t(x | y) =
1

b
√

2π∆t
exp

[
−(x− y − a∆t)2

2b2

]
, (2.40)

since ∆W ∼ N (0,∆t). Substituting this into (2.37), we find, after a change of
variable,

φ(x, t+ ∆t) =

∫
R

1√
2π

exp(−1
2
r2)φ

(
x− a∆t− br

√
∆t
)
dr, (2.41)

and expanding this to terms of O(∆t) leads to the Fokker–Planck equation in the
form

φt + aφx = 1
2
b2φxx, (2.42)

where the subscripts here denote partial derivatives.
It is possible to extend this result for variable a and b. Most simple is the extension

for variable a, which follows from the realisation that since φ is itself a density, there
is a (cancelled) dx missing from each side of (2.41). The increment dx′ at t + ∆t is
stretched from its value dx at t so that

dx′ = dx(1 + a′∆t), (2.43)

where a′ =
∂a

∂x
. This leads to a modification of the expansion of (2.41) as

φ(x, t+ ∆t)(1 + a′∆t) = φ+ ∆t[−aφx + 1
2
b2φxx], (2.44)

and thus
φt + (aφ)x = 1

2
b2φxx. (2.45)

The issue of variable b is more complicated, and is discussed further below.

2.4.1 Liouville’s equation

In the absence of noise (b = 0), the Fokker–Planck equation becomes Liouville’s
equation:

φt + (aφ)x = 0, (2.46)

which is the usual conservation law for a cloud of deterministic particles moving with
velocity ẋ = a.
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2.4.2 Ornstein–Uhlenbeck process

2.4.3 The Itô–Stratonovich dilemma

2.5 Notes and references

Two principal sources are the books by Gardiner (2009) and Van Kampen (2007).
Risken (1989)

Exercises

2.1
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Chapter 3

Statistical mechanics

The subject of statistical mechanics comes squarely from physics. It is an impor-
tant subject, providing as we shall see a unifying interface between diverse areas of
applied mathematics, including mechanics, probability, stochastic dynamics, fluid dy-
namics, thermodynamics, quantum mechanics (though we will not touch this), and
even philosophy.

For such a powerful subject, it is compellingly opaque. I have yet to meet an
applied mathematician who professed to understand thermodynamics in any useful
sense of the word. Why, for example, do you minimise Gibbs free energy at constant
temperature and pressure, but Helmholtz free energy at constant temperature and
volume? What, indeed, is entropy?

In vain does one seek answers in any of the proliferation of books on the matter.
They are relentlessly full of imprecision and obfuscation. No wonder so many au-
thors have complained of other books which provide labyrinthine explanations whose
contortions provide conclusions without any measurable logical process. You can see
that I am in sympathy with such complaints, and will have more to say on this matter
in the notes at the end of the chapter.

The path we tread will be logically different from most of the other books you
may read, and we will explicitly avoid entirely some of the constructivist explanations
(Carnot engines, heat baths, and the like) which in my view serve merely to confuse
the precise eye of the mathematician. For sure, we will have to step off the rational
path of mechanics at some point, but at least we will not resort to simply making it
up, which is what a good deal of the subject apparently involves. We begin at the
beginning, resuming a knowledge of classical particle mechanics.

3.1 The Liouville equation

We chanced on Liouville’s equation in chapter 2, which obscured the fact that it is
the central equation on which what one might call deterministic statistical mechanics
is based. We are interested in the motion of N particles described by a Hamiltonian
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system

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

, (3.1)

i = 1, . . . , N , where we may suppose that

H = T (p) + V (q), (3.2)

and the kinetic energy T is quadratic in p. It follows that under the transformation

q→ q, p→ −p, t→ −t, (3.3)

the equations of motion are invariant, and thus the motion of the system of particles
is time-reversible. As we shall see, this time reversibility is lost when we come to
consider the statistical evolution of the system, and this will lead us to the central
philosophical problem of statistical mechanics, prosaically referred to as ‘the arrow
of time’: why is the collective behaviour of a system of particles irreversible (i. e.,
time goes in one demonstrable direction), while the individual particle motions are
reversible? We return to this conundrum in due course.

The motion of N particles in 6–dimensional (q,p) space can equally be thought of
as a single trajectory of the coordinate γ = (qi,pi) in 6N–dimensional phase space Γ.
We may reasonably take H to be an analytic function, and in this case the trajectory
is uniquely defined (via Picard’s theorem), and it also depends smoothly on the initial
state, and it therefore follows that if we take a cloud of points in a volume element
of density ρ(γ, t), the density evolves according to the conservation of mass equation
(1.61), derived in the same way from first principles:

ρt + ∇. (ρu) = 0, (3.4)

where now

u =

(
∂H

∂pi
,−∂H

∂qi

)
. (3.5)

The velocity in Γ is indeed a smooth function of position in Γ, and no extra continuum
hypothesis is necessary. (3.4) can be written in the form

ρt + {ρ,H} = 0, (3.6)

where the curly brackets denote the Poisson bracket, formed from the Jacobian,

{ρ,H} =
∂(ρ,H)

∂(q,p)
. (3.7)

Notice that from (3.5), the velocity u in Γ is incompressible. Not only that, but
the Liouville equation is time reversible under the transformation t → −t, q → q,
p→ −p. We shall see that our efforts to solve it introduce irreversibility.
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The alert reader will complain that in practice, H has singularities, assuming we
do not allow particles to pass through each other in our present classical phase space.
This is indeed true, but the conclusion on the smoothness of the solutions follows from
the fact that we assume that the initial state is non-singular (the particles are non-
overlapping) and the singularities act as repellers. The argument can be illustrated
by means of the motion in the interval (0, 1) governed by the Hamiltonian

H = 1
2
p2 + V (q), V =

δ

q(1− q)
, (3.8)

which for small δ simply represents a particle bouncing back and forth between the
boundaries at 0 and 1. Picard’s theorem applies for any motion with the initial value
of q ∈ (0, 1), since the singularities at 0 and 1 are inaccessible.

Liouville’s equation may be exact, but it is not of much use, because we cannot
hope to follow a trajectory in Γ when N � 1. Our only hope lies in approximating it
in some way, and this is where the statistical part of the subject begins. In particular,
it leads to the ergodic theorem, or more accurately the ergodic hypothesis.

3.1.1 The ergodic hypothesis

V

U

UV
N N

Figure 3.1: Alternative visualisations of Γ = (V ×U)N (left) or Γ = V N ×UN (right).
The circles indicate an expected spherically symmetric distribution in velocity space.

It is helpful to try and get some idea of what the phase space Γ looks like. As
a typical example, we will think of a large number N of spherical particles (the
hard sphere gas) moving and interacting via Newtonian collision in a box. This is a
limit of the motion encountered with a Hamiltonian analogous to (3.8). The physical
coordinate space V spanned by q is simply the box, and generally we expect the
particles to be equidistributed throughout it. Velocities are not so bounded, and
thus the velocity space U spanned by p is simply R3, although we do not expect
the particles to be equidistributed in U ; we do, however, expect their velocities to be
equidistributed in direction, and in fact as we shall see their density is Gaussian with
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H = E

γ

γ

(0)

(t)

Figure 3.2: The Liouville picture of (an ensemble of trajectories) γ on the hypersurface
H = E.

radius. Thus a large number of particles have velocities distributed as a Gaussian
cloud in U , and the space inhabited by each particle is just P = V × U . The 6N–
dimensional space Γ is then simply PN = (V × U)N , and we can think of it as N
copies of V and U , each with one point in each of V and U (representing position
and velocity), thus Γ = (V ×U)N ; or as all of the N copies superimposed, which thus
gives an image of N points in V (the particle positions) together with their velocities
in U ; thus Γ = V N × UN .

A more schematic visualisation uses the fact that the trajectory in Γ lives on the
surface of the hypersphere H = E, where E is the total energy of the system. The
Liouville picture thinks of a small element of this hypersurface being mapped under
the flow to another hypersurface of equal volume, and a trajectory of a cloud of points
in Γ can be thought of as the motion of a deformable constant volume blob as it moves
round the surface of the hypersurface.

The ergodic hypothesis is best understood in terms of figure 3.2. A collection
(ensemble) of initial states γ(0) in Γ evolve under the flow on the hypersurface H = E,
conserving their volume as they go. The ergodic hypothesis supposes not only that
γ covers the whole of the hypersphere as it evolves (which is by no means obvious),
but over the course of its evolution it visits each part of the hypersphere equally
frequently. Reducing γ to a single trajectory, we are led to the ergodic hypothesis in
the following form:

The time average of a quantity A as it evolves on (almost every) single
trajectory γ(t) ∈ Γ is equal to the phase space average of A over the
constant energy hypersurface on which A resides.

We will use the ergodic hypothesis when we come later (section 3.5) to classical
statistical mechanics, which in essence starts from its assumption. For the moment,
we consider also some other natural averages. To begin, we realise that ρ is described
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by an ensemble average, and it therefore also describes a probability density for the
evolution of a trajectory in Γ. It is also natural, for a collection of N particles, to
suppose that the probability density (now in P ) for a single particle is independent
of which particle is chosen: all particles are equivalent: but it is a matter of care
to determine this, because it is also clear that the motion of a single particle is not
independent of all the others. For example, it is obvious that the density in P of a
single particle in a box is not the same as that of one of N particles in a box, since the
single particle has a velocity distribution which resides on a sphere in U . The effort
to determine what is called the single particle distribution function for the motion of
any of N particles in a box leads us to the Boltzmann equation.

3.2 The Boltzmann equation

It is common practice in fluid mechanics texts to derive the equations of mass, mo-
mentum and energy from first principles, assuming that one can define an average
density1 ρ, average velocity u, and average internal energy e of the medium, and
that these are continuously differentiable functions. Mass conservation causes no dif-
ficulties, and nor does energy, provided one adds in some thermodynamics, and in
addition uses the momentum equation. However, the momentum equation involves
the introduction of a stress tensor, and the properties of this quantity are largely, if
reasonably, made up.

A more fundamental approach begins with the concept that a fluid consists of a
large number of molecules, whose position and velocity fluctuate in time and space,
and which interact through the action of short range forces whose effect can be con-
ceived of as enabling collisions. In order to describe the collective motion, we define a
velocity distribution function f(r,v, t), which is the expected number density function
of molecules of position r and velocity v. More precisely,

f(r,v, t) dv dr (3.9)

is the expected number of molecules in the six-dimensional hypervolume element dv dr
centred at (r,v), where dv is a (positive) volume element in velocity space, and dr is
a volume element in physical space. In practice, if N is the total number of particles
in the volume under consideration, then f/N is the single particle probability density
function.

There is a specific connection between f and the Liouville density ρ, which de-
scribes the density of an ensemble of trajectories in the 6N -dimensional phase space
Γ. The s-particle probability density is defined as

ρs =

∫
Γs+1

ρ dΓs+1, dΓs+1 =
N∏
s+1

dγk, dγk = dqk dpk, (3.10)

1In a confusing subject, it does not help that the fluid density ρ, which is the number of particles
per unit volume multiplied by their mass, has the same symbol as that used for the ensemble density
of trajectories in 6N -dimensional space Γ; but it does. Keep your wits about you!
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where pk = mvk, qk = rk, and the s-particle distribution function is given by

fs(γ1, . . . , γs) =
N !

(N − s)!
ρs(γ1, . . . , γs). (3.11)

The distinction between fs and ρs lies in the fact that fs is not concerned with particle

identity; the number of ways of selecting s particles from N is
N !

(N − s)!
, and this is

the number of the distinct realisations in Γs which are indistinguishable for fs. An
equivalent statement is that ρs can be assumed to be invariant under permutations
of γ = (γ1, . . . , γs), so that fs is a density over the space of permutations of γ.

It can be shown (see question 3.2) that the velocity distribution functions fs satisfy
the BBGKY hierarchy equations

∂fs
∂t

+ {fs, Hs} =

∫
P

s∑
i=1

∂fs+1

∂pi
· ∂Wi,s+1

∂qi
dγs+1, (3.12)

where {f,H} is the Poisson bracket, and Wij = W (|ri − rj|) is the inter-particle
potential; the space P = V × U is the position-velocity space inhabited by each
particle.

The left hand side of this equation represents conservation of particle density
in the space (call it Ps) spanned by (γ1, . . . , γs). The density of these points is not
conserved however, because collisions can provide a source or sink to a neighbourhood
of Ps through changes to p. The integral term on the right provides the description
of this collision term.

We can rewrite (3.12) in a slightly more accessible fashion by defining

aij = − 1

m
∇riWij (3.13)

(not summed) as the force per unit mass on particle i due to particle j; here ∇ri

indicates the gradient with respect to ri. If in addition g is the external force per
unit mass acting on the particles, then the BBGKY equations take the form

∂fs
∂t

+
s∑
i=1

[
vi.∇rifs +

{
g +

s∑
j=1

aij

}
.∇vifs

]
= −

s∑
i=1

∫
P

ai,s+1.∇vifs+1 dγs+1.

(3.14)
In particular, the velocity distribution function f = f1 satisfies

∂f

∂t
+ v.∇rf + g.∇vf = −

∫
P

a12.∇vf2 dγ2. (3.15)

The right hand side of (3.15) is the collision integral, denoted as Q, and the Boltz-
mann equation follows from the assumption that the number of particles N is large,
and that the joint probability density function ρ2(r,v; s,w, t) = ρ1(r,v, t)ρ1(s,w, t),
that is to say the probability of a particle being at r with velocity v is independent
of its probability of being at s with velocity w. This assumption seems reasonable,

44



providing the range of the inter-particle force is much less than the mean distance
between particles, and this we assume; this is the hard-sphere gas assumption. In
that case, the collision term takes the form

Q = −
∫
P

a(r− s).∇vf(r,v, t)f(s,w, t) ds dw. (3.16)

The Boltzmann equation is a master equation for f , with the added piquancy
that the time derivative is one which follows the particles in their six-dimensional
position-velocity space. Because the particles satisfy

ṙ = v, v̇ = g, (3.17)

and because we take the body force per unit mass g = g(r) to be independent of v,
it follows that the Boltzmann equation takes the form

∂f

∂t
+ ∇r.(fv) + ∇v.(fg) = Q, (3.18)

which also results from the usual form of integral conservation law applied to a volume
fixed in (r,v) space. The collision integral plays the same rôle as the integral term
in the master equation (2.22), and is indeed analogous to it.

3.2.1 The collision integral

In question 3.5, we show that for short range forces, Q takes the particularly simple
form

Q = −A.∇vf, A = K∇n, (3.19)

and n(r, t) is number density. However, this is not the form which the Boltzmann
equation usually takes. In this section, we start from the equation (3.18), and we
derive an expression for Q from first principles, based on an assumption of instanta-
neous elastic collisions between molecules, which we thus conceive of as a collection
of hard spheres. More generally, this should be appropriate where the intermolecular
forces are conservative and of short range (compared with the molecular mean free
path), so that the collision process is very rapid. We will then find a conundrum,
since our first principles calculation yields a result quite different to (3.19), and we
shall have something to say about this in due course.

Our calculation for Q is based on a master equation approach. Contributions to
Q occur via losses (collisions remove particles from the neighbourhood in v), but also
gains, whereby collisions beyond dr dv cause production of particles with velocities
near v. As in (2.22) we separate Q into two components,

Q = Q+ −Q−, (3.20)

where Q+ is the source to v due to other collisions, and Q− is the loss from v in
collisions.
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1

2

V

k

Figure 3.3: Geometry of impact, relative to molecule 1.

Impact

Suppose two molecules (of equal masses and diameters) with velocities v and w, and
labelled respectively 1 and 2, collide as indicated in figure 3.3, which represents the
point of impact. Momentum conservation implies

v + w = v′ + w′, (3.21)

where v′ and w′ are the respective velocities of the molecules 1 and 2 after impact.
We let k denote the unit vector along the line of centres, from 2 to 1, at impact, and

V = w − v (3.22)

denotes the relative velocity. Note that collision requires V.k > 0.
For a purely elastic impact, the relative normal velocity is reversed, while the

tangential velocity is continuous (and it is easy to show that energy is then conserved).
If V′ = w′ − v′ is the relative velocity following impact, we then have

−V.k = V′.k,

V − (V.k)k = V′ − (V′.k)k, (3.23)

and using these together with (3.21), we find

v′ = v + (V.k)k,

w′ = w − (V.k)k, (3.24)

which give the post-collisional velocities in terms of the arbitrary V and k.
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Figure 3.4: Calculation of impact frequency. V here is the velocity of molecule 2
relative to molecule 1.

Impact frequency

Next we need to know the frequency at which these impacts occur. The number of
molecules in the vicinity of r,v is f(r,v, t) dr dv, and the number of impacts in time
dt within a solid angle dω(k) at the point of contact in direction k of molecule 1
with molecules moving at relative speed V is f(r− dk,w, t) dVcyl dw, where d is the
molecular diameter, and dVcyl is the volume of the cylinder indicated in figure 3.4,
and is given by

dVcyl = d2k.V dω(k) dt. (3.25)

The displacement −dk represents the offset of the centre of molecule 2 evident in
figure 3.3, but is small and will be ignored. We thus gain an expression for the loss
of molecules in collisions,

Q− dr dv dt = f(r,v, t)f(r,w, t) d2k.V dω(k) dw dr dv dt; (3.26)

integrating over V and k such that V.k > 0, we have

Q− =

∫
U

∫
Ω+

f(r,v, t)f(r,w, t) dΩ dw, (3.27)

where we write

Ω+ = {k |V.k > 0}

dΩ = d2k.V dω(k). (3.28)
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Calculation of collision integral

It remains to compute the source term for molecules of velocity v. This is done by
simply relabelling v ↔ v′ and w ↔ w′. Since the collision is reversible, the change
in velocity formulae in (3.24) remain valid, and the source term is (cf. (3.26))

Q+ dr dv dt = f(r,v′, t)f(r,w′, t) d2k′.V′ dω(k′) dw′ dr dv′ dt; (3.29)

note the primes on the velocities (and the corresponding volume elements) on the
right hand side.

We have also written the direction vector as k′, which is cosmetic, but useful, as
we now show. As a consequence, the formulae (3.24) apply with the same cosmetic
change. The point is that in writing (3.29), the restriction to collisions requires
V′.k′ > 0, that is V.k′ < 0. To obtain the same integration range as in (3.27), it is
therefore convenient to write

k′ = −k, (3.30)

so that V.k > 0 as before. The formulae (3.24) remain valid as they stand.
Finally, we want to change variables on the right hand side of (3.29) from v′,w′

to v,w so that we can carry out the same division by the hypervolume dr dv dt to
find Q+. The transformation (3.24) is linear, and the change of variable yields

dv′ dw′ = J dv dw, (3.31)

where J is the Jacobian of the transformation,

J =

∣∣∣∣∂(v′,w′)

∂(v,w)

∣∣∣∣ . (3.32)

Evaluating the coefficients, we find that J is the modulus of the determinant of
the matrix J , in block form,

J =

(
I −K K
K I −K

)
, (3.33)

where I is the three-by-three identity matrix, and K is the three-by-three orthogonal
matrix

Kij = kikj. (3.34)

Note that Kk = k, and Km = Kn = 0 if m and n are independently orthogonal to
k. By direct calculation, the following vectors are eigenvectors of J :(

m
0

)
,

(
n
0

)
,

(
0
m

)
,

(
0
n

)
,

(
k
k

)
,

(
k
−k

)
, (3.35)

with respective eigenvectors 1, 1, 1, 1, 1,−1; thus detJ = −1, and J = 1. Hence

dv′ dw′ = dv dw (3.36)
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Figure 3.5: Geometric interpretation of Ω+. O is the origin in velocity space.

in (3.29). Dividing by the hypervolume element and noting that

k′.V′ = k.V, (3.37)

we obtain the source term for (3.18) in the form

Q+ =

∫
U

∫
Ω+

f(r,v′, t)f(r,w′, t) dΩ dw, (3.38)

and the collision term takes the final form

Q =

∫
U

∫
Ω+

[f(r,v′, t)f(r,w′, t)− f(r,v, t)f(r,w, t)] dΩ dw, (3.39)

in which v′ and w′ are given by (3.24).
Q{f, f} is a quadratic integral operator in which the integral is five-dimensional,

over the three dimensions of velocity space and the two of the solid angle space Ω+.
A useful characterisation of this latter is illustrated in figure 3.5. Given v and w, we
construct the sphere in which v and w are diametrically antipodal points: we call this
the antipodal sphere. The diameter is the vector V, as shown in figure 3.6. For any
unit vector k such that V.k > 0, v′ and w′ lie on this sphere (and are diametrically
antipodal); the simplest way to show this by showing that v′ − v is orthogonal to
w − v′. Integration over Ω is thus represented as the integration over solid angle
subtended by v on this sphere. In more detail (see figure 3.6), if θ is the polar angle
and φ the azimuthal angle, then

dΩ = d2V.k dω = d2V cos θ sin θ dθ dφ =
d2 dS

V
, (3.40)
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Figure 3.6: Integration with repect to (scaled) solid angle Ω over the antipodal sphere.

where dS is the element of surface area on the sphere. (This last follows from using
the spherical polar definition of dS about the centre of the sphere.)

The expression in (3.39), derived from first principles for a hard-sphere gas, can
be compared with (3.16), or the simpler hard-sphere expression (3.19); it is quite
different! Importantly, (3.16) changes sign under time reversal, while (3.39) does not;
thus the Boltzmann equation coming from the BBGKY hierarchy is time-reversible,
but that from the first principles calculation is not. Why is this? And why does the
hard-sphere calculation not give the same result as the BBGKY one?

The closure of (3.15) by assuming independence of the two particles in ρ2 to obtain
(3.16) does not seem unreasonable, and it maintains reversibility. If one accepts this
approximation as fact, then the consequent simplification in question 3.5, which leads
to the BBGKY-derived definition

Q = −A.∇vf, A =

∫
P

a(ξ)f(r− ξ,w, t) dξ dw (3.41)

is also exact, for the same reason that Liouville’s equation is exact: the velocity (but
let us call it the hyper-velocity) γ̇ = (ṙ, v̇) is a smooth function of hyper-position
γ ∈ P .

Exact or not, this prescription is not of much practical use, since during a col-
lision, smooth and singular though a may be, the velocity changes rapidly. The
difference between the BBGKY model and the hard-sphere model is that the latter
allows many collisions to occur in its short time interval ∆t � tf , where tf is the
mean time between collisions. In this short time an initially smooth hyper-volume
element dγ is distorted through collisions into a highly nonlinear hyper-volume el-
ement with multiple branching pseudopodia extending, like a fungus, throughout
hyperspace Γ: see figure 3.7. It is this chaotic behaviour, analogous to that described
for Hamiltonian systems in section 1.5, and particularly for the baker map, which
causes the distinction between the exact but useless BBGKY hierarchy and the in-
exact but effective Boltzmann collision integral (3.39), which is in fact constructed,
like Einstein’s theory of Brownian motion, or the derivation of the master equation,
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BBGKY                      Boltzmann

Figure 3.7: The distinction between the smooth BBGKY evolution and the chaotic
Boltzmann evolution is one of time scale.

on the basis of probabilistic time-stepping. Another, rather precise, analogy is to
compare the Navier-Stokes equations with the Reynolds-averaged equations of fluid
mechanics, described in section 1.3. The ‘exact’ Navier-Stokes equations have chaotic,
turbulent solutions at high Reynolds number which they are useless to describe. This
is best done with the Reynolds-averaged equations, assuming a good closure for the
Reynolds stresses. However, whereas a microscale model for particle mechanics suc-
cessfully produces a closure for the Boltzmann equation, no comparable microscale
solution for the Navier-Stokes equations is known which can provide a mechanisti-
cally derived closure for the Reynolds equations. This is the fundamental problem in
turbulent fluid flow modelling.

3.2.2 Conservation laws

Note that, because of the conservation of particle number, momentum and energy in
the collision, it follows that ∫

U

ψ(v)Qdv = 0, (3.42)

for the three quantities
ψ(v) = 1, v, 1

2
v2, (3.43)

though it seems that this is hardly obvious. The integral in (3.42) consists of two
parts, corresponding to the division of Q = Q+ +Q− in (3.27) and (3.38). For brevity,
we write f(r,v, t) = f(v), and then∫

U

ψ(v)Q+ dv =

∫
Σ

ψ(v)f(v′)f(w′) dΣ, (3.44)
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where we write

Σ = U2 × Ω+,

dΣ = dΩ dw dv. (3.45)

We change variables from v,w to v′,w′. As earlier, the Jacobian is one, and we
define k′ = −k. Using (3.24) and (3.37), we then have, on dropping the primes,∫

U

ψ(v)Q+ dv =

∫
Σ

ψ(v′)f(v)f(w) dΣ, (3.46)

and thus ∫
U

ψ(v)Qdv =

∫
Σ

[ψ(v′)− ψ(v)]f(v)f(w) dΣ. (3.47)

In this integral we now interchange v and w, and we define k′ = −k. Then also, from
(3.24), v′ is replaced by w′, and the integral (3.47) can also be written in the form∫

U

ψ(v)Qdv =

∫
U2

∫
V.k′>0

[ψ(w′)− ψ(w)]f(v)f(w) d2k′.V dω dw dv. (3.48)

Adding the two expressions (noting that k′ is a dummy variable),

2

∫
U

ψ(v)Qdv =

∫
Σ

[ψ(v′) + ψ(w′)− ψ(v)− ψ(w)]f(v)f(w) dΣ. (3.49)

It follows from this that (3.42) is satisfied identically if (and only if)

ψ(v′) + ψ(w′) = ψ(v) + ψ(w), (3.50)

i. e., ψ is conserved in collisions, which is the case for (3.43), and for no other inde-
pendent quantity, as mass, momentum and energy are the only conserved quantities.
(While this seems reasonable, it is by no means obvious; the result is proved later.)

We define the number density of molecules n at a point in physical space to be

n =

∫
U

f dv, (3.51)

where we suppose f → 0 as |v| → ∞. If the molecules have mass m, then the density
is defined as

ρ = mn. (3.52)

We also define the mean velocity by

nu =

∫
U

fv dv, (3.53)

and more generally the mean φ̄ of a quantity φ is defined by

nφ̄ =

∫
U

fφ dv. (3.54)
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We have the following identity:∫
U

[
∂(fψ)

∂t
+ ∇r.(fψv) + ∇v.(fψg)

]
dv =

∫
U

ψ

[
∂f

∂t
+ ∇r.(fv) + ∇v.(fg)

]
dv

+

∫
U

f

[
∂ψ

∂t
+ v.∇rψ + g.∇vψ

]
dv. (3.55)

On the left hand side, we remove the t and r derivatives outside the integral, and apply
the divergence theorem to the v derivative, together with the (necessary) assumption
f → 0 as |v| → ∞.2 Through the definition of the average in (3.54), together with
the Boltzmann equation (3.18), (3.55) thus implies (after multiplication by m)

∂(ρψ̄)

∂t
+ ∇. (ρψ̄u) + ∇.Jψ =

∫
U

mψQdv + ρ
[
ψt + v.∇ψ + g.∇vψ

]
, (3.56)

where
Jψ = ρψu′ (3.57)

is the molecular flux of ψ, the velocity fluctuations u′ are defined by

u′ = v − u, (3.58)

and we have written ∇ = ∇r.
The averaged term on the right hand side is simplified if we suppose ψ depends

only on v, since then ψt = ∇ψ = 0, since these partial derivatives are taken with v
constant. Now we take the three values of ψ = 1, v, 1

2
v2, as in (3.43), for which the

integral term in (3.56) vanishes (see (3.42)), so that the conservation law (3.56) takes
the form

∂(ρψ̄)

∂t
+ ∇. (ρψ̄u) + ∇.Jψ = ρg.∇vψ. (3.59)

For ψ = 1, we obtain the conservation of mass equation

∂ρ

∂t
+ ∇. (ρu) = 0; (3.60)

for ψ = v, we obtain conservation of momentum in the form

∂ρu

∂t
+ ∇. (ρuu) = ∇.σ + ρg, (3.61)

where the stress tensor is defined by

σ = −ρu′u′, (3.62)

and we follow the tensor notation where ab denotes the tensor with components aibj.

2Necessary, because f is a density and must integrate over U to a finite quantity.
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Finally, we obtain the energy equation by putting ψ = 1
2
v2. The result of this is

∂

∂t
(1

2
ρu2 + ρe) + ∇. [(1

2
ρu2 + ρe)u] = −∇.q + ∇. (σ.u) + ρg.u, (3.63)

where the internal energy per unit mass is defined by

e = 1
2
u′2, (3.64)

and the conductive heat flux is
q = 1

2
ρu′2u′. (3.65)

A note on kinetic theory

The assumption in the derivation of the collision integral is that the molecules are
relatively far apart, in the sense that a typical distance between them, l, is much
greater than the molecular diameter d. As we shall see, this will typically be the case
for gases, but not for liquids, and so the derivation of the Navier–Stokes equations
from the Boltzmann equation is most usually thought to apply to gases. In fact, the
formalism can still be applied to liquids, only the form of the collision integral will not
be of the Boltzmann form; also the internal energy will not just be given by (3.64),
as it will also involve the potential energy associated with intermolecular forces.

For gases, the internal energy per molecule is related to the macroscopic measure,
the temperature, by the relation

1
2
mu′2 = 3

2
kT, (3.66)

where k = 1.38 × 10−23 J K−1 is Boltzmann’s constant. In addition, we define the
pressure in the usual way as

p = −1
3
σkk = 1

3
ρu′2, (3.67)

from which we can derive the perfect gas law

p = nkT =
ρRT

M
, (3.68)

where R is the perfect gas constant and M is the molecular weight, these being defined
by

R = kA, M = Am, (3.69)

with A = 6× 1023 being Avogadro’s number, the number of molecules in a mole.

3.2.3 Boltzmann’s H–theorem

We go back to (3.49), which we write in the form∫
U

ψ(v)Qdv = 1
2

∫
Σ

∆ψ(v,w)f(v)f(w) dΣ, (3.70)
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where
∆ψ ≡ ψ(v′) + ψ(w′)− ψ(v)− ψ(w). (3.71)

In the integral, we change variables from v,w to v′,w′, and in addition we define
k′ = −k. We then change the dummy labelling between the primed and unprimed
variables, noting (3.24) and its inverses; the result is∫

U

ψ(v)Qdv = −1
2

∫
Σ

∆ψ(v,w)f(v′)f(w′) dΣ. (3.72)

Adding the two results, we obtain∫
U

ψ(v)Qdv = 1
4

∫
Σ

∆ψ(v,w)[f(v)f(w)− f(v′)f(w′)] dΣ. (3.73)

Now suppose that f is independent of r, or more generally that it is slowly varying
in r, in a sense which will be made clearer later. It may depend on t, though we do
not write this dependence explicitly. Define a function

H =

∫
U

f ln f dv. (3.74)

H is a function of t, and its derivative is

Ḣ =

∫
U

(1 + ln f)Qdv (3.75)

(the term involving g vanishes identically by an application of the relation∫
U

∇vGdv =

∫
∂U

Gn dS, (3.76)

if G→ 0 as |v| → ∞). Applying (3.73),

Ḣ = 1
4

∫
Σ

ln

[
f(v′)f(w′)

f(v)f(w)

]
[f(v)f(w)− f(v′)f(w′)] dΣ. (3.77)

Since f > 0 and (1 − ζ) ln ζ ≤ 0, it follows that Ḣ ≤ 0. In addition, H is bounded
below,3 and thus H tends to a constant, in which

∆ ln f = 0. (3.78)

3This seems intuitively reasonable, since f ln f is bounded below, and generally it will be true;
however, it is possible to construct pathological sequences of f for which it might not be true. For

example, take fM =
1

4πv3 ln2 v
for e < v < M , and zero otherwise: then n remains bounded as

M →∞, while H ∼ −3 ln lnM → −∞. However, for systems of finite total energy (as we assume),

the integral

∫
v2f dv is bounded and remains so; if H were to become unbounded, we would then

have to have f < exp[−O(v2)], in which case the integral defining H is finite. This is the argument
given by Chapman and Cowling (1970, p. 67, footnote), but even this argument is insufficient; a
more complete demonstration is given in question 3.9.
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This is Boltzmann’s H–theorem. The state Ḣ = 0 defines an equilibrium distribution,
called the Maxwellian distribution.

(3.78) expresses the fact that ln f is conserved in collisions, and because ∆ is a
linear operator, ln f must be a linear combination of the three conserved quantities
in (3.43), i. e.,

f = A exp[B.v − 1
2
Cv2], (3.79)

or equivalently, completing the square,

f = Â exp[−1
2
C|v − v̂|2]. (3.80)

We can now determine the constants in terms of the mean number density, velocity,
and temperature, defined, using (3.51), (3.53) and (3.66), by

n =

∫
U

f dv, nu =

∫
U

fv dv,
nkT

m
= 1

3

∫
U

f |v − u|2 dv. (3.81)

Carrying out the calculations, we find

v̂ = u, C =
m

kT
, Â = n

( m

2πkT

)3/2

, (3.82)

and thus

f = n
( m

2πkT

)3/2

exp

[
−mu

′2

2kT

]
. (3.83)

This is the Maxwellian distribution, a Gaussian in the velocity fluctuation u′. Note
that (3.83) can be written in the form

f =
n

(2πc2)3/2
exp

[
− u

′2

2c2

]
, (3.84)

where

c =

√
kT

m
=

√
RT

M
=

√
p

ρ
(3.85)

is the isothermal sound speed.

Non-dimensional estimates

The use of the above theory in the macroscopic description of fluids introduces the
important concept of scale. In particular, we may expect macroscopic quantities such
as density and velocity to vary on a macroscopic length scale, which for simplicity
we will identify as the dimension L of our box, with its N particles. In solving the
Boltzmann equation, it is then natural to non-dimensionalise the variables, and this
will give us some idea of the relative sizes of the terms.

As we are about to allow spatial variations in the macroscopic variables n, T and
u, we define typical scales for these variables as n0, T0 and

v0 =

√
kT0

m
. (3.86)
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The particle number density scale n0 defines a mean inter-particle distance

l =
1

n
1/3
0

, (3.87)

and we take v0 in (3.86) to be a typical fluctuation velocity scale. The intermolecular
potential varies over an interaction distance which we may take to be the molec-
ular diameter d (this is discussed further in section 3.6), and the hard sphere gas
assumption presumes d� l.

The inter-particle length is much less than the mean free path, which is the typical
distance a particle progresses between collisions. A single particle travelling in its
domain of cross-sectional area l2 encounters another particle every distance l, but
typically not in the same position. Looking ahead of itself, it needs to encounter
∼ (l/d)2 particles (which thus cover the cross section), before it is likely to collide
with one. The mean free path is thus4

lf ∼
l3

d2
=

1

n0d2
. (3.88)

We can also define a corresponding mean free time between collisions,

tf =
lf
v0

, (3.89)

and a mean collision time

tc =
d

v0

. (3.90)

We non-dimensionalise the variables as

n ∼ n0, f ∼ n0

v3
0

, Q ∼ n2
0d

2

v2
0

, r ∼ L,

v ∼ v0, g ∼ g, t ∼ L

v0

, T ∼ T0, (3.91)

and denote the dimensionless values of n and T as n∗ and T ∗ (the asterisk is omitted
from the velocities, however); then the Boltzmann equation (3.18) with (3.39) takes
the dimensionless form

ε

[
∂f

∂t
+ ∇r.(fv) +

1

F 2
∇v.(fg)

]
= Q,

Q =

∫
U

∫
Ω+

[f(r,v′, t)f(r,w′, t)− f(r,v, t)f(r,w, t)] dΩ dw, (3.92)

where

ε =
lf
L

=
1

n0d2L
, F =

v0√
gL
. (3.93)

F is a kind of Froude number (actually the Mach number times the Froude number),
and is typically large. The parameter ε is known as the Knudsen number, often
written as Kn, and is usually very small. This allows us to develop a perturbative
solution of the Boltzmann equation when f also depends on r.

4Chapman and Cowling (1970, p. 88) use a more elaborate calculation to show that lf =
1

π
√

2nd2
.
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3.2.4 The Chapman-Enskog method

The terms in the conservation of mass, momentum and energy equations which need
to be specified are the stress tensor and the conductive heat flux. From (3.62) and
(3.65), these are

σ = −ρu′u′, q = 1
2
ρu′2u′. (3.94)

If we use the Maxwellian distribution for f to provide expressions for these, we find

σ = −pI, q = 0; (3.95)

hardly surprising, since our assumption of spatial independence implies uniform tem-
perature and velocity. Thus in order to compute viscosity and thermal conductivity,
we must consider corrections to the equilibrium Maxwellian distribution due to vari-
ation of f with r; the way to do this is generally referred to as the Chapman–Enskog
method.

We write the material derivative of f in P = V ×U as ḟ , so that the dimensionless
Boltzmann equation in (3.92) is just

εḟ = Q(f, f), (3.96)

where it is now useful to define the collision integral Q in terms of the symmetric
bilinear operator

Q{f, g}(v) = 1
2

∫
U

∫
Ω+

[f(v′)g(w′) + f(w′)g(v′)− f(v)g(w)− f(w)g(v)] dΩ dw.

(3.97)
First note that by putting

f = eΦ, (3.98)

(3.96) can be written in the form

εΦ̇ =

∫
U

∫
Ω+

[exp(∆Φ)− 1] f(w) dΩ dw. (3.99)

The Maxwell solution in dimensionless form is

Φ0 = ln

[
n∗

(2πT ∗)3/2

]
− u′2

2T ∗
, (3.100)

and is the first term in an asymptotic expansion of the solution in powers of ε.
Calculation of the viscosity and thermal conductivity requires computation of the
solution to the next order.

We expand the solution as

Φ = Φ0 + εφ+ . . . ; (3.101)

noting that ∆Φ0 = 0, it follows that φ satisfies the linear equation

Lφ = Φ̇0, (3.102)
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where we define the linear integral operator

Lφ =

∫
U

∫
Ω+

f0(w)∆φ dΩ dw, (3.103)

where here f0 = eΦ0 is the Maxwellian. Alternatively, by direct calculation from
(3.96),

Lφ =
2

f0

Q(f0, f0φ). (3.104)

(3.102) is a linear Fredholm integral equation, and can be treated using standard
methods, as described below.

Useful properties of L follow from consideration of the properties of the collision
integral operator Q(f, g). We consider the integral

I =

∫
U

ψ(v)Q{f, g}(v) dv, (3.105)

using the definition of Q in (3.97). We can then write I in three further ways,
analogously to the manipulations following (3.44), that is, we firstly re-label the
variables by swapping v with w (and thus also v′ with w′); secondly, we change
variables from v,w to v′,w′; and thirdly, we repeat the first manoeuvre on the
formula obtained from the second. This gives four different definitions of I; adding,
and dividing by four, we obtain the relation

I = 1
8

∫
Σ

∆ψ[f(v)g(w) + f(w)g(v)− f(v′)g(w′)− f(w′)g(v′)] dΣ. (3.106)

Now we put f = f0, g = f0φ into this; using the definition of I in (3.105), we find
(noting that f0(v′)f0(w′) = f0(v)f0(w))∫

U

f0(v)ψ(v)Lφ(v) dv = −1
4

∫
Σ

f0(v)f0(w)∆ψ∆φ dΣ, (3.107)

and evidently because of the symmetry of this last expression, we also have∫
U

f0(v)ψ(v)Lφ(v) dv =

∫
U

f0(v)φ(v)Lψ(v) dv. (3.108)

We now define an inner product as

〈φ, ψ〉 =

∫
U

f0(v)φ(v)ψ̄(v) dv (3.109)

(the overbar denotes the complex conjugate); it follows from (3.108) that L is self-
adjoint, and therefore the integral equation (3.102) only has solutions if 〈φ, η〉 = 0 for
all null solutions of Lη = 0. One can show that the null solutions are precisely the
collision invariants χ ∈ N = span{1,v, 1

2
v2}, and thus (3.102) only has solutions if

〈Φ̇0, η〉 = 0 (3.110)
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C

D

O

Figure 3.8: The initial grid used in the proof that N is the null space of L.

for these null solutions (N is the null space of L).
Although it is reasonable to imagine that the null space of L is precisely N , it

is not that simple to prove. An elegant argument due to Harold Grad is as follows.
First, in view of (3.107), we see that

〈φ,Lφ〉 ≤ 0, (3.111)

and equals zero if and only if ∆φ = 0, i. e., φ is conserved in collision. It follows that
Lφ = 0 if and only if ∆φ = 0 for all points on the sphere with v and w as antipodal
points, for any v and w. Such functions are called summational invariants.

Suppose we can find a function φ which is a summational invariant and such that
φ = 0 on the five points indicated in figure 3.8, i. e., at O: (0, 0, 0), A: (0,−1, 0),
B: (1, 0, 0), C: (0, 1, 0) and D: (0, 0, 1). Where there are three points of a square
where φ = 0, the property of summational invariance implies that φ = 0 at the fourth
point also (by drawing the circle through the four points). In this way, we can show
that φ = 0 at each of the other seven points of the cuboid spanned by OABCD.
Additionally, completing the square formed from A, B and C yields φ = 0 at B′:
(−1, 0, 0), the reflection of B in the plane AOCD. Repeating the argument for the
grid OAB′CD shows that φ = 0 at the vertices of the reflected cuboid, and indeed
the argument extends to allow φ = 0 at all points on the cubic grid surrounding the
origin (with A, B, C and D on the faces) and thence to all points in U with integer
coordinates.

Next we consider a square grid as shown in figure 3.9, with an interior square
abcd. We then have φa +φb = 0 (by consideration of the square OaCb), and similarly
φb + φc = 0, φc + φd = 0, and lastly from the square abcd itself, φa + φb + φc + φd =
0. From these we find that φ = 0 at all four points, and hence at all points of
the subdivided grid in U . The subdivision can be iterated indefinitely, with the
consequence that if φ is continuous, then it is identically zero. Finally, suppose that
Lφ = 0, φ is continuous, and that φ = φA at A, etc. (not all zero); we can uniquely
choose (five) coefficients a, b and c so that the function

ψ = a+ b.v + 1
2
cv2 (3.112)
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Figure 3.9: Subdividing the grid.

is equal to φ at these five points. Then L(φ−ψ) = 0 and φ−ψ = 0 at the five points;
thus φ ≡ ψ, which shows that in fact φ ∈ N .

The derivation of the conservation laws from (3.55) involves multiplication of the
Boltzmann equation by the null solutions χ. In the linear equation (3.102), this
corresponds (since Φ0 = ln f0) to projection on to N using the inner product (3.110).
Thus the conditions (3.110) will simply reproduce the conservation laws which we
already have; what we need to do is to find the parts of Φ̇0 which are in the orthogonal
complement N⊥ of N .

First we calculate Φ̇0. It is convenient to work with the functions 1,u′, 1
2
u′2, which

also form a basis for N . We write (3.100) in the form

Φ0 = A− 1
2
Cu′2, (3.113)

where

A = ln

[
n∗

(2πT ∗)3/2

]
, C =

1

T ∗
. (3.114)

Calculation then yields

Φ̇0 = ΦN −W.∇C + CUij
∂ui
∂xj

, (3.115)

where

ΦN =
dA

dt
+ u′.

[
∇A− Cg

F 2
+ C

du

dt
− 5

2
T ∗∇C

]
+ 1

2
u′2
[

2
3
C∇.u− dC

dt

]
, (3.116)

and
W =

(
1
2
u′2 − 5

2
T ∗
)
u′, Uij = u′iu

′
j − 1

3
u′2δij. (3.117)

The term ΦN lies in the null space of L, and as we now show, W and U are
orthogonal both to each other and to N . Therefore (3.110) implies ΦN = 0, and thus
the particular solution we seek of (3.102) can be written as

φ = −ξ.∇C + Cη :∇u, (3.118)
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where
Lξ = W, Lη = U. (3.119)

In general, one might add components of the homogeneous solution from N , but in
fact they can be taken to be zero without loss of generality by simply taking the
solution for Φ0 to contain the entire dependence on N .

Norms and inner products

First we calculate the inner products and norms of the elements of the null space N .
Quantities of particular note are

M2 = u′2 =

∫
U

f0u
′2 dv = 3n∗T ∗,

M4 = u′4 =

∫
U

f0u
′4 dv = 15n∗T ∗2. (3.120)

Note that the dimensionless values of n and T can be taken to be one, but these
values are not used yet. The inner products in N are easily found to be

〈1, 1〉 = n, 〈u′i, u′j〉 = 1
3
M2δij, 〈1

2
u′2, 1

2
u′2〉 = 1

4
M4,

〈1, u′i〉 = 0, 〈1, 1
2
u′2〉 = 1

2
M2, 〈1

2
u′2, u′i〉 = 0, (3.121)

where we make liberal use of symmetry arguments. It is further straightforward to
show that W,U ⊥ N , and that additionally W ⊥ U, as we stated above.

The solutions of (3.119) have the form

ξ = −F (u′)u′, η = −G(u′)U. (3.122)

Without loss of generality we may choose ξ,η ⊥ N (which thus specifies them
uniquely). One can even with some labour find approximate expressions for F and
G, but we do not pursue that here.

The justification for the forms in (3.122) is not so easy to deduce, and we now do
so. It relies on a certain rotational invariance of the operator L. We write (3.103) in
the form

Lφ =

∫
U

f0(w)

[∫
Ω+

∆φ(v,w,Ω) dΩ

]
dw, (3.123)

which recognises that the Maxwellian is a function of the magnitude of w, and that
∆φ is a function of both v and w, which together define the sphere spanned by Ω,
as well as the direction element Ω (cf. figures 3.5 and 3.6).

Now suppose that
φ = g(v)v; (3.124)

thus Lφ is a vector. Let us consider the effect on Lφ of a rotation about the v
axis, that is, we multiply Lφ by a matrix R which is orthogonal, and which satisfies
Rv = v. If we define

w = RTw∗, k = RTk∗, (3.125)
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then, noting also that v = RTv, we find that

v′ = RTv∗′, w′ = RTw∗′, (3.126)

and thus
R∆φ = ∆φ∗ = ∆φ(v,w∗,Ω∗), (3.127)

where Ω∗ is the direction element associated with k∗. The direction sphere Ω+ is
unaffected by the transformation, since V.k = V∗.k∗. It then follows that if we
change variable to w∗ in (3.123),

RLφ = Lφ, (3.128)

since the Maxwellian and the volume element are unchanged by the transformation.
If we suppose that

Lφ = u. (3.129)

It follows from (3.128) that
Ru = u (3.130)

for any rotation which leaves (only) v invariant, and this implies that in fact u ‖ v.
Thus we always have

L[g(v)v] = h(v)v, (3.131)

where h must be a function only of v = |v|.
Now let us extend the argument to tensors, and specifically we consider the tensor

φ to be of the form
φ = g(v)vv, φij = g(v)vivj. (3.132)

Note that φ is symmetric. Following through the argument used above, we find

RikRjl∆φkl(v,w,Ω) = ∆φij(v,w
∗,Ω∗), (3.133)

and thus, analogously to (3.128),

RikRjlLφkl = Lφij. (3.134)

Now let us suppose that
L[g(v)vivj] = Wij, (3.135)

and note that Wij is symmetric. It then follows from the invariance result (3.134)
that

RW = W, Rijkl = RikRjl, RikRjlWkl = Wij, (3.136)

analogously to (3.130).
It is convenient to think of the components of W as a nine-dimensional vector in

U × U , and if u, v, w form an orthogonal basis in U , then the nine tensors uu, uv,
etc. form an orthogonal basis in U2. Let us temporarily write these with a central dot,
thus uu = u ·u, etc. We then have Rijklvkvl = RikvkRjlvl = vivj, so R(v ·v) = v ·v.
In a similar fashion, R(u · v) = Ru · v, R(u ·w) = Ru ·Rw, and so on.
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Now since R is a rotation about the v axis, it is clear that both Ru and Rw lie
in the (u,w) plane, and thus are linear combinations of u and w; more specifically,

Rw = w cos θ + u sin θ,

Ru = −w sin θ + u cos θ, (3.137)

where θ is the angle through which R turns the (w,u) coordinates. We thus see that
in U2, R leaves vv invariant, and the eight-dimensional orthogonal subspace is also
invariant under R. In fact, R is an orthogonal matrix in U2 (see question 3.12), and
so the conclusion is analogous to that for (3.130), with the exception that there is
another invariant under R, which is the unit tensor

δ = 1
3

(
uu +

vv

v2
+ ww

)
, (3.138)

if we assume that u and w are unit vectors.5 That this is an invariant follows from
inspection of (3.136), and that vv and δ are the only two such invariants under R
follows straightforwardly but laboriously from using (3.137) (see question 3.13). Thus
the general solution of (3.136) is a linear combination of vv and δ, and thus

L[g(v)vv] = h(v)vv + k(v)δ. (3.139)

Since also L[p(v)] = q(v), it follows that

L
[
g(v)

{
vv − 1

3
δ
}]

= h(v)
{
vv − 1

3
δ
}
, (3.140)

since the left hand side, and therefore also the right hand side, has zero trace.
These results do not prove that the solutions of (3.119) are of the forms in (3.122),

but they show that such solutions are possible, providing suitable scalar functions F
and G can be found, and this follows naturally from the fact that F and G satisfy
inhomogeneous Fredholm equations in which the inhomogeneous terms are orthogonal
to the null space of the integral operator. That the solutions then must be of the
form of (3.122) follows from the fact that they are unique (if in N⊥).

3.2.5 Viscosity and thermal conductivity

We return to the definitions of the stress tensor and the heat flux in (3.94). First we
write these in terms of the dimensionless coordinates. We then find

σij = −pδij + τij, τij = −kT0

d2L
〈φ, u′iu′j〉 = −kT0

d2L
〈φ, Uij〉, (3.141)

since φ ⊥ 1
2
u′2. Now note that u′u′ is orthogonal to ξ (using (3.122)), and so only the

component of (3.118) proportional to η contributes to (3.141). Writing all this out,

5The simplest way to see this is to choose axes parallel to (u,v,w), so that uu =

 1 0 0
0 0 0
0 0 0

,

etc., and (3.138) follows in arbitrary coordinate systems since both sides are tensors.
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and converting ∇u to dimensional form, we find (using the summation convention)

τij =

√
mkT

d2
βijkl

∂uk
∂xl

, (3.142)

where T is dimensional temperature, and βijkl is the dimensionless fourth order tensor

βijkl =
1

T ∗3/2
〈GUkl, Uij〉. (3.143)

To calculate βijkl, we note first that symmetry considerations show that all the
components are zero unless (k, l) = (i, j) or (j, i). There are then two cases. If i 6= j,
then

τij = 2µε̇ij, (3.144)

where

ε̇ij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.145)

is the strain rate tensor, and the viscosity is

µ =

√
mkT

d2
µ∗, µ∗ =

1

T ∗3/2
〈GUij, u′iu′j〉 (3.146)

(not summed). Evidently µ is independent of the particular choice of i and j; in fact,
we have also

µ∗ =
1

T ∗3/2
〈GUij, Uij〉 =

1

T ∗3/2
〈Gu′2i , u′2j 〉

∣∣
i 6=j . (3.147)

If i = j, then

τii =

√
mkT

d2

∑
k

1

T ∗3/2
〈GUkk, u′2i 〉

∂uk
∂xk

, (3.148)

and for each value of k, we find

〈GUkk, u′2i 〉 = 〈Gu′2k , u′2i 〉 − (1
3
G1 + 2

3
G2), (3.149)

where
G1 = 〈Gu′2i , u′2i 〉, G2 = 〈Gu′2i , u′2j 〉

∣∣
i 6=j (3.150)

(and these are independent of i, j). By direct calculation, we have, putting u′ =√
T ∗(x, y, z),

G1 =
n∗T ∗2

(2π)3/2

∫
U

G(r)e−
1
2
r2x4 dV =

n∗T ∗2

4

√
2

π

∫ ∞
0

G(r)r6e−
1
2
r2 dr,

G2 =
n∗T ∗2

(2π)3/2

∫
U

G(r)e−
1
2
r2x2y2 dV =

n∗T ∗2

12

√
2

π

∫ ∞
0

G(r)r6e−
1
2
r2 dr,

(3.151)
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which gives G1 = 3G2. It follows from (3.148) that

τii = 2µ

[
∂ui
∂xi
− 1

3
ε̇kk

]
(3.152)

(summed over k only), and this, together with (3.144), yields the general formula

τij = 2µ(ε̇ij − 1
3
ε̇kkδij) (3.153)

(summed over k). From (3.147) and (3.151), we have

µ∗ =
G2

T ∗3/2
=

1

12

√
2

π

∫ ∞
0

G∗(r)r6e−
1
2
r2 dr, (3.154)

where we have written

G =
G∗

n∗T ∗1/2
(3.155)

(see question 3.14), or more simply just put n∗ = T ∗ = 1.
The heat flux is calculated in the same way. From its definition in (3.65), we find

qi =
1

d2L

√
k3T 3

0

m
〈φ, 1

2
u′2u′i〉. (3.156)

To calculate the inner product, note that since φ ⊥ N ,

〈φ, 1
2
u′2u′i〉 = 〈φ,Wi〉, (3.157)

and in view of (3.118) and the fact that U ⊥W, we have

〈φ, 1
2
u′2u′i〉 = −〈ξj,Wi〉

∂C

∂xj
, (3.158)

summed over j. Since both ξ and W are proportional to u′, it follows that 〈ξj,Wi〉 = 0
if i 6= j, and thus

〈φ, 1
2
u′2u′i〉 = − 1

T ∗2
〈ξi,Wi〉

∂T ∗

∂xi
(3.159)

(not summed). Converting the temperature gradient to dimensional units, we find

q = −kT∇T, (3.160)

where the thermal conductivity is

kT =
k∗

d2

(
k3T

m

)1/2

, (3.161)

and

k∗ =
1

T ∗5/2
〈ξi,Wi〉 =

1

T ∗5/2
〈Fu′i, (1

2
u′2 − 5

2
T ∗)u′i〉 =

1

3T ∗5/2
〈F, (1

2
u′2 − 5

2
T ∗)u′2〉.

(3.162)
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Making the substitution u′ = r
√
T ∗ and writing (see question 3.14)

F =
T ∗1/2F ∗(r)

n∗
, (3.163)

this last integral can be explicitly written as

k∗ =
4π

3

∫ ∞
0

e−
1
2
r2F ∗(r)

(
1
2
r2 − 5

2

)
r4 dr. (3.164)

The only remaining task is to show that µ and kT are positive. This is a conse-
quence of the negative definiteness of L on N⊥. More precisely, we see from (3.109)
and (3.107) that

〈ψ,Lψ〉 = −1
4

∫
Σ

f0(v)f0(w)(∆ψ)2 dΣ ≤ 0, (3.165)

and is equal to zero precisely if ψ ∈ N . The eigenvalues of L on N⊥ are thus all
strictly negative. Since we have taken ξ,η ∈ N⊥, it follows that (3.165) applies for
ψ = ξ,η, and thus from (3.119)

〈G(u′)U,U〉 > 0, 〈ξ,W〉 > 0, (3.166)

where the inequalities apply separately to each component of the inner products. In
particular, (3.147) implies that µ > 0, and (3.162) implies kT > 0.

Explicit expressions for µ∗ and k∗ are given in (3.154) and (3.164). Chapman and
Cowling (1970, page 168) give estimates based on solving for F and G of

µ∗ =
5

16
√
π
≈ 0.176, k∗ =

75

64
√
π
≈ 0.661. (3.167)

It is of interest to compare these values,

µ ∼ 0.18
√
mkT

d2
, kT ∼

0.66

d2

(
k3T

m

)1/2

, (3.168)

with actual measured values. We take

m ∼ 5× 10−26 kg, k = 1.38× 10−23 J K−1,

d ∼ 3.6× 10−10 m, T ∼ 300 K (3.169)

as representative values for air; these give µ ∼ 1.8× 10−5 Pa s and kT ∼ 0.08 W m−1

K−1: the first is about right, whereas the actual value of kT is about three times lower.
The agreement of the viscosity is slightly illusory, since in effect one can estimate the
molecular ‘diameter’ from the viscosity; however, the fact that the resultant thermal
conductivity is close to the actual value provides an independent confirmation of the
theory.
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3.2.6 The Maxwell slip boundary condition

3.2.7 Dense gases

3.3 Entropy and free energy

From its definition in (3.74), we see that H is n times the particle mean of ln f . It is
convenient to define a particle mean entropy s by

ns = −kH
m
, s = − k

m
ln f. (3.170)

It follows that from an initial configuration, s increases during the evolution to the
equilibrium Maxwellian distribution, and a direct calculation from (3.83) shows that
in equilibrium,

s =
k

m

[
3
2
− ln

{
n
( m

2πkT

)3/2
}]

=
k

m

[
3
2
− lnn+ 3

2
ln

(
4πe

3

)]
, (3.171)

since from (3.66),

e =
3kT

2m
. (3.172)

In particular, at fixed n,
T ds = de. (3.173)

If instead we vary n, then we find T ds = p dv, where

v =
1

ρ
(3.174)

is the specific volume, and we use

p = nkT, (3.175)

which follows from (3.68) and (3.69). In general, we therefore have

T ds = de+ p dv. (3.176)

We make a distinction between intensive and extensive variables. Intensive vari-
ables are those which refer to material properties. For example n, p and T are
intensive variables, as are e and s defined above. Extensive variables are those which
depend on the amount of material; for example particle number N and volume V are
extensive variables. Extensive variables may be defined through an invariance un-
der rescaling. For an ensemble of particles with fixed intensive properties, rescaling
of volume V by λ should lead to comparable rescaling for other extensive variables.
Some confusion arises because extensive definitions of energy and entropy are not per
unit mass. Thus the extensive definitions of entropy, energy, particle number and
volume are

S = mNs, E = mNe, N = nV, V = mNv, (3.177)
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and thus for fixed N and V , we have from (3.176)

T dS = dE + p dV, (3.178)

and

S = kN

[
3
2
− ln

N

V
+ 3

2
ln

(
4πE

3mN

)]
. (3.179)

It can immediately be seen that the definition of entropy in (3.179) is indeed extensive.
These relations apply at equilibrium, when the Maxwellian distribution has been
obtained.

Although these results are derived specifically for the hard sphere gas, it seems
reasonable to suppose that in general there is a specific entropy function s[f ], analo-
gous to (3.170), such that s increases towards an equilibrium in which one can define
an extensive function S = mNs, the entropy, which is determined as a function of
E = mNe and V , and such that (3.178) holds; indeed the enigmatic quantities T and
p can be defined by (3.178) (or (3.176)), i. e.,

T =
∂E

∂S

∣∣∣∣
V

, p = − ∂E

∂V

∣∣∣∣
S

, (3.180)

and these replace (3.64) and (3.67), which rely on the specific nature of the hard
sphere gas.

An extension of (3.178) to multi-component mixtures introduces the idea of chem-
ical potentials. If a gas, say, consists of a mixture of different gases labelled by a suffix
i, then the chemical potential µi can be defined as

µi =
∂E

∂Ni

, (3.181)

whereNi is the number of particles of phase i. Conventionally, Ni is measured in moles
(one mole contains Avogadro’s number A ≈ 6×1023 particles mole−1). Evidently the
chemical potential is intensive, and the generalisation of (3.178) is

T dS = dE + p dV −
∑
i

µi dNi. (3.182)

It is more common to define chemical potentials in terms of the Gibbs free energy,
which we define below.

The Gibbs–Duhem relation

The fact that S = S(E, V,Ni) is an extensive function of its extensive variables implies
that it is homogeneous of degree one, thus

S(αE, αV, αNi) = αS(E, V,Ni) (3.183)

for any α, and thus

E
∂S

∂E
+ V

∂S

∂V
+Ni

∂S

∂Ni

= S, (3.184)
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where we use the summation convention. Noting from (3.182) that

∂S

∂E
=

1

T
,

∂S

∂V
=
p

T
,

∂S

∂Ni

= −µi
T
, (3.185)

we see that in fact
E = TS − pV + µiNi; (3.186)

this is the Gibbs–Duhem relation. In differential form, it follows from (3.182) that

S dT − V dp+Ni dµi = 0, (3.187)

from which further definitions can be gleaned; one in particular to which we will
return is that for the rate of change of chemical potential with pressure:

∂µi
∂p

=
V

Ni

. (3.188)

3.4 Thermodynamic relations

Classical thermodynamics is generally presented as a set of fairly arbitrary-seeming
rules, but as we have seen, one can provide a coherent mechanical underpinning of
the subject. In doing this, we need to keep in mind the distinction between the
instantaneous state described by f(r,v, t), for which there is a well-defined specific
entropy s, internal energy e, and so on, and the (thermodynamic) equilibrium to which
the local configuration converges. It is only in this equilibrium that the entropy (and
other variables) can be taken to be defined in terms of particle number, internal
energy and volume, and in which (3.178) applies. One might suppose that since we
then defined temperature and pressure by (3.180), we could simply continue to do
so even before equilibrium is attained. This loses sight of the fact that when not in
equilibrium, the Boltzmann entropy s is not necessarily simply a function of n and
e as in (3.171), and so one cannot take S to be purely dependent on E and V when
out of equilibrium. Nevertheless, it should be noted that the conservation relations
(3.60), (3.61) and (3.63) do apply when out of equilibrium, and this will be important
below.

There are a number of subsidiary extensive variables which are commonly used.
These include the enthalpy,

H = E + pV, (3.189)

the Gibbs free energy
G = E − TS + pV, (3.190)

and the Helmholtz free energy
F = E − TS. (3.191)

As a spoiler, we may immediately note from (3.186) that

G = µiNi (3.192)
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(summed over i). It is straightforward to show that in thermodynamic equilibrium,

dH = T dS + V dp,

dG = V dp− S dT,

dF = −p dV − S dT. (3.193)

Less clear to assert are the statements that G is minimised at fixed T and p, while
F is minimised at fixed T and V . Here we go back to the non-equilibrium evolution
of the Boltzmann specific entropy s, noting also that the energy equation (3.63) can
be simplified using (3.60) and (3.61) (see also question 3.18) to the form

ρ

[
de

dt
+ p

dv

dt

]
= τij ε̇ij −∇.q ≡ R, (3.194)

where the strain rate tensor is ε̇ = 1
2
(∇u + (∇u)T ). For a Maxwellian velocity

distribution we can take R = 0, and in fact during the rapid time over which the
equilibrium distribution is reached, the macroscopic transport terms R can be ignored.
In this case, we have ṡ ≥ 0, ė+ pv̇ = 0 during approach to equilibrium.

Now let us consider evolution of a trajectory in Γ towards equilibrium, and we
consider the evolution of the specific Gibbs free energy

g = e− Ts+ pv. (3.195)

There is a conceptual difficulty here, because although we can happily define T and
p for the hard sphere gas, it is less obvious how to do so in general, and in particular
the more general definitions in (3.180) presume an equilibrium distribution. In order
to proceed, we suppose that the relaxation time for the solutions of the Boltzmann
equation tB is much less than the macroscopic time scale tM of interest, and we then
consider changes to the system on time scales tB � t� tM , so that local equilibrium
prevails but the source term R in (3.194) is negligible.

If we now consider a process in which T and p (and N) remain constant, then we
have

ġ = ė− T ṡ+ pv̇ = −T ṡ ≤ 0, (3.196)

and thus g (and so also G) tends to a minimum: the Gibbs free energy is minimised
at constant temperature and pressure.

In a similar manner, we consider the evolution of the specific Helmholtz free energy

f = e− Ts (3.197)

at constant T , V and N , whence also v is constant. Then ė = ė+ pv̇ = 0, so that

ḟ = ė− T ṡ = −T ṡ ≤ 0, (3.198)

and thus f (and so also F ) tends to a minimum: the Helmholtz free energy is min-
imised at constant temperature and volume.
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3.5 Classical statistical mechanics

Having established a mechanical basis for the concepts of internal energy and entropy,
we now proceed to re-derive these results in a much simpler but also more mystical
way. In what follows, it should be borne in mind that a particle has three quantities
of note: its existence, its position and its velocity. At the ensemble level, a collection
of particles is thus described by its number, volume and internal energy: N , V and
E. If we have more than one species present, then we have a sequence of numbers
Ni. Much of thermodynamics consists of identification of a slew of other derived
quantities, and relating them to each other through, in Sethna’s phrase, a zoo of
partial derivatives. This is also how classical statistical mechanics works.

Classical statistical mechanics is based on the concept of an ensemble, which we
can think of as a cluster of points in the realisation space of the system; for our
standard example of N particles in a box, this is the 6N -dimensional space Γ. In
practice, the ensemble will be a large number of points, but we can idealise it as
having, or being drawn from, a probability density. Indeed, as we shall see, the large
number of points allows us to cross from discrete sums to integrals with ease, and
this will be useful.

What we might then call axiomatic statistical mechanics is based on two postu-
lates:

Postulate 1: The time average on an individual trajectory is the same as
that of an ensemble average over the phase space.

We need to be a bit clearer what we mean by this. A single trajectory in Γ is given
by γ(t). We can think of this, as in figure 3.2, as being represented as a path on the
surface of a hypersphere ∂ΓE in Γ. The time average of a quantity φ(γ) is then

〈φ〉 = lim
T→∞

1

T

∫ T

0

φ{γ(t)} dt. (3.199)

On the other hand, if we define a probability density ρ of states on ∂ΓE, then the
ensemble average of φ(γ) over ∂ΓE is

φ̄ =

∫
∂ΓE

ρ(γ)φ(γ) dγ. (3.200)

Postulate 1 equates these two averages, and is the ergodic hypothesis of section 3.1.1.
The second postulate is simply an assumption of equiprobability:

Postulate 2: All states in the state space are equally likely.

What this means is that

ρ(γ) =
1

Ω
, (3.201)

where Ω is the volume of ∂ΓE. This assumption would not be true for dissipative
systems, for example.

To explore the consequences of these postulates, we consider in turn three types of
ensembles. The first of these is an isolated system (of particles), in which N , V and
E are held fixed. Precisely, then, the particles live on a constant energy hypersurface
∂ΓE ∈ Γ.

72



Microcanonical ensemble

We consider a set of N particles described by a Hamiltonian

H =
N∑
1

p2
i

2m
+W (qi) (3.202)

having total energy E, residing in a volume V . The trajectory γ resides on the surface
H = E of a hypervolume VH(E) having a ‘surface area’

Ω(E) =
∂VH
∂E

. (3.203)

For the ideal hard sphere gas, we takeW = 0 (except for collisions or at the boundaries
where W is infinite). The hypersurface H = E is then the cross product of BN ,
where B is the box inhabited by the particles, and the 3N -sphere

∑
p2
i = 2mE. The

hypervolume of the state space is then just

VH = V NV3N(
√

2mE), (3.204)

where VM(R) is the hypervolume of the M -sphere, which is

VM(R) =
πM/2RM

(M/2)!
. (3.205)

The hypersurface area is then, from (3.203)

Ω =
3N

2E

V Nπ3N/2(2mE)3N/2

(3N/2)!
, (3.206)

and this allows us to define the phase space density and thus entropy.

Definition of entropy

Classical statistical mechanics takes the results of solving the Boltzmann equation
and extends them in a more extrapolative way to more general systems, by way of
hypothesis. In particular, we define the entropy, and assume it satisfies the same
thermodynamic relationships that apply to the hard sphere gas. We could actually
define entropy to be anything we want, but it makes obvious sense to define it so
that it is consistent with the Boltzmann entropy, and to do this we re-examine its

definition in (3.170). This was s = − k
m

ln f , and extension to the extensive definition

in (3.177) suggests
S = −kN ln f. (3.207)

To relate this to the Liouville density ρ, which itself is related to the N -particle
distribution function by

fN = N !ρ (3.208)
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(see (3.11)), it is tempting to take fN ≈ fN , on the basis of a presumed independence
of the particles, and then define the entropy as

S = −kln fN = −kln(N !ρ). (3.209)

The relation (3.208) is not really quite right, since f is not itself a density, and it is
better to identify

ρ =
fN
N !
≈
(
f

N

)N
, (3.210)

and if we use this together with the Maxwellian expression (3.83) for f , then we find

S = kN

[
5
2
− ln

N

V
+ 3

2
ln

(
4πE

3mN

)]
, (3.211)

in mild contrast to (3.179). In deriving this, we use Stirling’s approximation

n! ∼ nne−n
√

2πn as n→∞, (3.212)

which is derived using Laplace’s method on the integral definition of the gamma
function Γ(z).

The difference between (3.211) and (3.179) simply represents an origin shift in the
definition of the specific entropy, and is inconsequential. More generally, we might
have expected to define entropy as

S = −k ln ρ = k ln Ω, (3.213)

and in fact this is the usual general definition. However it is important in defining
the state space that its members are distinguishable, and this is not the case in the
N -particle system, where there is no distinction between the N ! permutations of the
particles. This explains the presence of the factor N ! in (3.209); if it is omitted, one
obtains an expression for the entropy which is not extensive, and this is known as
Gibbs’s paradox.

Returning to the N -particle hypersurface (3.206), we avoid Gibbs’s paradox by
defining

S = k ln

(
Ω

N !

)
, (3.214)

and then a direct calculation using Stirling’s formula leads again to (3.211), with an
extra factor 3 lnm because the hyper-area (3.206) was calculated in momentum space.

Discrete state space

Commonly statistical mechanics deals with discrete state spaces, not for any obvious
reason, but in practice this makes little difference, because if the number of states is
very large, then the distinction between the consequent sums and their corresponding
integrals is slight.
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For a discrete state space, we suppose Ω is the number of (distinct) states, and
that these are all equally likely. The entropy is then defined as

S = k ln Ω. (3.215)

More generally, if the probability of the i-th state is pi, we can define

S = −k
∑
i

pi ln pi, (3.216)

which is familiar as the Shannon entropy of information theory. It reduces to (3.215)
when all the states are equally likely.

Canonical ensemble

A more general ensemble to consider is the canonical ensemble, where we consider
a box of N particles having volume V and (fixed) temperature T . Our conceptual
picture which allows this is to have the box B in thermal contact with a large reservoir
R, as shown in figure 3.10; heat exchange is possible through the common wall, but
no particle exchange occurs. In this case the combined system is isolated, and thus
has constant energy Etot.

B

R

Figure 3.10: Box and reservoir for the canonical ensemble.

In our discussion, we will follow convention in thinking of discrete states, although
in fact this is simply an approximation to the more appropriate continuous case. The
number of distinct states is denoted as Ω, and is a function of the energy E (and of

N and V , but these are fixed in each volume). The probability of any state is p =
1

Ω
,

and we define the entropy as
S = k ln Ω, (3.217)

and it is an extensive variable. Consequently

ΩR⊕B = ΩRΩB, (3.218)
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which also follows directly from the independence of the states in the two reservoirs.
Consider now a state γ ∈ B with energy H(γ) = Eγ. The energy in R is then

Etot − Eγ, so that (3.217) and (3.218) imply that the probability of the state γ is

pγ =
1

ΩB(Eγ)
=

ΩR(Etot − Eγ)
ΩR⊕B(Etot)

∝ exp

[
1

k

(
SR(Etot)− Eγ

∂SR(Etot)

∂E
. . .

)]
, (3.219)

i. e.,

pγ ∝ exp

[
−Eγ
kT

]
, (3.220)

since temperature is T =
∂SR
∂E

. Since the sum of all the probabilities is one, we

normalise this relation with the partition function

Z =
∑
γ

exp

[
−Eγ
kT

]
, (3.221)

and thus

pγ =
e−βEγ

Z
, β =

1

kT
. (3.222)

Note that from its definition, Z is dimensionless.

The Boltzmann mean is φ̄ =

∫
γ

ρ1φ dγ, where ρ1 is the one particle probability

density; equivalently the mean for a discrete distribution is φ̄ =
∑
γ

pγφ, and therefore

the mean energy is

E =
∑
γ

pγEγ = − ∂

∂β
lnZ. (3.223)

In similar fashion, we can compute other quantities, thus

S =
E

T
+ k lnZ,

Z = e−βF ,

G = kT

[
− lnZ + V

∂lnZ

∂V

∣∣∣∣
T

]
. (3.224)

Although we have derived the properties of the partition function assuming dis-
crete states, there is little difference in considering continuous states, for which we
define

Z =

∫
γ

e−βEγ dγ, (3.225)

since the number of particles and thus also states is very large. Since commonly the
state variable (i. e., γ) is dimensional, we should strictly divide by a suitable pixel
dimension of dγ, but this makes little difference, since the quantities in (3.223) and
(3.224) depend on lnZ.
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As an example, the partition function for N indistinguishable particles in a box
is given by

Z =

∫ ∞
0

Ω(E)e−βE

N !
dE, (3.226)

where Ω is the surface area of the (6N − 1) dimensional energy surface, as given in
(3.206). Carrying out the calculation, we obtain

Z =
V N

N !

(
2πkT

m

)3N/2

∼ 1√
2πN

(
V e

N

)N (
2πkT

m

)3N/2

, (3.227)

using Stirling’s approximation for N !. The algebraic pre-factor is irrelevant, so that
we have

lnZ ∼ N

[
1− ln

(
N

V

)
+ 3

2
ln

(
2πkT

m

)]
, (3.228)

from which we have

E = − ∂

∂β
lnZ = 3

2
NkT, (3.229)

in keeping with earlier results. Similarly, calculation of S from (3.224)1 reproduces
(3.211).

m-level systems

Suppose we consider N particles, each of which can exist in one of m different states,
each having corresponding energies E1, . . . , Em. We assume that the transition be-
tween these states conforms to the assumptions of statistical mechanics, and is de-
scribed by a Hamiltonian, which is simply the energy. We denote the state variable of
the i–th particle by the m–vector (ni1, . . . , nim), where nij = 1 if the particle is in the
j–th energy state, and nij = 0 otherwise. The energy of the system in a particular
state γ = {nij} is then

Eγ =
∑
i,j

nijEj, (3.230)

and the corresponding probability pγ of this state is

pγ =
e−βEγ

Z
=

1

Z
exp

[
−β
∑
i,j

nijEj

]
, (3.231)

and the partition function is

Z =
∑
γ

exp

[
−β
∑
i,j

nijEj

]
. (3.232)

We denote the number of Ej states as nj =
∑

i nij. Using the multinomial coefficient
for the number of ways of selecting from N =

∑
j nj particles, it follows that

Z =
∑
{nj}

N !∏
j nj!

exp

[
−β
∑
j

njEj

]
=

(∑
j

e−βEj

)N

. (3.233)
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From this we can compute various quantities; for example the energy is

E = − ∂

∂β
lnZ =

N
∑
Ej∑

e−βEj
, (3.234)

and other quantities can be computed similarly.

3.5.1 Chemical potential

Having discussed ensembles with fixed energy and then fixed temperature, the next
generalisation is to allow a change in number of particles. The consequent change
in energy associated with particle number change is the chemical potential. The
chemical potential µ was defined earlier in (3.181) to be the change of internal energy
when adding a particle to a system at constant V and S, thus

µ =
∂E

∂N

∣∣∣∣
S,V

; (3.235)

chemical potential is an intensive variable. The differential of E is thus modified to

dE = T dS − p dV + µ dN, (3.236)

and it follows from this that also

µ = −T ∂S

∂N

∣∣∣∣
E,V

. (3.237)

Neither (3.235) nor (3.237) are particularly useful definitions, since entropy is
an elusive quantity. However, consideration of the Gibbs free energy G(N, p, T ) =
E + pV − TS yields a more useful definition

µ =
∂G

∂N

∣∣∣∣
p,T

, (3.238)

and this is the one that is commonly used.
The chemical potential plays the rôle for particle number that temperature does for

internal energy. To see this, consider firstly two systems 1 and 2 which can exchange
energy, but not volume or particles. The combined pair forms a microcanonical
ensemble. If we add an increment of energy dE to system 1, then the same amount
is removed from system 2, and the consequent change of entropy of the combined
system is

dS =
∂S

∂E

∣∣∣∣
1

dE − ∂S

∂E

∣∣∣∣
2

dE =

(
1

T1

− 1

T2

)
dE. (3.239)

This must be non-negative, and so energy flows down temperature gradients, and at
equilibrium T1 = T2, which is simply the zero-th law of thermodynamics.
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Now let us allow a number of particles dN to be added to system 1, and thus the
same quantity is removed from system 2, without any change in energy. The change
in total entropy is then

dS =
∂S

∂N

∣∣∣∣
1

dN − ∂S

∂N

∣∣∣∣
2

dN =

(
−µ1

T1

+
µ2

T2

)
dN, (3.240)

using (3.237), and since T1 = T2 in equilibrium, this states that particles flow down
chemical potential gradients, and in equilibrium, µ1 = µ2. Just as energy transport
down temperature gradients is described by Fourier’s law of heat conduction, particle
transport down chemical potential gradients is described by Fick’s law of diffusion.

As always, we return to the perfect gas. The entropy is given by (3.211). Using
(3.237), it follows that

µ = kT

[
ln

(
N

V

)
− 3

2
ln

(
2πkT

m

)]
. (3.241)

A direct calculation of the Gibbs free energy for the perfect gas then shows that in
fact

G = µN (3.242)

(in keeping with (3.192)).

Grand canonical ensemble

We return to the system illustrated in figure 3.10 consisting of a box B and a reservoir
R, but now we allow exchange of both energy and particles: this is the grand canonical
ensemble. The total energy is Etot and the total number of particles is Ntot. The total
number of states is Ωtot = ΩRΩB. For a particular state γ ∈ B with number Nγ and
energy Eγ, the corresponding number and energy in the reservoir are Ntot −Nγ and
Etot − Eγ; then the probability of the state γ is

pγ =
1

ΩB

=
ΩR

Ωtot

=
1

Ωtot

exp

[
SR(Etot − Eγ, Ntot −Nγ)

k

]
, (3.243)

and Taylor expanding this as we did for the canonical ensemble, we have

pγ =
1

Q
exp

[
(µNγ − Eγ)

kT

]
, (3.244)

where we use (3.237) and (3.180) to define µ and T .
The normalising function Q is known as the grand partition function, and is given

by

Q =
∑
γ

exp

[
(µNγ − Eγ)

kT

]
. (3.245)

Just as for the canonical ensemble, we can derive the state variables from Q, thus

N =
∑
γ

pγNγ = kT
∂lnQ

∂µ

∣∣∣∣
β

,
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E =
∑
γ

pγEγ = µN − ∂lnQ

∂β

∣∣∣∣
µ

,

S = −k
∑
γ

pγ ln pγ =
E − µN + kT lnQ

T
. (3.246)

By partitioning the sum over the value of Nγ, the grand partition function can be
written in the form

Q =
∞∑
N=0

eβµNZ(T,N, V ), (3.247)

where Z is the partition function corresponding to the state with N particles. We can
make use of the discrete equivalent of Laplace’s method for sums (see also question
3.24), which applies to sums of the form s =

∑
n sn, sn = ωne

−βn, where ωn grows
rapidly with n, e. g., ωn = nΛ for some large Λ. In this case the maximum term occurs
for large n, and we have s ∼ maxn sn. This result (which is essentially the central
limit theorem) can be applied to (3.247), since (at least for the perfect gas) (3.227)
suggests Z ∼ N−N at large N . More precisely, the N–th term QN of (3.247) is

QN ∼ e(βµ+1)N

(
V

N

)N (
2πkT

m

)3N/2

. (3.248)

Calculating the value of N for which QN is maximum, we then obtain the (ideal gas)
estimate

lnQ ∼ V eβµ
(

2πkT

m

)3/2

. (3.249)

Further, the local peaking of the terms in Q is also associated with a peaking of
the state probabilities, whence it follows that the mean value N =

∑
γ pγNγ is also

the value of N where QN is maximal. In particular,

Q ∼ eβµNZ = e−β(F−µN), (3.250)

where (cf. (3.224)) F is the Helmholtz free energy. This leads us to define the grand
potential

Φ = −kT lnQ = F − µN = E − TS − µN, (3.251)

which is also consistent with (3.246); from (3.190) and (3.192), we have

Φ = −pV. (3.252)

Forming the differential of Φ, we find

N = − ∂Φ

∂µ

∣∣∣∣
T,V

, p = − ∂Φ

∂V

∣∣∣∣
T,µ

, S = − ∂Φ

∂T

∣∣∣∣
V,µ

. (3.253)

For the perfect gas, for which Φ is defined via (3.249), use of the definition of N in
(3.253) leads to Φ = −NkT = −pV , and thus from (3.251) and the definition of G,

G = µN, (3.254)

as we found earlier.
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3.5.2 Ideal solutions

The perfect gas chemical potential is given by (3.241). Since also we have the perfect

gas law p =
NkT

V
, it follows that we can write

µ = µ0(T ) + kT ln

(
p

p0

)
. (3.255)

This defines the chemical potential as energy per particle (J pt−1), but it is more
common to use a macroscopic definition in which the units are J mol−1, and this is
effected by using Avogadro’s number A = 6× 1023 pt mol−1. Multiplying (3.255) by
A, we have

µ = µ0(T ) +RT ln

(
p

p0

)
, (3.256)

where now R = kA is the gas constant, and µ has units J mol−1.
Now let us consider a mixture of gases. If ni is the number density of gas i, and

the particles have mass mi, then we can define the total number density and average
mass per particle as

n =
∑
i

ni, m =

∑
imini
n

, (3.257)

and then the internal energy, temperature and pressure are defined by

me = 3
2
kT =

1
2

∑
iminiu′2

n
, p = 1

3

∑
i

miniu′2, (3.258)

whence we have the perfect gas law in the form

p = nkT =
∑
i

pi, pi = nikT. (3.259)

This is Dalton’s law of partial pressures, which states that the pressure exerted by a
mixture of gases is the sum of the pressures which each component would exert were
it present on its own; these are known as partial pressures. While partial pressures
are the commonly used measure of proportion for gases, another such measure is the
concentration, which measures the fraction of substance, most commonly in liquids.
The molar concentration of a substance is its mole fraction. Since a mole contains a
fixed number (A) of particles, the mole fraction is also the particle number fraction.
Thus for the gas mixture, the molar concentration is

ci =
ni
n

=
pi
p
. (3.260)

It then follows that the molar chemical potential (3.256) of each phase can be written
in the form

µi = µ0
i (T, p) +RT ln ci, (3.261)

and this relationship (for liquids also) is taken to define an ideal mixture. More
generally, one replaces ci by ai in this expression, where ai is called the activity, and
is a function of the various concentrations.
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3.5.3 Chemical reactions

In the (gaseous) reaction

A
k1


k−1

B, (3.262)

the forward net reaction rate according to the law of mass action is

r = k1A− k−1B; (3.263)

this is the rate of formation of B and the rate of loss of A, measured as concentrations.
In equilibrium, we thus have

B

A
=
pB
pA

= K ≡ k1

k−1

. (3.264)

For a change ∆N = ∆NA of A particles, we have ∆NB = −∆N , and the change of
Gibbs free energy at fixed T and p is

µA∆NA + µB∆NB = (µA − µB)∆N, (3.265)

and at equilibrium this is zero. Using the definition of chemical potential in (3.261),
we have

µA − µB = µ0
A − µ0

B +RT ln
pA
pB
, (3.266)

and so at equilibrium

K =
k1

k−1

= exp

[
−∆G

RT

]
, ∆G = µ0

B − µ0
A. (3.267)

Reaction rates

More generally, one can show that the individual reaction rates satisfy

k±1 = k0
±1 exp

[
−E±
RT

]
. (3.268)

The quantities E± are called activation energies, and the form of (3.268) is known as
Arrhenius kinetics.

In order to consider why this should be so, we consider the example of bimolecular
reactions of the form

X + Y
k+
→ P. (3.269)

The law of mass action is based on the rate of molecular collisions, as described in
section 3.2.1, except now we consider collisions between two different molecules, of
diameters d1 and d2 and masses m1 and m2, with number densities f1(r,v, t) and
f2(r,w, t), each of which is a Maxwellian distribution. From (3.26), and consulting
figure 3.4, the rate of collisions per unit volume of particles with velocities near v and
w is

f1(r,v, t)f2(r,w, t) dΩ dv dw, (3.270)
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where now
dΩ = d̄ 2k.V dω(k), (3.271)

and d̄ = 1
2
(d1 + d2) is the mean diameter.

The simple idea is that when two different molecules collide, they will react pro-
viding the energy of impact is sufficiently large. Molecules have atomic bonds, and
it requires energy to break them, and in the collisional theory of reaction rates, it is
the kinetic energy of impact which provides this energy. When the bonds are broken,
there is a possibility that the reaction will proceed to form the product (with new
atomic bonds and thus lower energy than the bond-free state). We thus conceive of
the molecular chemical states as consisting of local minima in the free energy, with a
barrier of height E between them.

It is fairly obvious that it is not the total energy 1
2
(m1v

2 +m2w
2) which is instru-

mental in enabling the reaction, but the energy associated with the relative velocity.
If we define the mass-centred velocity

U =
m1v +m2w

m1 +m2

, (3.272)

then we find that the kinetic energy can be written in the form

1
2
(m1v

2 +m2w
2) = 1

2
(m1 +m2)U2 + 1

2
m̄V 2, (3.273)

where m̄ is the inverse of the sum of the inverse masses,

m̄ =
m1m2

m1 +m2

. (3.274)

We then suppose that reactions occur for collisions such that 1
2
m̄V 2 > E, and the

frequency rE of these per unit volume is then

rE =

∫ ∫
1
2
m̄V 2>E

∫
Ω+

f1(r,v, t)f2(r,w, t) dΩ dv dw. (3.275)

The integration with respect to solid angle over the half-space Ω+ is simple, and
yields a multiplying factor πd̄ 2V . We will assume that the gas is at rest (the mean
velocity is zero); then substituting the Maxwellian distributions for f1 and f2 into
(3.275), the reactive frequency is

rE =
πn1n2(m1m2)3/2d̄ 2

(2πkT )3

∫ ∫
1
2
m̄V 2>E

exp

[
−(m1v

2 +m2w
2)

2kT

]
V dv dw. (3.276)

To evaluate the integral, we change the variables of integration to U and V. It is
straightforward (see question 3.28) to show that the Jacobian of the transformation
is one, and thus, bearing in mind (3.273), (3.276) implies

rE =
πn1n2(m1m2)3/2d̄ 2

(2πkT )3

∫ ∫
1
2
m̄V 2>E

exp

[
−{(m1 +m2)U2 + m̄V 2}

2kT

]
V dU dV.

(3.277)
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Bearing in mind that we are still in six-dimensional space, with an integral only
dependent on the ‘radii’ U and V , we reduce this using dU = 4πU2 dU , dV =
4πV 2 dV , to the two-dimensional integral

rE =
2n1n2(m1m2)3/2d̄ 2

(kT )3

∫
U,V >0

∫
1
2
m̄V 2>E

exp

[
−{(m1 +m2)U2 + m̄V 2}

2kT

]
V 3U2 dU dV.

(3.278)
Evaluating the integral, we find

rE = n1n2d̄
2

(
8πkT

m̄

)1/2 [
1 +

E

kT

]
exp

(
− E

kT

)
. (3.279)

Since the molar concentrations of X, Y and P are just their number densities divided
by A, where A is Avogadro’s number, this gives us the law of mass action in the form

d[P ]

dt
= r =

rE
A

= k+[X][Y ], k+ = k0 exp

(
− E

∗

RT

)
, (3.280)

where we also write the activation energy per mole of reactant as E∗ = AE, and note
that R = Ak is the gas constant. The pre-exponential factor is given by

k0 = Ad̄ 2

(
8πkT

m̄

)1/2 [
1 +

E

kT

]
, (3.281)

and is generally taken as a constant, since usually E∗ is so large that the temperature
variability of (3.281) is obscure. Experimental measurement of E∗ then enables k0

to be calculated. Often this pre-factor differs to that observed by a factor which
Lewis called the chemical efficiency, and others call a steric factor. When this is less
than one, it can be associated with the proportion of successful (reactive) collisions,
the idea being that only correctly aligned collisions will enable the bond-breaking to
occur, at least for certain molecules.

3.5.4 Osmotic pressure

Suppose a salt solution is placed in a bath next to a layer of pure solvent,6 with the
two being separated by a semi-permeable membrane, as indicated in figure 3.11. The
membrane allows solvent to pass through, but prevents the (larger) solute molecules
from passing. As a consequence, the chemical potential of the solvent (only) is contin-
uous across the membrane, and as shown, this causes the solution to draw in solvent,
forming an excess pressure head in the solution; this is called the osmotic pressure.

Osmotic pressure is very important in living systems. It provides the mechanism
whereby living cells maintain an interior pressure, called turgor pressure (in plants).
To describe it, we use the language of gas mixtures, although in practice we are

6In a solution, the solvent is the liquid into which the solute is dissolved. We think of salt
dissolving in water, but we could equally think of ice dissolving in molten salt; the distinction is one
of convention. Most commonly we have dilute solutions, in which the solute has small concentration.
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semi−permeable membrane

solution pure solvent

Figure 3.11: Osmotic pressure of a salt solution.

interested in liquid solutions.7 For the situation shown in figure 3.11, suppose that
the pressure on the right is p0 and that on the left is p0 +Π; Π is the osmotic pressure.
If we denote the concentration of the solute as c, then the solvent concentration 1− c
in the solution is related to its partial pressure ps by

1− c =
ps

p0 + Π
. (3.282)

The chemical potential of the solvent in solution is thus

µs = µ0
s +RT ln

(
ps
p0

)
= µ0

s +RT ln

[
(p0 + Π)(1− c)

p0

]
, (3.283)

while the chemical potential of pure solvent at pressure p0 is just µ0
s. Equality of the

two implies

Π =
p0c

1− c
. (3.284)

If the number density of the solute is np =
Np

V
, then we have, since p0 = nkT and

c =
np
n

, and assuming a dilute solution c� 1,

Π ≈ npkT, (3.285)

a result known as the van’t Hoff formula.
Note that the perturbation of the chemical potential per particle of the solvent

due to its concentration (at a fixed pressure) is ∆µ = −kTc for a dilute solution, and
thus also

Π = −n∆µ, (3.286)

a formula that we will use later.

7There are also solid solutions, and we will mention an example in the section on alloys.
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3.5.5 Polymer solution theory

Polymers are long-chain molecules, consisting of a number nm of monomers which
are connected together, literally like chains. Examples are proteins and plastics, and
their behaviour is decidedly odder than ordinary materials. Polymeric fluids exhibit
yield stress, viscoelasticity and gelation, for example.

Polymer solutions are simply solutions of a polymer in a solvent, and we will
describe a model to calculate their entropic properties, from which we may for example
derive their osmotic pressure. The theory is due to Flory and Huggins and is called
Flory-Huggins theory. The model consists of two parts, one to calculate the entropy
and the other to calculate the internal energy. From these we form the Helmholtz
free energy, from which further results may then be derived.

The model visualises the polymer solution as consisting of a lattice of N points,
on which Np polymer molecules sit, each of length nm monomers, and the remaining
Ns = N −nmNp sites are occupied by solvent. The number of distinct configurations
of the system can be written as

W = w1wr, (3.287)

where w1 is the number of ways of placing the first monomer of each polymer, and
wr is the number of ways of placing the remaining Np(nm − 1). We should multiply
this by the number of ways of placing the solvent molecules, but there is only one
distinguishable way, since they fill all the remaining sites. The value of w1 is simply
the number of ways of selecting Np points from N , and is

w1 =
N !

Np!(N −Np)!
. (3.288)

To compute wr, we allocate the number of ways each monomer can be placed in
turn. We define the coordination number z to be the number of nearest neighbours
in the lattice. For example, a two-dimensional square lattice allowing only horizontal
and vertical connections would have z = 4; if also diagonal connections are allowed,
z = 8. The three-dimensional equivalents are z = 8 and z = 26. The number of
(distinguishable) ways of placing the (Np + 1)-th monomer would thus be z, but this

must be multiplied by the fraction of available unoccupied sites, which is
N −Np

N
.

Having placed this monomer, the number of ways of placing the next (on the same

polymer) is z−1 multiplied by the fraction of available sites,
N −Np − 1

N
. Proceeding

in this way until all the remaining monomers are placed, we find8

wr =

(
z

z − 1

)Np (z − 1

N

)Np(nm−1)
(N −Np)!

(N −Npnm)!
, (3.289)

and thus

W =

(
z

z − 1

)Np (z − 1

N

)Np(nm−1)
N !

Np!(N −Npnm)!
. (3.290)

8Note that if nm = 1 then wr = 1; cf. question 3.31.
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Note that this calculation ignores the possibility of (near) self-crossings.
For the pure polymer with Ns = 0 and thus N = Npnm, the corresponding number

of states is

W0 =

(
z

z − 1

)Np ( z − 1

Npnm

)Np(nm−1)
(Npnm)!

Np!
, (3.291)

and thus
W

W0

=
N !

(N − nmNp)!(Npnm)!

(
Npnm
N

)Np(nm−1)

. (3.292)

We define the entropy relative to the pure polymer to be

S − S0 = k ln

(
W

W0

)
, (3.293)

and applying Stirling’s formula to the factorials, we find, after some algebra,

S − S0 = k

[
Ns ln

(
N

Ns

)
+Np ln

(
N

nmNp

)]
, (3.294)

and noting that the volume fraction of polymer φ satisfies

φ =
nmNp

N
, 1− φ =

Ns

N
, (3.295)

it follows that

S − S0 = −kN
[
(1− φ) ln(1− φ) +

1

nm
φ lnφ

]
. (3.296)

Internal energy

We associate internal energy with mutual interaction of the molecules on a pairwise
basis, and there are thus three values of internal energy, epp, eps and ess depending
on whether the interaction is polymer-polymer, polymer-solvent, or solvent-solvent.
Thus we define the total internal energy to be

E = nppepp + npseps + nssess, (3.297)

where nij is the number of i–j contacts.
With N sites having coordination number z, there are a total of 1

2
zN contacts

(the factor two arises because we only count pairs once). Now since the number of
p–s contacts is nps and the solvent molecules have a total number of zNs contacts, the
total number of s–s contacts is 1

2
(zNs−nps) (again the factor two because each pair is

counted once). In the same way the total number of p–p contacts is 1
2
(znmNp− nps).

We define the pure polymer and pure solvent internal energies as

Ep = 1
2
znmNpepp, Es = 1

2
zNsess, (3.298)

and the unmixed internal energy

E0 = Ep + Es; (3.299)
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then the internal energy can be written as

E = E0 + nps∆e, ∆e = eps − 1
2
(epp + ess). (3.300)

To estimate nps, we take a mean field approximation: each of nmNp monomers

has an average of
zNs

N
solvent neighbours, and therefore

nps =
nmNpzNs

N
= zNφ(1− φ). (3.301)

Hence, denoting the Flory interaction parameter as

χ =
z∆e

kT
, (3.302)

we obtain
E = E0 + kTχNφ(1− φ). (3.303)

Finally, the Helmholtz free energy relative to the unmixed state is

∆F = F − F0 = kNT

[
χφ(1− φ) + (1− φ) ln(1− φ) +

1

nm
φ lnφ

]
. (3.304)

Osmotic pressure

Note that from the Gibbs–Duhem relation (3.186) F = −pV +µiNi, and for a constant
volume and temperature system such as we assume here, (3.236) implies

µi =
∂F

∂Ni

. (3.305)

It follows that the change of chemical potential of the solvent from the unmixed state
is

∆µs =
∂∆F

∂Ns

, (3.306)

and noting that N = Ns + nmNp, we find from (3.304) that

∆µs = kT

[
χφ2 + ln(1− φ) +

(
1− 1

nm

)
φ

]
, (3.307)

and the osmotic pressure is, using (3.286) and noting that n =
N

V
=

1

Vsite

, where Vsite

is the site volume,

Π = −EL
[
χφ2 + ln(1− φ) +

(
1− 1

nm

)
φ

]
, (3.308)

where

EL =
kT

Vsite

(3.309)
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Figure 3.12: The function −Π(φ) given by (3.310) for values nm = 100, EL = 1, and
χ = 1 (upper) and χ = 0 (lower). For the case χ > 1

2
, the polymer swells in contact

with solvent until φ ≈ 3(χ− 1
2
) (for nm � 1).

is the energy per site. For a dilute polymer, φ � 1, and we can expand (3.308) to
give

Π ≈ EL

[
1

nm
φ−

(
χ− 1

2

)
φ2 + 1

3
φ3 . . .

]
. (3.310)

This equation demonstrates the distinguishing feature of a polymer solution in the
case χ > 1

2
. For the situation shown in figure 3.11, when the fluid levels are initially

the same, solvent flows into the left reservoir if Π > 0, causing φ to decrease, and a
simple model describing this is

φ̇ = −KΠ(φ). (3.311)

We thus see that when χ < 1
2
, Π > 0 for all φ, and the solvent flows in indefinitely.

However, when χ > 1
2

(the case of a ‘poor’ solvent), solvent only flows in until an
equlibrium is reached when Π = 0.

3.6 Phase change

One of the more obvious things about matter is that it exists in different states:
solid, liquid or gas. Simple observation tells us that the state of matter depends on
the temperature. As we raise the temperature, a solid will first melt, and then, at a
higher temperature, it will boil. Can we explain this, in the context of our statistical
mechanical description of matter?

The answer is yes, to some extent. Our derivation of the perfect gas law (3.175)
relied on the solution of the Boltzmann equation, with the collision integral given
by its formulation for a dilute hard sphere gas. As the number density of molecules
increases, two effects come into play, which we have so far been neglected. The first
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of these is that the volume of the molecules themselves becomes important, and the
second is that the inter-particle potential energy can not be neglected. As we shall
see, just these two effects allow us to describe the gas–liquid phase transition.

3.6.1 The virial expansion

We return to the definition of the grand partition expansion for N particles in a box,
which from (3.247) is

Q =
∞∑
N=0

eβµNZN(T, V )

= 1 + eβµZ1 + e2βµZ2 + . . . , (3.312)

which is an expansion for µ → −∞, i. e., p → 0, i. e., n → 0. Therefore the grand
potential Φ = −kT lnQ satisfies

Φ = −kT
[
eβµZ1 + e2βµ(Z2 − 1

2
Z2

1) + . . .
]
, (3.313)

so that

N = −∂Φ

∂µ
= eβµZ1 + 2e2βµ(Z2 − 1

2
Z2

1) + . . . , (3.314)

and inverting this, we have

eβµ =
N

Z1

−
2(Z2 − 1

2
Z2

1)

Z1

e2βµ + . . . ≈ N

Z1

−
2(Z2 − 1

2
Z2

1)

Z1

N2

Z2
1

+ . . . , (3.315)

and thus

Φ = −kT
[
N −

(Z2 − 1
2
Z2

1)N2

Z2
1

+ . . .

]
, (3.316)

and since Φ = −pV (see (3.252)), it follows that

pV = kT

[
N −

(Z2 − 1
2
Z2

1)N2

Z2
1

+ . . .

]
, (3.317)

and writing this in terms of the number density n, we have the virial expansion

p = kT [n+Bn2 + . . .], (3.318)

where B is known as the second virial coefficient, and is given by

B = V

(
1
2
− Z2

Z2
1

)
. (3.319)

We now wish to calculate B.
To calculate ZN we define the energy Eγ of a state γ as

Eγ =
N∑
1

1
2
mv2

i +
∑
i<j

W (|ri − rj|), (3.320)
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where the second sum is over distinct pairs (i, j). Allowing for the Gibbs paradox,
the partition function can be defined as (cf. (3.226))

ZN =
m3

N !

∫
Γ

exp

[
−β

{
N∑
1

1
2
mv2

i +
∑
i<j

W (|ri − rj|)

}]
dγ, (3.321)

where the factor m3 is suggested on account of the relation p = mv; note that ZN
is not dimensionless (cf. the comment after (3.225)). The integral over velocity space
UN is easily carried out, leaving the expression

ZN =
(2πmkT )3N/2

N !

∫
V N :|ri−rj |>d

exp

[
−β
∑
i<j

W (|ri − rj|)

]
dr1 . . . drN . (3.322)

In particular,
Z1 = (2πmkT )3/2V, (3.323)

and

Z2 =
(2πmkT )3

2

∫
V 2:|r1−r2|>d

exp [−βW (|r1 − r2|)] dr1 dr2. (3.324)

To evaluate this, we write the integrand as 1− (1− e−βW ), and note that the double
integral over V 2 : |r1−r2| > d is approximately9 equivalent to integrating with respect
to r1 over V − Ω, where

Ω = 4
3
πd3 (3.325)

is the exclusion volume (the volume surrounding r2 where r1 cannot be), and then
integrating with respect to r2 over V . The result of this is that the second virial
coefficient is

B = 1
2
Ω +

1

2V

∫
V

∫
V−Ω

{
1− e−βW (|r1−r2|)

}
dr1 dr2. (3.326)

Again assuming Ω� V , this can be approximately written as

B = 1
2
Ω +

1

2V

∫
V

∫ ∞
d

4πr2
[
1− e−βW (r)

]
dr dr2, (3.327)

and if we suppose

W (r) = w(ξ), ξ =
r

d
, (3.328)

then

B = 1
2
Ω + 3

2
Ω

∫ ∞
1

ξ2
[
1− e−βw(ξ)

]
dξ. (3.329)

As an example, take the Lennard–Jones potential (see figure 3.13), for which

W ∼ −W0

(
d

r

)6

(3.330)

9The approximation is associated with inexactness for particles near the boundary. For example,
for a particle touching the boundary, its exclusion volume is only 1

2Ω; the effect is small assuming
Ω� V , as we do.
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Figure 3.13: The Lennard-Jones potential for inter-particle forces. It is defined as

W = W0

[(
d

r

)12

−
(
d

r

)6
]

.

at large r; writing 1− e−βw ≈ βw and using (3.330), we find

B ≈ 1
2
Ω(1− βW0). (3.331)

We then have
p ≈ kT

[
n+ 1

2
Ω(1− βW0)n2 + . . .

]
, (3.332)

or equivalently
pΩ + 1

2
W0(Ωn)2

kT
≈ Ωn{1 + 1

2
Ωn}. (3.333)

The term Ωn is the ratio of the particle exclusion volume to the (mean) volume
per particle, and represents the probability of finding a particle at any point in space.
The correction term on the right is due to the fact that particles cannot inhabit the
same volume, and the factor 1

2
arises because of double counting of particle exclusion

volume. More precisely, this suggests that we could equivalently write

pΩ + 1
2
(Ωn)2W0

kT
≈ Ωn

1− 1
2
Ωn

(3.334)

instead of (3.333), although they are equivalent to the order of approximation given.
If we define

a = 1
2
ΩW0, b = 1

2
Ω, (3.335)

then this can be written in the form(
p+

aN2

V 2

)
(V − bN) = NkT, (3.336)
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Figure 3.14: Phase transition in the Van der Waals gas. The plot represents p in units
of 107 Pa as a function of the molar volume v in units of 10−4 m3 mol−1 using (3.345),
together with (3.344), and the values in (3.343); for these values, the critical value
of γc = 0.3. The curve shown is for γ = 0.25. As γ decreases further, the minimum
of the curve becomes negative. Note that the Van der Waals parameters for water,
based on the critical point parameters, do not give an accurate estimate of the liquid
molar volume: at T = 100◦ C, γ = 0.3, and (3.346) would suggest v0 = 3.5 × 10−5

m3 mol−1, whereas in fact the molar volume is only about half that.

which is known as the Van der Waals equation. As can be seen in figure 3.14, in
conditions of prescribed T and p, multiple steady states are possible, and we associate
these with phase transitions.

It is common to define the number of particles in terms of the number of moles by
putting N = ANM , where A = 6 × 1023 is Avogadro’s number (particles per mole),
and we then define

a′ = aA2, b′ = bA. (3.337)

The units of a′ are Pa (m3 mol−1)2, and those of b′ are m3 mol−1. We also define the
molar volume as

v =
V

NM

. (3.338)

In terms of these quantities, the Van der Waals equation takes the form

p =
g

v − b′
− a′

v2
, (3.339)

where
g = RT (3.340)

(using the fact that R = kA). Evidently we can assume v > b′. It is straightforward
to show from this (cf. question 3.27) that p is a monotonically decreasing function of
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v if g < gc, where

gc =
8a′

27b′
, (3.341)

and this defines a critical temperature Tc. For T < Tc, p is non-monotonic, as shown
in figure 3.14.

Thus for conditions of fixed pressure, two equilibrium molar volumes are possible.
The lower one corresponds to the liquid state where v = vL, and the upper corresponds
to the gaseous state v = vG. Typically vG � vL. As T approaches Tc, the liquid and
gas densities approach each other, and become equal at T = Tc and at a critical
pressure

pc =
gc
8b′

; (3.342)

at this critical point, the liquid–gas phase transition disappears. The definition of
the critical point is where p′(v) = p′′(v) = 0, and it is this which determines (3.341).
Since the critical temperature and pressure can be experimentally determined, this
allows us to determine a′ and b′. For water, we have Tc = 647 K and pc = 221 bars
= 2.21× 107 Pa, and this leads to

a′ = 0.55 Pa (m3 mol−1)2, b′ = 0.3× 10−4 m3 mol−1,

gc = 0.54× 104 Pa (m3 mol−1). (3.343)

It is convenient to define

v = b′w, g =
a′γ

b′
, p =

a′Π

b′2
, (3.344)

so that w, γ and Π are dimensionless, and

Π =
γ

w − 1
− 1

w2
, (3.345)

and this is used in plotting figure 3.14. At large w, Π ≈ γ

w
, and this is the perfect

gas law. For small w ≈ 1, we find

v ≈ v0(1− βp), v0 = b′(1 + γ), β =
γb′2

a′(1 + γ)
, (3.346)

which represents the weakly compressible liquid.
At a fixed pressure, reduction of temperature eventually leads to the possibility

of multiple steady states, and condensation occurs at a value of T determined by
Maxwell’s equal-area rule ∫ vG

vL

p dv = psat(vG − vL), (3.347)

which follows from the condition that when both phases are present, their chemi-
cal potentials must be equal. We have the result (e. g., by a Maxwell relation-type
derivation from the grand potential relations (3.253))

∂µ

∂p

∣∣∣∣
v,T

= v, (3.348)
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where µ is the molar chemical potential (cf. (3.256)), whence, integrating slightly
illegally10 from vG to vL,

µL = µG +

∫ L

G

v dp

N
, (3.349)

and we obtain (3.347) on integrating by parts.

3.6.2 Condensation

Having illustrated the mechanism of phase transition via the classical statistical me-
chanical approach, it is now of interest to see whether the Boltzmann equation can
be used to infer the same result. The answer to this is: to some extent. We now
describe how this is done.

First we return to the Boltzmann equation, but now we allow for a non-zero inter-
molecular attraction between the particles. The idea is that this term provides a
mechanism for spatial instability, since it facilitates a tendency for particles to cluster
together. Consulting (3.16), we now define the collision integral as the sum of two
terms QC and QLR, where QC is the usual collisional form given by (3.39), and QLR

is given by (3.16). The Boltzmann equation, now sometimes called the Boltzmann–
Vlasov equation with the extra term, takes the form

∂f

∂t
+ v.∇f + A.∇vf = QC, (3.350)

where we ignore any external potential, and from (3.16),

A = −
∫
V

a(ξ)ξ

ξ
n(r− ξ, t) dξ, (3.351)

in which

a(ξ) =
W ′(ξ)

m
(3.352)

is the inter-particle acceleration associated with the attractive part of the potential
W . For the Lennard–Jones potential defined by

W = W0

[(
d

r

)12

−
(
d

r

)6
]
, (3.353)

we would take

a(ξ) =
6W0d

6

mr7
, r > d. (3.354)

Next we non-dimensionalise the variables. We define the thermal velocity scale

v0 =

√
kT0

m
, (3.355)

10It is not the integration which is illegal, but the assumption that the passage from G to L
proceeds along the equilibrium Van der Waals curve. It is particularly illegal when the equilibrium
curve dips to negative pressures!
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an acceleration scale

a0 =
W0

md
, (3.356)

and a mean inter-molecular distance

l =
1

n
1/3
0

, (3.357)

where n0 is a typical value of the number density. We then scale the variables as

n ∼ n0, f ∼ n0

v3
0

, r ∼ l, a = a0a
∗
(
ξ

d

)
,

v ∼ v0, t ∼ l

v0

, A ∼ a0d
4

l4
, QC =

n2
0d

2

v2
0

Q, (3.358)

and this leads us to the non-dimensional form of the equation,

∂f

∂t
+ v.∇f + βA.∇vf = ν2Q,

Q =

∫
U

∫
Ω+

[f(r,v′, t)f(r,w′, t)− f(r,v, t)f(r,w, t)] dΩ dw,

A = −1

ν

∫
V

a(ξ)ξ

ξ
n(r− νξ, t) dξ, (3.359)

in which all the variables are dimensionless (in particular dΩ = dS/V ), we have
dropped the asterisk from a∗, and the dimensionless parameters are defined by

β =
a0d

4

v2
0l

3
, ν =

d

l
. (3.360)

In the absence of any spatial variation, A = 0 and the left hand side of the
equation is simply ∂f/∂t. Thus the steady state is still given by the Maxwellian
distribution, which in its dimensionless form is

f = f0(v) =
1

(2π)3/2
e−

1
2
v2 , (3.361)

where for convenience we will assume that the mean velocity is zero. We now examine
the stability of this state to spatial perturbations.

As we did in the Chapman–Enskog method, we write f = eΦ, the Maxwellian is

Φ0 = −1
2
v2 − 3

2
ln(2π), (3.362)

and we linearise the equation about the steady state by writing

Φ = Φ0 + φ, (3.363)

and neglecting nonlinear terms; the linearised form of (3.359)1 is

φt + v.∇φ− βA.v = ν2Lφ, (3.364)
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where the linearised form of A is

A = −1

ν

∫
P

a(ξ)ξ

ξ
f0(v)φ(r− νξ,v, t) dv dξ, (3.365)

and the linearised collision operator is

Lφ =

∫
U

∫
Ω+

f0(w)∆φ dΩ dw. (3.366)

We now seek normal mode solutions to this equation of the form

φ = ψ(v)eik.r+σt, (3.367)

where k is the wave vector. This leads to the eigenvalue problem for ψ(v) in the form

(σ + ik.v)ψ − βB.v = ν2Lψ, (3.368)

where

B = −1

ν

∫
V

a(ξ)ξ

ξ
e−iνk.ξ dξ, (3.369)

and we have assumed a normalisation in which∫
U

f0(v)ψ(v) dv = 1. (3.370)

To evaluate B, we take Cartesian coordinates in V = R3 with the z axis in the
k direction. By symmetry, the x and y components are zero, and therefore we can
write

B = iC(νk)k, (3.371)

and by changing to spherical polar coordinates, we find that (writing K = νk)

C(K) =
4π

K2

∫ ∞
1

ra(r)

[
sinKr

Kr
− cosKr

]
dr; (3.372)

see question 3.29. The function C(K) is plotted in figure 3.15; its asymptotic limits
for small and large K are (taking a = 6/r7, corresponding to (3.354), and with a0

given in (3.356))

C ∼ 8
3
π − 4

5
πK2 + . . . , K → 0,

C ∼ 24π sinK

K3
+ . . . , K →∞. (3.373)

As a consequence of (3.371), (3.368) is

(σ + ik.v)ψ − iβCk.v = ν2Lψ. (3.374)

Our aim is to solve this equation to determine σ(k). Eigenfunctions ψ for which
Reσ > 0 are unstable.
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C

K
Figure 3.15: The function C(νk) = C(K) defined by (3.372). The thin lines give the
asymptotic limits from (3.373).

The limit ν → 0

The difficulty in solving (3.374) lies with the linearised collision operator L. We are
able to sidestep this difficulty by using the fact that ν � 1. On this basis we neglect
the collision term (and it can be shown that this is a regular perturbation), and then
we simply have

ψ =
iβCk.v

σ + ik.v
, (3.375)

and the normalisation condition (3.370) implies

iβC

∫
U

f0(v)k.v dv

σ + ik.v
= 1, (3.376)

and it is this which determines σ.
To evaluate (3.376), we take the z axis in the direction of k, so that k.v = kz.

Carrying out the integrals in x and y, this leads to

iβC√
2π

∫ ∞
−∞

kz e−
1
2
z2 dz

σ + ikz
= 1. (3.377)

Defining
σ =
√

2kη, (3.378)

this can be manipulated to the form

1

βC
=

1√
π

∫ ∞
−∞

te−t
2
dt

t− iη
, (3.379)
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βC
Figure 3.16: The scaled growth rate η =

σ√
2k

as a function of βC, given by (3.382).

and then

1− 1

βC
=

η

i
√
π

∫ ∞
−∞

e−t
2
dt

t− iη
=

2η2

√
π

∫ ∞
0

e−t
2
dt

t2 + η2
; (3.380)

see also question 3.30. This integral is related to a form of the ‘plasma dispersion
function’. Specifically, if we define

w(iη) ≡ W (η) = eη
2

erfc η, (3.381)

then, providing Re η > 0, the integral in (3.380) is proportional to W (η), and

1− 1

βC
=
√
πηW (η) =

√
πη eη

2

erfc η. (3.382)

If η is a root of (3.379), then so is −η̄ (by taking the complex conjugate of the
first integral) and η̄ (by taking the complex conjugate of the second integral); and
thus also −η: it follows that we can take Re η ≥ 0 without loss of generality, since
for Re η < 0, we simply consider −η. By taking the imaginary part of the second
integral in (3.380), it follows that in fact either η is real or purely imaginary. The
latter case corresponds to neutral stability, and is discussed below. For real η, we can
then suppose η > 0. In this case, (3.380) shows that a root only exists if βC > 1,
and this is shown in figure 3.16.

The basic result is that the uniform steady state is unstable to spatial fluctuations
if βC > 1, and this first occurs when β > 3

8π
, which thus gives the critical value for

condensation to occur. Near this value, we can expand C for small K (from (3.373))
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and βC for small η, and this leads to the approximate result, when β ≈ 3
8π

, that

σ ≈
√

2

π
k
[(

8
3
βπ − 1

)
− 3

10
ν2k2

]
. (3.383)

The case βC < 1

What happens if βC < 1? It appears that in this case, the only possibility is a pure
wave motion in which σ = −iω, and in that case the defining equation for ψ, (3.374),
can be written as

(k.v − ω)ψ − βCk.v = −iν2Lψ. (3.384)

Again we neglect the collision term on the basis that ν is small. Now because of the
singularity of (3.384), solutions take the approximate form

ψ =
βCk.v

k.v − ω
+
√

2πA δ
(
z − ω

k

)
, (3.385)

where we take the z coordinate in U in the direction of k.
The normalisation condition now leads, after some algebra, to

βCΩ√
π
−
∫ ∞
−∞

e−t
2
dt

t− Ω
+ Ae−Ω2

= (1− βC), (3.386)

where we have defined
ω =
√

2kΩ, (3.387)

and using the Plemelj formulae together with the definition of w(z) in (3.380) and
(3.381), this leads to the definition of A as

A = 2βCΩ

∫ Ω

0

et
2

dt+ (1− βC)eΩ2

. (3.388)

It may be noted that if βC < 1, the possibility of A = 0 is not available. In view of
(3.387), the wave speed is

√
2Ω.

The instability we have identified is associated with condensation. It is natural
to enquire whether the Boltzmann theory can be pushed further into the nonlinear
limit. It seems so: the asymptotic approximation of (3.359)1 as

∂f

∂t
+ v.∇f + βA.∇vf = 0 (3.389)

remains valid until f ∼ 1/ν3 and r ∼ ν, at which point nucleation occurs; until that
point, (3.389) applies, and the suggestion is that nucleation occurs through a finite
time blow-up of f , this only being eventually capped by the entrance of the collision
integral when molecular spacing is of O(d); however, this remains as conjecture.
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3.6.3 Surface energy

Consider a situation in which two fluids are separated by an interface. We might have
two liquids such as oil and water, or a gas and a liquid such as air and water, or even
a solid-liquid interface such as ice and water. We think of the latter as representing a
phase change, whereas we think of an air/water interface as being an interface between
two different substances, but in fact the difference is one of degree. Place water in
a container with vacuum above and the water will immediately begin to evaporate,
so that the space above the water becomes filled with water vapour; this is a simple
change of phase. The only difference when air fills the space above is that the gas
phase is now a mixture of different gases (including water vapour), and equally the
water phase is a mixture of water with dissolved gases from the air. Both situations
represent phase change, with the difference simply being that the air/water interface
represents phase change of a mixture, which in other terms is simply an alloy.

Interfaces possess energy. In order to create a surface in a fluid (or solid), molecular
bonds must be cut: effectively molecules must be pulled apart and this requires work
to be done, which is manifested as an excess energy of the surface. Suppose the
surface energy of an interface of area A between two fluids, as shown in figure 3.17, is
γ. If we perturb the interface, so that the area becomes A+ dA, then the increment
of the Helmholtz free energy (at constant T , V ) is

dF =
∑
i

(−p dV − S dT ) + γ dA = 0, (3.390)

and since dV1 = −dV2 = dV , say, we derive the interfacial jump condition

p1 − p2 = γ
∂A

∂V
= 2γκ = γ∇.n. (3.391)

The quantity κ in (3.391) is defined to be the mean curvature, and the fact that
∂A

∂V
= ∇.n is a result of differential geometry which can be understood by reference

to figure 3.18. In perturbing the surface, we may suppose each point of the surface
moves along the normal n, thus tracing out an incremented volume, whose normal n̂

V , p
2 2

V , p
1 1

A

A + dA

Figure 3.17: Two fluids of volumes V1 and V2 and pressures p1 and p2 are separated
by an interface of area A.
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A + dA

A

dV

n

n̂

Figure 3.18: Calculation of surface curvature.

is equal to n on A and A + dA, but orthogonal to it on the interconnecting surface.
Evidently, then

dA =

∫
∂(dV )

n.n̂ dS =

∫
dV

∇.n dV, (3.392)

whence
∂A

∂V
= ∇.n. (3.393)

In practice, if the surface is given by z = η(x, y), then

∇.n = −∇.

[
∇η

(1 + |∇η|2)1/2

]
, (3.394)

and for small values of the curvature we have the commonly used approximation

2κ = −∇2η. (3.395)

3.6.4 The Clapeyron equation

The saturation temperature at which phase change occurs depends on pressure. It
is for example well known that the boiling point of water decreases as pressure de-
creases. This is certainly familiar to mountain climbers. And as mentioned in the
preceding section, boiling effectively begins immediately in a vacuum. The depen-
dence of melting or boiling temperature on pressure is determined by the Clapeyron
equation, (sometimes the Clausius–Clapeyron equation), which is derived as follows.

At equilibrium between two phases, let us say solid and liquid, of a pure (single
component) material, the specific Gibbs free energies11 are equal, gs = gl, for given
temperature and pressure. Now suppose the pressure (and consequently also the
(melting) temperature) is changed. Then for each phase

∆g = v∆p− s∆T, (3.396)

11Which are the chemical potentials.
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where v is specific volume and s is specific entropy, but since we remain in equilibrium,
the change must be the same for each phase; it follows that

∆s∆T = ∆v∆p, (3.397)

where
∆s = sl − ss, ∆v = vl − vs. (3.398)

The latent heat is defined as L = TM∆s = ∆h, where TM is the melting temperature,
and thus (3.397) can be written in the form

∆T

TM
=

∆v

L
∆p, (3.399)

and this is the Clapeyron equation. Normally ρs > ρl, i. e., ∆v > 0, so that TM
increases with pressure. The melting point of ice is a rare exception (since ice floats
on water); silicon is another.

The Gibbs–Thomson effect

If in addition we allow the interface to be curved, that is, we consider also surface
energy, then an additional correction to the Clapeyron equation ensues; this is called
the Gibbs–Thomson effect. (3.396) still applies, but now ∆ps 6= ∆pl; the consequent
generalisation of (3.399) is

L∆T

TM
= ∆v∆pl + vs(ps − pl), (3.400)

assuming a reference state of zero curvature. This is the generalised Clapeyron equa-
tion. The term in ps − pl represents the effect of surface energy.

3.6.5 Alloys

Next we consider the solidification of alloys, which are mixtures of two or more sub-
stances. We will frame our discussion in terms of freezing liquids, but the reader
should be aware that there is no real distinction between the processes of melting
and freezing, evaporation and condensation, dissolution and precipitation, and in-
deed chemical reaction. They all involve a change of state, where matter in one
macroscopic form is transformed to another, and the same basic principles describe
them all.

At a solid-liquid interface the chemical potentials of each component are equal:

µLi = µSi (3.401)

for components i = 1, 2, . . .. For two components A and B, say, we let c be the
concentration (as mole fraction) of B. For an ideal solution we have

µA = µ0
A +RT ln(1− c), µB = µ0

B +RT ln c (3.402)
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Figure 3.19: The phase diagram for the solid solution albite (Ab)–anorthite (An),
which can be found on page 106 of McBirney (1984). TL is the liquidus and TS the
solidus. The rock is called plagioclase, and is a solid solution of the general form
(NaSi)x(CaAl)1−xAlSi2O8.

in each phase, and the specific Gibbs free energy in each phase has the form

g = µA(1− c) + µBc. (3.403)

The condition of equilibrium between the two phases can then be shown (see question
3.33) to be determined by the values of cS in the solid phase and cL in the liquidus
phase which mark the locations of tangency of a straight line to the functions gS(c)
and gL(c). This gives two distinct values of concentration of A in solid and liquid for
an ideal solution, and a typical such phase diagram is shown in figure 3.19, for the
crystalline rock plagioclase, which forms from the solidification of certain magmas.

The plagioclase phase diagram represents the situation where an ideal mixture
forms a ‘solid solution’. The mixture is ideal in that the two components are miscible:
there is no energetic penalty for mixing the molecules, and the solid solution represents
the solid phase equivalent. In plagioclase, we can simply replace the combination
Na-Si with Ca-Al, without energetic penalty. It is more commonly the case that
the solid phases, at least, are immiscible, and this modifies the form of the chemical
potentials in (3.403), for example as suggested in question 3.33. The consequence of
this is the typical eutectic phase diagram shown in figure 3.20.

3.6.6 Nucleation and crystal growth

When a solid is precipitated from a solution, or freezes from a liquid, nucleation
occurs, in which a small nucleus of finite radius is created, and subsequently grows.
If this occurs spontaneously within the liquid, the process is called homogeneous
nucleation; if it occurs on an impurity (typically a pre-existing solid particle, but
any solid surface will do), it is called heterogeneous nucleation. In practice, unless
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Figure 3.20: A phase diagram representing eutectic solidification. This is for the
system albite (NaAlSi3O8)—orthoclase (KAlSi3O8) (McBirney 1984, p. 110). The
albite and orthoclase solid solution (ss) fields are indicated.

great care is taken, heterogeneous nucleation is the norm. Nucleation can be easily
observed in a saucepan of boiling water. As the temperature increases, sub-cooled
boiling occurs as small bubbles rapidly grow and then collapse from sites on the base
of the pan. Only as the boiling temperature is approached does the bubble nucleation
become regular and continuous.

Consider now nucleation of an almost pure solid A from a (uniform) liquid solution
of A in B. In the absence of any solid, we suppose that the chemical potential of A
in the liquid is µLA, and N molecules of A will thus have a Gibbs free energy µLAN .
If these same N molecules form a solid nucleus, then there is a corresponding free
energy µSAN , but in addition the surface has an additional surface area 4πγr2, where
γ is surface energy and r is nucleus radius. Therefore the change of free energy in
creating the nucleus is

∆G = 4πγr2 −N∆µ∞A , (3.404)

where ∆µ∞A = µLA − µSA. We relate N to r as follows. If the solid molecules have

mass m and molecular volume v, then the solid density is ρs =
m

v
, and additionally

mN = 4
3
πr3ρs for a spherical nucleus, whence (3.404) gives

∆G = 8πγ

[
1
2
r2 − r3

3rc

]
, (3.405)

where the critical radius is

rc =
2γv

∆µ∞A
. (3.406)

Figure 3.21 shows the variation of ∆G with r. It increases to a maximum when
r = rc and then decreases. The maximum value is an equilibrium, and thus gives
(analogously to determination of the liquidus temperature) the dependence of the
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Figure 3.21: The variation of free energy with nucleus radius.

equilibrium concentration on nucleus radius. The maximum value at rc,

∆Gn =
16πγ3v2

3(∆µ∞A )2
, (3.407)

represents an explicit energy barrier which needs to be overcome if a viable nucleus
is to form. The mechanism to do this is analogous to the way in which chemical
reactions occur, and is due to statistical fluctuations in the molecular motions.

Lifshitz-Slyozov theory

To understand the implication of figure 3.21, we need to consider a supersaturated
liquid in which the chemical potential µLA > µSA. The point is that equilibrium at the
surface requires µLA = µSA there, so that a supersaturated liquid is one where in the
far field µLA > µSA. If ∆µ∞A = 0, nucleation is impossible.

Suppose then that we have a spherical nucleus in a liquid with concentration (mole
fraction) c. If the solution is ideal, we have

µLA = µSA + kT ln

(
c

cs

)
, (3.408)

where cs is the saturation concentration where liquid and solid are in equilibrium
(for a planar interface). (We use k rather than R as we have defined µ as energy
per particle.) Lifshitz-Slyozov theory considers the situation where the far field is
supersaturated, thus c → cs + ∆c as the spherical polar radius ξ → ∞, but ∆µA =
µLA − µSA is spatially varying (and so ∆µ∞A denotes the far field value). On the other
hand, we suppose that the chemical potential is at equilibrium at the interface, thus

∆µA =
2γv

r
at ξ = r (3.409)

(this follows from the remark after (3.406)). For small supersaturations,

∆µA ≈
kT (c− cs)

cs
, (3.410)
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and therefore the concentration field in the liquid satisfies

c→ cs + ∆c as ξ →∞,

c = cs +
α

r
on ξ = r, (3.411)

where

α =
2γvcs
kT

. (3.412)

The excess chemical potential in the far field is

∆µ∞A ≈
kT∆c

cs
. (3.413)

If we assume that crystal growth rate V = ṙ is slow compared to diffusion in the
liquid (this will be the case if rV � D, where D is the solute diffusion coefficient),
then we can take the concentration field to be in equilibrium, and thus

c = cs + ∆c+
α− r∆c

ξ
. (3.414)

The growth rate is equal to the diffusive flux at the interface, and thus

ṙ = V =
D

r

(
∆c− α

r

)
. (3.415)

This explicitly shows that the equilibrium at rc =
α

∆c
is unstable, and nuclei

below this threshold size will collapse. Also, the assumption rṙ � D which allows
the quasi-static approximation to be made is seen to require the supersaturation to
be small, ∆c� 1.

The Lifshits–Slyozov theory can be used to study coarsening, or Ostwald ripening,
which is the process whereby larger crystals grow at the expense of smaller ones. The
physical mechanism for this is that the concentration at the surface of small crystals
is higher than at the surface of large crystals, so there is a tendency for solute to flow
from small to large. In a supersaturated medium, all supercritical crystals will grow,
but as they do the supersaturation decreases, and the smallest crystals eventually
become subcritical and disappear.

To analyse this, we need to define a grain size distribution φ(r, t), such that φ dr is
the number density per unit volume of the medium of crystals with radius in (r, r+dr).
Conservation of crystals then gives the equation

φt + (V φ)r = 0, (3.416)

where in a mean field approximation based on small crystal volume fraction, the
growth rate V (r, t) is given by (3.415); V depends on t because ∆c varies with time.
Specifically, the volume fraction of crystals is

Φ =

∫ ∞
0

4
3
πr3φ dr; (3.417)
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then if ∆c0 is the initial supersaturation, conservation of solute implies

∆c =
∆c0 − Φ

1− Φ
≈ ∆c0 − Φ (3.418)

for the weak supersaturation limit ∆c0 � 1. Thus V is given by

V = D

[
∆c0 − Φ

r
− α

r2

]
, (3.419)

and by integrating (3.416) from 0 to ∞ and using integration by parts, we find

Φ̇ = 4πD [(∆c0 − Φ)r̄ − αN ] , (3.420)

where r̄ and N are the mean radius per unit volume and the number density of
particles,

r̄ =

∫ ∞
0

rφ dr, N =

∫ ∞
0

φ dr. (3.421)

(3.416) is a hyperbolic equation for which the characteristics are

ṙ = D

(
∆c− Φ

r
− α

r2

)
,

φ̇ = D

(
∆c− Φ

r2
− 2α

r3

)
φ,

Φ̇ = 4πD [(∆c0 − Φ)r̄ − αN ] , (3.422)

and in general numerical solution is necessary, subject to initial conditions for φ at
t = 0. (No conditions are necessary at r = 0 since for α > 0 all characteristics arrive
at r = 0 from t = 0.)

It is clear from (3.422)3 that Φ→ ∆c0 at large time, and a local similarity solution
describing this approach is available. We define

φ =
1

t4/3
ψ(s, t), s =

r

t1/3
, (3.423)

from which it follows that

Φ =

∫ ∞
0

4
3
πs3ψ ds, r̄ =

s̄

t2/3
, N =

N̄

t
, (3.424)

where

s̄ =

∫ ∞
0

sψ ds, N̄ =

∫ ∞
0

ψ ds. (3.425)

Equation (3.416) then takes the form

−4
3
ψ + tψt +

∂

∂s

[
D

{
t1/3(∆c0 −Ψ)

s
− α

s2

}
ψ

]
= 0, (3.426)

108



of which we seek a solution

ψ ∼ ψ0(s) +
ψ1(s)

t1/3
+ . . . , Φ ∼ Φ0 −

Φ1

t1/3
+ . . . , (3.427)

and equating inverse powers of t then requires

Φ0 =

∫ ∞
0

4
3
πs3ψ0 ds = ∆c0,

Φ1 =
αN̄0

s̄0

, s̄0 =

∫ ∞
0

sψ0 ds, N̄0 =

∫ ∞
0

ψ0 ds, (3.428)

and the solution for ψ0 is

ψ0 =
Bs2

(Φ1s+ α)ν
exp

[
αs

Φ2
1

− s2

2Φ1

]
, ν = 1 +

α2

Φ3
1

, (3.429)

where B is determined by satisfying (3.428)1. These results are consistent with the
famous coarsening law r ∼ t1/3.

Becker–Döring theory

We now turn to the fundamental problem of homogeneous nucleation, which is to
describe the mechanism of creation of supercritical nuclei. The deterministic Lifshits–
Slyozov theory clearly implies that subcritical nuclei simply disappear, so in order to
enable supercritical nucleus formation, we must revert to a stochastic description.

In the Becker–Döring theory, we consider nuclei to be clusters of particles, and
we let Nn be the number density per unit volume of the fluid of clusters having n
particles. In particular, N1 is just the solute concentration of the liquid. The cluster
numbers are governed by the reversible reaction

Nn +N1

k+n


k−n

Nn+1, n ≥ 1. (3.430)

The overall reaction rates are

Rn = k+
nN1Nn − k−nNn+1, (3.431)

and the equations are then

Ṅn = Rn−1 −Rn, n ≥ 2,

Ṅ1 = −2R1 −
∞∑
2

Rn, (3.432)

where the factor two in the equation for N1 arises because two N1 molecules are
involved in the R1 reaction. It follows from these that particle number is conserved,
as it should be:

∞∑
1

nNn = C. (3.433)
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The system has a possible steady state, in which Rn = 0, and this implies

Nn = LnN
n
1 , (3.434)

where

Ln =
n−1∏

1

Ki, L1 = 1, Ki =
k+
i

k−i
; (3.435)

N1 is determined from
∞∑
1

nLnN
n
1 = C, (3.436)

providing this series converges; as we shall see, this is only the case when the solution
is not supersaturated.

The system has a Lyapounov function, analogous to Boltzmann’s H-function,
given by

H =
∞∑
1

Nn

[
ln

(
Nn

Ln

)
− 1

]
, (3.437)

from which it follows (noting that Ln+1 = KnLn) that

Ḣ = −
∞∑
1

k−nNn+1

[
Ln+1N1Nn

LnNn+1

− 1

]
ln

(
Ln+1N1Nn

LnNn+1

)
≤ 0, (3.438)

with equality (Ḣ = 0) only at the steady state, where H is a minimum, and

H = H0 = C lnN1 −
∞∑
1

LnN
n
1 . (3.439)

If the steady state exists, it is thus globally stable.
The question now arises, does the steady solution exist? It does if the series (3.436)

converges. This depends on the definition of Ln and thus Kn, and thus we need to
make some assumption about the forward and backward rate coefficients k±n . Before
we do this, we derive the continuum limit of the model, which yields a Fokker–Planck
equation for N . We can write (3.432)1 and (3.431) in the form

Ṅn = Rn−1 −Rn,

Rn = VnNn − k−n (Nn+1 −Nn), (3.440)

where
Vn = k+

nN1 − k−n . (3.441)

Replacing differences by derivatives, we find

∂N

∂t
+
∂R

∂n
= 0,

R = V N −D∗∂N
∂n

, (3.442)
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Figure 3.22: Schematic illustration of the neighbouring potential wells of n- and
(n+ 1)-clusters.

where V = Vn, D∗ = k−n ; this approximation is valid when the variables are slowly
varying, which in turn is the case when n is large. We see that (3.442) is analogous
to the Lifshits–Slyozov theory, with the growth rate being V , but with the crucial
extra diffusive term, which arises through the stochasticity of the process.12 It is this
which enables nucleation to occur. In order to compare the two theories, we need
to compare the respective growth rates V . The Lifshits–Slyozov growth rate is given
by (3.415). Using the definitions of α in (3.412) and ∆c from (3.413), and relating
particle number to radius via

n =
4πr3

3v
, (3.443)

where v is particle (molecular) volume, we find that the Lifshitz–Slyozov cluster

growth rate (in terms of n, i. e.,
dn

dt
), is

V LS =
8πγDc

kT

[(
n

nc

)1/3

− 1

]
, (3.444)

where nc is the critical cluster particle number, corresponding to rc in (3.405) using
(3.443). We now compare this to the Becker-Döring growth rate in (3.441).

We conceptualise the rate coefficients k±n as being associated with a jump over an
energy barrier, as discussed in section 3.5.3, and illustrated in figure 3.22. It is thus

12It is tempting to try and derive the Becker–Döring equations by means of a random walk model,

where pn(t) =
Nn∑∞
1 Nn

is the probability that a cluster is of size n. It seems difficult to do this,

because the total number of clusters is not conserved during the process. See also question 3.35.
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natural to suppose that

k+
n = k+ exp

[
−(Gn+1 −Gn + E)

kT

]
, k−n = k− exp

[
− E

kT

]
, (3.445)

and we will arbitrarily suppose that the detachment activation energy E is constant.
In the continuum limit, Gn+1−Gn ≈ ∆Gn+1−∆Gn ≈ G′, where we take G(n) to be
determined by (3.405). Translating this, we find

−G′ ≈ kT∆c

c

[
1−

(nc
n

)1/3
]
. (3.446)

The Becker–Döring growth rate is thus

V BD = k−n

[
KN1 exp

{
∆c

c

[
1−

(nc
n

)1/3
]}
− 1

]
, (3.447)

where

K =
k+

k−
. (3.448)

Since we assume small supersaturation, we can expand (3.447) to find

V BD = k−n

[
KN1 − 1 +KNs∆c

{
1−

(nc
n

)1/3
}]

, (3.449)

where since c is mole fraction and N1 is solute molecules per unit volume, N1 = Nsc,
Ns being the (approximately constant) solvent molecule number per unit volume.
(3.447) or (3.449) can be compared to (3.444). Despite the obvious differences, the
behaviour of each expression has similar behaviour, being negative for small n, and
monotonically increasing with n. The only significant difference is that the Becker–

Döring threshold nucleus number depends on solute concentration, unless N1 =
1

K
.

More generally, N1 will decrease during crystallisation, implying that nucleation be-
comes more and more difficult as growth proceeds. That there is a difference is
unsurprising insofar as the Becker–Döring theory ignores spatial variability in the
solute field.

Heterogeneous nucleation

The Becker–Döring theory provides a rational description for the homogeneous nucle-
ation of crystals, but in reality, unless extreme experimental care is taken, nucleation
occurs heterogeneously, on pre-existing impurities in the liquid. To understand how
this occurs, consider an area A of a solid impurity in contact with a liquid solution,
where the chemical potential of A is µLA. If the area forms a nucleus of precipitate
consisting of N molecules with chemical potential µSA, then the change in free en-
ergy is −(µLA − µSA)N = −∆µAN , but the corresponding change of surface energy is
(γSI + γSL − γLI)A = ∆γA, where γjk is the surface energy at the interface between
phase j and phase k (S, L, I indicate solid, liquid, impurity). If the nucleated solid
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phase is (initially) a monolayer, then N =
A

d2
, where d is particle diameter, and thus

the total free energy change is

∆G =

(
∆γ − ∆µA

d2

)
A. (3.450)

We thus see that heterogeneous nucleation occurs ‘spontaneously’ if ∆µA > d2∆γ, and
there is no energy barrier to nucleation. In this case, a Becker–Döring type theory is
unnecessary (it would be associated with two-dimensional spreading of the monolayer
across the surface), and growth will occur as soon as the nucleation threshold (3.450)
is achieved. Note that ∆γ may be negative; in this case sub-critical nucleation occurs,
but is not maintained as the crystals grow and become spherical. An example of this
is observed in sub-cooled boiling, for example in a saucepan of water, where small
bubbles are nucleated in crevices, rapidly grow to become spherical before collapsing.

We can adapt Lifshits–Slyozov theory to this case also. Assuming equilibrium at
the interface of a spherical crystal of radius r, where ∆G = 0 in (3.450), we find the
crystal growth rate is, using (3.410),

V =
D

r

[
∆c− csd

2∆γ

kT

]
+

, (3.451)

where [x]+ = max(x, 0), and growth begins from the assumed known impurity grain
size.

3.7 Notes and references

There are, of course, a large number of books on statistical mechanics, and they trace
their way through the subject in various ways. Commonly, there is introductory
review material on probability, and sometimes on thermodynamics, enunciated as a
set of rules. Almost inevitably, however, one comes to a point in any of these books
where some result appears by magic, and you are left with the idea that at some
point, they are making it up. The present exposition aims to select a path through
the material which avoids this habit.

The subject is not helped by the fact that its texts are almost inevitably opaque.
Possibly the best example is the book by Chapman and Cowling (1970), which a
colleague describes as like chewing glass. An illustration of its convolution is in
its Byzantine equation numbering system, which finds its mirror in the inexplicable
decision for modern scientific journals to abandon page numbering. Despite these
comments, the book gives a thorough exposition, if one can make one’s way through
the tangled prose, and is in fact the basic reference for the particle-based approach
to statistical mechanics. Much of the material presented here can be interpreted as a
translation, or exegesis of Chapman and Cowling’s seminal work.

Tolman (1938) Landau and Lifshitz (1980) Truesdell (1969) E (2011) Chisholm
and de Borde (1958) Uhlenbeck and Ford (1963) Woods (1996) Chandler (1987)
Kardar (2007) Schwabl (2006) Sethna (2006) Grad (1958)

Fluid mechanics (Yih 1977) Batchelor (1967)
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3.7.1 Boltzmann equation

The Boltzmann equation is derived directly by Chapman and Cowling (1970) in the
form

Df

Dt
≡ ∂f

∂t
+ v.∇rf + g.∇vf = Q, (3.452)

that is to say, they propose that f changes at a rate Q as we follow the fluid. This
can be reconciled with (3.18) by realising that the partial derivatives are taken with
either r or v (or, in the case of ∂/∂t, both) fixed; thus, since we suppose g = g(r),
we have

v.∇rf = ∇r.(fv), g.∇vf = ∇v.(fg). (3.453)

The conservation form (3.18) is given by Drew and Passman (1999).
The derivation of the Boltzmann equation from the Liouville equation via the

BBGKY hierarchy is described, tersely but lucidly, by Kardar (2007). The initials
stand for the authors, Bogoliubov, Born, Green, Kirkwood and Yvon, who inde-
pendently derived the equations just before the second world war. As suggested in
question 3.5, the relation between the BBGKY equations and the Boltzmann equa-
tion involves a conceptual jump, not the least because we go from a reversible to an
irreversible system.

Grad (1949)

3.7.2 Chapman–Enskog method

The derivation of values of the viscosity and the thermal conductivity is usually asso-
ciated with the names of Chapman and Enskog. The exposition of this in the book by
Chapman and Cowling (1970) is a model of opacity, and in any case the Chapman-
Enskog expansion is queried by Cercignani (1988), and barely mentioned by Sone
(2002): Cercignani favours the Hilbert expansion, although the approximations ap-
pear to coincide at leading order. Apparently, the difference between the methods
lies in the way in which higher order terms are computed. In the Chapman–Enskog
method, higher approximations lead to higher derivatives, much as if one was approx-
imating a delay-differential equation by expanding in terms of the delay, and this is
a dubious procedure.

One might suppose that later authors would do a better job at exposition than
Chapman and Cowling; unfortunately, it is not the case. The approximation pro-
cedure, which as it turns out is actually quite straightforward, is retold in variously
confusing ways by everybody who contrives to write on the subject. The expositions
by Schwabl (2006) and Sone (2002), for example, are very muddled.

One wonders why this should be so. One reason is that the various authors appear
to have no understanding of scaling. They do have the idea that the derivative term
ḟ in the Boltzmann equation is small, but they seem to have little idea how to then
place the problem in its correct asymptotic context. The ingredients are all there,
but are all mixed up. It is in fact Chapman and Cowling who provide a lucid path,
but even they render the material more intransigent than a Guardian crossword. As
an example, we come across expressions for thermal conductivity and viscosity on
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pages 125 and 126, but it is not until page 168 that we find an expression which is
interpretable in terms of units.

3.7.3 Chemical reaction rates

As discussed by Laidler and King (1983), there are a number of ways of deriving
the Arrhenius dependence of reaction rate on temperature, k ∝ exp(−E/RT ). The
statistical mechanical view is presented by Eyring (1935), but the collisional theory
presented here is associated with the names of Lewis (1918) and Trautz (1916), though
Lewis does not actually provide the calculation. This is done by Chapman and
Cowling (1970, p. 89).

3.7.4 Flory–Huggins theory

The theory was announced in two brief notes by Flory (1941) and Huggins (1941),
with a longer exposition by Flory (1942); see also Flory (1953, pp. 497 ff.).

3.7.5 Phase change

One of the more puzzling aspects of statistical mechanics is the confrontation of the
statement that entropy increases with the reality of phase change. The simplest
interpretation of phase change associates it with a double well energy potential, and
molecular fluctuations can drive a system from one state to another. Explicit examples
of this are in the collisional theory of chemical reaction rates, and in the nucleation
of crystals. On the other hand, the Boltzmann H-function (see (3.74)) appears to be
a Lyapounov function with a unique minimum given by the Maxwellian distribution.

The reality is that if interparticle forces and particle volume are included in the
particle description, thus promoting phase change, any equivalent of H must have
multiple minima, corresponding to the different phases. An implication of this is
that any corresponding definition of the entropy will allow transient states in which
a decrease is possible.

Nucleation

An explicit example of this is given in the discussion of nucleation, where the energy
barrier separating the two separate stable states is determined in terms of surface
energy. The deterministic growth or decay rate of an already existing nucleus is
given by Lifshitz and Slyozov (1961), who were largely concerned with coarsening, or
Ostwald ripening, for which also see Voorhees (1985).

The Lifshitz–Slyozov theory does not attempt to describe the process of nucleation
itself, which relies on statistical fluctuations to create nuclei larger than the critical
size. It is through this process that the Arrhenius nucleation rate arises, and the
kinetic theory of nucleation is given by Becker and Döring (1935), and ably expounded
by Neu and Bonilla (2003); Ball et al. (1986) and Penrose (1997) analyse a particular
version of the Becker–Döring theory and are able to obtain asymptotic results; but

115



their choice of the rate constants is not consistent with the discussion here. Both
Neu and Bonilla (2003) and Velázquez (1998) give the continuum limit as a Fokker–
Planck equation. A useful review of both nucleation and crystal growth is the paper
by Dowty (1980).

Fragmentation

The large time similarity solution which describes Ostwald ripening is just one of a
number of processes, many of them in the geosciences, which indicate scale-invariant
and thus self-similar behaviour (Turcotte 1997). Fragmentation processes invariably
lead to power-law distributions, and numerous examples of such grain size distribu-
tions exist, for example in broken coal, asteroid size, earthquake fault gouge and soils
(Turcotte 1997, p. 44). The basic model to describe such distributions is the master
equation, and examples of this applied to fragmentation, aggregation and many other
processes are described by Krapivsky et al. (2010).

Exercises

3.1 Billiard in a circular enclosure.13

A particle moves with constant speed v in a circular arena with radius length
1, and bounces perfectly off the walls. Write down a Hamiltonian in terms of
the cylindrical coordinates r and θ which approximates this behaviour. Is it
unique?

Let θ denote the angular position of impact and let φ = 1
2
(π−α) be the (positive)

angle between the trajectory and the radius. Show that φ is constant, and write
down a difference equation relating sucessive values θn of θ.

Find values of φ such that the sequence {θn} has a

period two cycle {θ1, θ2, θ1, θ2, . . .};
period three cycle {θ1, θ2, θ3, θ1, θ2, θ3, . . .};
period n cycle {θ1, θ2, . . . , θn, θ1, . . .}.

How many such orbits are there?

For the next part you will need the basic ideas of measure theory. Roughly

speaking, the measure of a set I ∈ R is m(I) =

∫
R

f(x) dx, where f(x) = 1 for

x ∈ I, f(x) = 0 otherwise. We speak of a set of measure zero, and say that
something is true for almost all x ∈ J if the set of values I in J for which it is
not true has measure zero. The type example of a set of measure zero is the set
of rational numbers, essentially as they are countable. Definition of the integral
of everywhere discontinuous functions needs the apparatus of Lebesgue theory,

13Thanks to Roger Dodd for this exercise.
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but the essence is encapsulated in the following argument. We can count all
positive rationals in (0, 1) as

1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
, . . . ,

(here with some overcounting). For each rational p/q define a neighbourhood

Ipq of width ε/2q, and then define I =
⋃
p,q

Ipq, and f(x) = 1 on I, and zero

otherwise. Because I contains all the rationals in (0,1) (denote them as Q(0,1)),
it is self-evident that the integral of f over I is larger than the measure of Q(0,1).
But clearly ∫

I

f(x) dx < ε

∞∑
1

q

2q
= 2ε,

and letting ε→ 0, we see that that the rationals have measure zero.

Show that for almost all choices of α, the trajectory approaches arbitrarily
closely any point in a certain annulus. How is this result altered if there is also
an inner circle with the same centre?

[It may help to take θ = 2πψ and α = 2πβ, and consider the shift map ψ → ψ+β
when β is rational. This takes us towards the subject of chaos, which after all
is at the heart of the assumption of ergodicity in mechanical systems. See also
section 1.5.2.]

3.2 The BBGKY hierarchy.

N particles have positions q(t) ∈ V and momenta p(t) ∈ U and are considered
to form a trajectory in the 6N–dimensional space Γ = V N × UN . Denoting
γi = (qi,pi) and γ = (γ1, . . . , γN), explain why an ensemble of trajectories of
γ(t) in Γ has a density ρ which is invariant under permutations of the elements
of γ.

The s–particle distribution function is defined by

fs(γ1, . . . , γs) =
N !

(N − s)!
ρs(γ1, . . . , γs),

where the s–particle density is

ρs =

∫
Γs+1

ρ dΓs+1, dΓs+1 =
N∏
s+1

dγk, dγk = dqk dpk.

Assuming Liouville’s theorem, show that

∂ρs
∂t

= −
∫
{ρ,H} dΓs+1,

where you should also define the Poisson bracket {ρ,H}.
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Assume that the Hamiltonian

H =
N∑
1

[
p2
i

2m
+ V (qi)

]
+

∑
(i, j)
pairs

Wij, Wij = W (|qi − qj|),

where V is a global potential, and W is the potential of pair interactions, and
partition

H = Hs +HN−s +H ′,

where the terms represent respectively sums over i, j ≤ s, i, j > s, and the
remainder.

Show successively that ∫
{ρ,Hs} dΓs+1 = {ρs, Hs},∫
{ρ,HN−s} dΓs+1 = 0,

assuming ρ→ 0 as γk →∞, and

−
∫
{ρ,H ′} dΓs+1 =

N∑
j=s+1

s∑
i=1

∫
Pj

∂ρs+1(γ1, . . . , γs, γj)

∂pi
· ∂Wij

∂qi
dγj,

where Pj is the space spanned by γj.

Explain why the integral is independent of j, and hence derive the BBGKY
hierarchy equations

∂fs
∂t

+ {fs, Hs} =

∫
Γs+1

s∑
i=1

∂fs+1

∂pi
· ∂Wi,s+1

∂qi
dγs+1.

3.3 Write down the Liouville equation describing the evolution of an ensemble of
Hamiltonian trajectories in a 6N–dimensional phase space Γ described by a
probability density ρ, and comment on the symmetries of the density which
may be assumed.

Show that the Liouville equation is time-reversible, in a sense you should define.

The s–particle probability density is defined by

ρs =

∫
Γs+1

ρ dΓs+1, dΓs+1 =
N∏
s+1

dγk, dγk = dqk dpk,

and satisfies the BBGKY hierarchy equation, for each s,

∂fs
∂t

+ {fs, Hs} =

∫
Γs+1

s∑
i=1

∂fs+1

∂pi
· ∂Wi,s+1

∂qi
dγs+1,
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where Wij = W (|qi − qj|) is the inter-particle potential.

Show that under a suitable time reversal transformation, the BBGKY equations
are reversible, in a sense you should define in the context of a set of trajectories
in Γ.

3.4 A particle undergoes a random walk on the integers Z, and the probability of
being at position x = n∆x at step t = j∆t is pn,j. Suppose the events move left,
move right, remain stationary, have probabilities l, r and 1− l− r respectively.
By using conditional probabilities, show that

pn,j = lpn+1,j−1 + (1− l − r)pn,j−1 + rpn−1,j−1.

Assuming that the time and space steps are small, show that p(x, t) satisfies
approximately the partial differential equation

pt + vpx = Dpxx,

and give expressions for v and D.

By transforming to a moving reference frame and seeking a similarity solution,
find the solution assuming the particle starts at x = 0, and hence the mean
drift velocity of the particle.

3.5 The BBGKY hierarchy of equations is given by

∂fs
∂t

+ {fs, Hs} =

∫
Γs+1

s∑
i=1

∂fs+1

∂pi
· ∂Wi,s+1

∂qi
dγs+1,

where {f,H} is the Poisson bracket, and Wij = W (|ri−rj|) is the inter-particle

potential. Defining the inter-particle acceleration as aij = − 1

m
∇riWij, where

m is particle mass, and the external force per unit mass acting on particle i to
be g, show that the BBGKY equations take the form

∂fs
∂t

+
s∑
i=1

[
vi.∇rifs +

{
g +

s∑
j=1

aij

}
.∇vifs

]
= −

∫
Γs+1

ai,s+1.∇vifs+1 dγs+1.

In particular, show that the one-particle velocity distribution function f1 =
f(r,v, t) satisfies

∂f

∂t
+ v.∇rf + g.∇vf = −

∫
P

a(r− s).∇vf2(r,v; s,w, t) ds dw,

where P = V × U is the space spanned by s and w.

Explain the basis for assuming

f2(r,v; s,w, t) = f(r,v, t)f(s,w, t),
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and show that f then satisfies the Boltzmann equation in the form

∂f

∂t
+ v.∇rf + (g + A).∇vf = 0,

where

A =

∫
P

a(ξ)f(r− ξ,w, t) dξ dw.

Show that in this form, the equation is time-reversible.

Show that the assumption of a conservative attractive interparticle force, a =
−∇W (ξ), implies

a = −a(ξ)ξ

ξ
, a > 0,

and show [hint: Taylor expand f ] that if a is a rapidly decreasing function of ξ
over a distance small compared to the variation of f , an approximate expression
for A is

A = K∇n, n =

∫
U

f dw, K =

∫ ∞
0

4π

3
ξ3a(ξ) dξ.

What does this imply physically?
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3.6 The Boltzmann equation for a set of N particles in a volume V is given by

∂f

∂t
+ v.∇rf + g.∇vf = Q.

Explain the meaning of the terms in this equation, and give a concise summary
of the way in which it is derived.

1

2

V

k

Derive a form for the collision term by con-
sidering the particles to consist of perfectly
elastic spheres, and writing Q as the dif-
ference between a production term and a
removal term,

Q = Q+ −Q−.

Consider first collisions between particles 1
and 2 with velocities v and w, with relative
velocity

V = w − v,

as shown in the figure. Show that the ve-
locities after collision are

v′ = v + (V.k)k,

w′ = w − (V.k)k,

where k is the unit vector along the line of centres at impact.

Hence show that, if d is particle diameter,

Q− dr dv dt ≈ f(r,v, t)f(r,w, t) dΩ dw dr dv dt,

where dΩ = d2V.k dω, explaining in terms of the diagram what the solid angle
ω represents.

By considering the reversed time collision (in which particles with velocities v′

and w′ collide to produce velocities v and w), show that

Q+ dr dv dt = f(r,v′, t)f(r,w′, t) a2k′.V′ dω(k′) dw′ dr dv′ dt,

where V′ = w′ − v′ and V′.k′ > 0. Hence deduce, assuming that

dv′ dw′ = dv dw,

that

Q =

∫
U

∫
Ω+

[f(r,v′, t)f(r,w′, t)− f(r,v, t)f(r,w, t)] dΩ dw.

Under a time reversal transformation, show that Q is invariant, and thus that
the Boltzmann equation is not time-reversible.
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3.7 The collision integral for the Boltzmann equation is given by

Q =

∫
U

∫
Ω+

[f(v′)f(w′)− f(v)f(w)] d2V.k dω(k) dw,

where we write f(v) ≡ f(r,v, t). Describe the meaning of the construction of
this integral.

Show that

2

∫
U

ψ(v)Qdv =

∫
Σ

∆(ψ)f(v)f(w) dΣ,

where
∆(ψ) = ψ(v′) + ψ(w′)− ψ(v)− ψ(w).

Deduce that ∫
U

ψ(v)Qdv = 0

if and only if ψ is conserved during a collision.

The post-collision velocities are given by

v′ = v + (V.k)k,

w′ = w − (V.k)k,

V = w − v;

show that the quantities ψ = 1, v and 1
2
v2 are conserved, and show that these

are the only such quantities. What do they correspond to physically?

3.8 Write down the Boltzmann equation for the evolution of the one-particle velocity
distribution function describing the molecular motion of a fluid. (The form of
the collision integral Q need not be written explicitly.)

If the number density is defined by

n =

∫
U

f dv,

and the average φ̄ of a quantity φ is defined by

nφ̄ =

∫
U

fφ dv,

write down definitions for the density ρ, velocity u and internal energy e of the
fluid.

Use the Boltzmann equation to show that the average of a quantity ψ satisfies
the evolution equation

∂(ρψ̄)

∂t
+ ∇. (ρψ̄u) + ∇.Jψ = ρ

[
ψt + v.∇ψ + g.∇vψ

]
,
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providing (collisional conservation of ψ)∫
U

ψQdv = 0.

What is the definition of Jψ?

Assuming ψ = 1,v, 1
2
v2 are conserved in collisions, derive equations of conser-

vation of mass, momentum and energy for the fluid, and show in particular that
the energy equation can be reduced to the form

ρ
de

dt
= σ :∇u−∇.q,

where we have used the tensor double scalar product a : b = aijbij (summed),
and you should define σ and q. What do they represent physically?

3.9 Let UK ⊂ U be that part of velocity space on which the distribution function

f < e−Kv
2
, where K > 0 is arbitrary. Let v ∈ A ⊂ UK if v <

1√
K

, and let B

be the complement of A in UK .

Show that ∫
A

f ln f dv > − a

K3/2
,

∫
B

f ln f dv > − b

K3/2

(where you should determine values of a, b > 0).

If U ′K denotes the complement of UK in U , and the energy integral satisfies∫
U

v2f dv < E,

show that ∫
U ′K

f ln f dv > −EK.

Hence show that

H =

∫
U

f ln f dv > −
[

(a+ b)

K3/2
+ EK

]
,

and deduce that

H > −5

(
a+ b

2

)2/5(
E

3

)3/5

.

3.10 Suppose that the one particle distribution function f is independent of position,
and that there is no external body force. Show that the Boltzmann equation
takes the form

∂f

∂t
= Q.
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Suppose that ∫
U

ψ(v)Qdv = 1
2

∫
Σ

∆(ψ)f(v)f(w) dΣ,

where
∆(ψ) = ψ(v′) + ψ(w′)− ψ(v)− ψ(w).

Show that ∫
U

ψ(v)Qdv = 1
4

∫
Σ

∆(ψ)[f(v)f(w)− f(v′)f(w′)] dΣ,

and deduce that if

H =

∫
U

f ln f dv,

then

Ḣ = 1
4

∫
Σ

∆(ψ)f(v)f(w)(1− ζ) ln ζ dΣ,

where

ζ =
f(v′)f(w′)

f(v)f(w)
.

Deduce that Ḣ ≤ 0, that H is bounded below, and therefore that Ḣ → 0 as
t → ∞. Assuming that ψ = 1,v, 1

2
v2 are the only independent solutions of

∆ψ = 0, deduce that in the resulting equilibrium

f = A exp
[
−1

2
C|v − v̂|2

]
,

and find A, C and v̂ in terms of the number density n, mean velocity u and
temperature T , defined by

n =

∫
U

f dv, nu =

∫
U

fv dv,
nkT

m
=

∫
U

f |v − u|2 dv.

What are the units of f? Show that the definition of H is not dimensionally
consistent. Defining instead

H =

∫
U

f ln(f/f0) dv,

where f0 is a suitable dimensional constant, show that the preceding results are
not altered.

3.11 The Maxwellian distribution f0(v) = eΦ0 is given by the dimensionless relation

Φ0 = A− 1
2
Cu′2,

where

A = ln

[
n∗

(2πT ∗)3/2

]
, C =

1

T ∗
, u′ = v − u,

124



and A, C and u are functions of r and t but not v. Use the definition

Φ̇0 =
∂Φ0

∂t
+ v.∇Φ0 +

g.∇vΦ0

F 2

to show that

Φ̇0 =
dA

dt
+ u′.

[
∇A− Cg

F 2
+ C

du

dt
− 5

2
T ∗∇C

]
+ 1

2
u′2
[

2
3
C∇.u− dC

dt

]

−W.∇C + CUij
∂ui
∂xj

,

where
d

dt
=

∂

∂t
+ u .∇, and

W =
(

1
2
u′2 − 5

2
T ∗
)

u′, Uij = u′iu
′
j − 1

3
u′2δij.

The inner product is defined by

〈φ, ψ〉 =

∫
U

f0(v)φ(v)ψ(v) dv;

show that if N is the space spanned by {1,u′, 1
2
u′2}, then W ⊥ N and U ⊥ N .

Calculate the inner products of pairs of {1,u′, 1
2
u′2}, and deduce three equations

which must be satisfied by A, C and u, if the constraint 〈Φ̇0, χ〉 = 0 is satisfied
for each χ ∈ N .

3.12 The 9 × 9 matrix R has elements Rijkl, where the suffixes range from 1 to 3,
and the matrix elements are labelled as indicated below:

k︷ ︸︸ ︷
l︷ ︸︸ ︷ l︷ ︸︸ ︷ l︷ ︸︸ ︷

i



j


j


j






Thus the third element in the fourth row has suffixes 2113, and so on.

Explain why matrix multiplication gives

(RS)ijkl = RijpqSpqkl,
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why the identity matrix has
Iijkl = δikδjl,

and why
RT
ijkl = Rklij.

Hence show that if R is an orthogonal 3 × 3 matrix, and Rijkl = RikRjl, then
RRT = I, so that R is orthogonal.

3.13 A general symmetric tensor in the orthogonal complement of vv in U2 can be
written in the form

W = Auu +Bww + L(uv + vu) +M(uw + wu) +N(vw + wv).

By using the fact that for the tensor R defined by Rijkl = RikRjl, where R is
any orthogonal matrix leaving v invariant,

Ruu = RuRu,

etc., and that

Rw = w cos θ + u sin θ,

Ru = −w sin θ + u cos θ,

where θ is non-zero, show that RW = W if and only if A = B and L = M =
N = 0.

3.14 The linear operator L is defined on a function φ(v) by

Lφ =

∫
U

∫
Ω+

f0(v)∆φ(v,w) dΩ dw,

where the Maxwellian is

f0(v) =
n∗

(2πT ∗)3/2
exp

(
− u′2

2T ∗

)
,

u′ = v − u, dΩ = V.k dω(k), and the quantities n∗, T ∗ and u are independent
of v. Show that under the scaling transformation v =

√
T ∗v∗,

Lφ = n∗T ∗1/2L∗φ,

where

L∗φ =
1

(2π)3/2

∫
U∗

∫
Ω∗+

exp
(
−1

2
u′∗2
)

∆φ dΩ∗ dw∗.

Hence show that the solution of the equation

−L[F (u′)u′] = W = (1
2
u′2 − 5

2
T ∗)u′
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has the form

F (u′) =
T ∗1/2F ∗(u′∗)

n∗
,

where
−L∗[F ∗(u′∗)u′∗] = W∗ = (1

2
u′∗2 − 5

2
)u′∗.

Similarly, show that the solution of

−L[G(u′)U] = U, Uij = u′iu
′
j − 1

3
u′2δij,

is

G(u′) =
G∗(u′∗)

n∗T ∗1/2
,

where
−L∗[G∗(u′∗)U∗] = U∗, U∗ij = u′∗i u

′∗
j − 1

3
u′∗2δij.

3.15 The dimensionless functions

A = ln

[
n∗

(2πT ∗)3/2

]
, C =

1

T ∗
,

are found, from the solvability conditions for the perturbed Boltzmann equation,
to satisfy the equations

dA

dt∗
= 0,

dC

dt∗
= 2

3
C∇∗.u∗,

C
du∗

dt∗
= −∇∗A+ 5

2
T ∗∇∗C +

Cg∗

F 2
,

where the dimensional variables are related to their dimensionless (starred)
equivalents via

n = n0n
∗, T = T0T

∗, u = v0u
∗, t =

L

v0

t∗, ∇ =
1

L
∇∗, g = g0g

∗,

and

v0 =

√
kT0

m
, F 2 =

v2
0

g0L
.

Write the equations for A, C and u∗ as dimensional equations for n, T and u,
and show that with the assumptions

p = nkT, e =
3kT

2m
,

they can be rearranged to the Euler equations in the form

ρ
du

dt
= −∇p+ ρg,
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dρ

dt
+ ρ∇.u = 0,

de

dt
+ p

dv

dt
= 0,

where

ρ = mn, v =
1

ρ
.

3.16 Define the particle-weighted average φ̄ of a function φ in terms of the one-particle
velocity distribution function f(r,v, t).

Show that if f is given by the Maxwellian distribution

f = n
( m

2πkT

)3/2

exp

[
−mu

′2

2kT

]
,

then the Boltzmann specific entropy s = − k
m

ln f is given by

s =
k

m

[
3
2
− ln

{
n
( m

2πkT

)3/2
}]

.

Assuming e =
3kT

2m
, show that if n is constant, then

T ds = de.

3.17 In thermodynamic equilibrium, the specific entropy s satisfies

T ds = de+ p dv.

Explain the meaning of the terms in this equation.

Define the specific enthalpy h, the specific Gibbs free energy g, and the specific
Helmholtz free energy f , and show that

dh = T ds+ v dp.

dg = v dp− s dT,
df = −p dv − s dT.

By forming mixed second derivatives in two ways, derive the Maxwell relations(
∂p

∂s

)
v

= −
(
∂T

∂v

)
s

,(
∂v

∂s

)
p

=

(
∂T

∂p

)
s

,(
∂v

∂T

)
p

= −
(
∂s

∂p

)
T

,(
∂p

∂T

)
v

=

(
∂s

∂v

)
T

.
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Four partial derivatives are associated with specifically named quantities, which
can be measured. These are the coefficient of thermal expansion

β =
1

v

(
∂v

∂T

)
p

,

the coefficient of isothermal compressibility

ξ = −1

v

(
∂v

∂p

)
T

,

the specific heat at constant pressure,

cp = T

(
∂s

∂T

)
p

,

and the specific heat at constant volume,

cv = T

(
∂s

∂T

)
v

.

With these definitions, show that

T ds = de+ p dv = cp dT − βvT dp,

3.18 The density ρ, velocity u and internal energy e of a fluid are given by the
conservation laws

∂ρ

∂t
+ ∇. (ρu) = 0,

∂(ρu)

∂t
+ ∇. (ρuu) = ∇.σ + ρF

∂

∂t

[
1
2
ρu2 + ρe+ ρV

]
+ ∇.

[
{1

2
ρu2 + ρe+ ρV }u

]
= ∇. (σ.u)−∇.q,

where σi is the stress tensor, q is the heat flux, and the conservative body force
F is defined by

F = −∇V,

where V is the potential.

Show that the momentum equation can be written in the form

ρ

[
∂u

∂t
+ (u.∇ )u

]
= ∇.σ + ρF,

and that the energy equation can be reduced to

ρ

[
de

dt
+ p

dv

dt

]
= τij ε̇ij −∇.q,

where

σij = −pδij + τij, v =
1

ρ
.

Deduce that for a Maxwellian velocity distribution, ė+ pv̇ = 0.
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3.19 The gamma function is defined by

Γ(s) =

∫ ∞
0

ts−1e−t dt.

Show by induction or otherwise that Γ(n+ 1) = n! if n is a positive integer.

If s is large and positive, find an approximation for Γ(s). [Hint: put t = sξ in
the integrand, and expand the integrand locally about its maximum.]

Hence deduce Stirling’s approximation,

n! ∼ nne−n
√

2πn

as n→∞.

3.20 The volume of an M -dimensional hypersphere of radius R is

VM(R) =
πM/2RM

(M/2)!
.

Derive this result in three ways: by direct calculation, using induction on M ;
by calculation of

IM(α) =

∫
RM

e−αr
2

dV

and use of the Laplace transform; and by reduction (show that f ′M(ξ) = πfM−2(ξ),
where VM(R) = fM(R2)).

3.21 The entropy of a microcanonical ensemble for the hard sphere gas is defined by

S = ln

[
3N

2E

V N(2πmE)3N/2

N !(3N/2)!

]
,

where the number of particles N is very large. Use Stirling’s approximation to
show that

S ≈ kN

[
5
2

+ 3 lnm− ln

(
N

V

)
+ 3

2
ln

(
4πE

3mN

)]
,

and explain why this definition is extensive.

If the factorial N ! were omitted from the definition of the entropy, show that
Gibbs’s paradox would ensue, insofar as the resulting ‘entropy’ would not be
extensive.

3.22 A canonical ensemble consists of N particles in a volume V at temperature
T . Define the partition function Z, assuming a state space of Ω equiprobable
states, and hence deduce expressions for the energy and entropy of the system.

Show that the Helmholtz free energy F satisfies

Z = e−βF ,
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where you should define β. Show also that

p = − ∂F

∂V

∣∣∣∣
T

,

and hence deduce that

G = kT

[
− lnZ +

V

Z

∂Z

∂V

∣∣∣∣
T

]
.

3.23 What are the two postulates which underlie classical statistical mechanics?

A two level system consists of N atoms which can exist in two states: a ground
state with energy zero, and an excited state with energy E∗. Define the state
of the i–th atom to be ni, where ni = 0 if in the ground state and n = 1
if in the excited state. Assuming a suitable Hamiltonian dynamics for the
system, write down the Hamiltonian, and deduce the probability pγ of the state
γ = (n1, n2, . . . , nN). Hence show that the partition function is given by

Z = (1 + e−βE
∗
)N ,

where β =
1

kT
.

Show from the definition of the entropy S that

S =
E

T
+ k lnZ,

and deduce that the Helmholtz free energy F = E − TS is given by F =
−kT lnZ. Hence write down expressions for S and F for this two-level system.

3.24 Suppose that

Z(E) =
∞∑
n=0

Zn(E),

where Zn = cEΛe−βE, E = nE∗, and Λ is large. By mimicking the application
of Laplace’s method for integrals, show that Z can be approximated by an
integral, and hence show that

Z ≈
√

2πΛ

βE∗
Zmax,

where Zmax = maxn Zn.

3.25 The chemical potential is defined as

µ =
∂E

∂N

∣∣∣∣
S,V

.
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Deduce that also

µ = −T ∂S

∂N

∣∣∣∣
E,V

.

Use the definition of the Gibbs free energy G = E + pV − TS to show that

µ =
∂G

∂N

∣∣∣∣
p,T

.

For the perfect gas

lnZ = N

[
1− ln

(
N

V

)
+ 3

2
ln

(
2πkT

m

)]
, E = 3

2
NkT.

Use the definition

S =
E

T
+ k lnZ

to calculate µ and G, and hence show that G = µN for the perfect gas.

3.26 The grand potential is defined by

Φ = E − TS − µN.

Using the differential expression for dE, show that

N = − ∂Φ

∂µ

∣∣∣∣
T,V

, p = − ∂Φ

∂V

∣∣∣∣
T,µ

, S = − ∂Φ

∂T

∣∣∣∣
V,µ

.

For the perfect gas, the grand potential is defined by

Φ = −kTV eβµ
(

2πkT

m

)3/2

.

Using this, show that G = µN .

3.27 The grand partition function Q for a number of particles in a box of volume V
is defined as

Q =
∞∑
N=0

eβµNZN(T, V ),

where ZN is the partition function for N particles, and β = 1/kT . By expanding
for small N to second order, find an expression for the grand potential Φ =
−kT lnQ = −pV , and hence deduce that the equation of state takes the form

p = kT [n+Bn2 + . . .], (∗)

where n = N/V , and

B = V

(
1

2
− Z2

Z2
1

)
.
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Assuming that

ZN =
(2πmkT )3N/2

N !

∫
V N :|ri−rj |>d

exp

[
−β
∑
i<j

W (|ri − rj|)

]
dr1 . . . drN ,

where the inter-molecular potential W (r) is defined for r > d and is small,
derive approximations for Z1 and Z2. Show that Z2/Z

2
1 is dimensionless, and

that
B = b− aβ,

where

b = 1
2
Ω, a ≈ −3

2
Ω

∫ ∞
1

ξ2w(ξ) dξ,

where w(ξ) = W (dξ) and Ω = 4
3
πd3.

Hence show that the equation of state can be written in the equivalent asymp-
totic form

p+ an2 =
nkT

1− bn
.

Why might this be a better expression that (∗)?
By considering the graph of p versus n at fixed T , show that multiple steady
states occur if

T < Tc =
8a

27kb
.

3.28 The velocity variables v, w of two particles are related to the centre of mass
velocity U = α1v + α2w and the relative velocity V = w − v, where α1 =

m1

m1 +m2

, m1 and m2 being the masses of the particles, and α2 = 1−α1. Show

that the transformation from v, w to U, V has Jacobian equal to one.

3.29 The function B(k) is defined by

B = −1

ν

∫
V

a(ξ)ξ

ξ
e−iνk.ξ dξ,

where V = R3, and the function a(ξ) = 0 for ξ < 1. Show that

B = iC(νk)k,

and by changing to spherical polar coordinates, show that (writing K = νk)

C(K) =
4π

K2

∫ ∞
1

ra(r)

[
sinKr

Kr
− cosKr

]
dr.

Now suppose that a(r) = 6/r7. Derive the asymptotic limits

C ∼ 8
3
π − 4

5
πK2 + . . . , K → 0,
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C ∼ 24π sinK

K3
+ . . . , K →∞,

by expanding the integral as a Taylor series, and by integration by parts, re-
spectively.

What limits the extension of the small K result beyond O(K2)? Use successive
integration by parts to show that

C(K) =

[
4

K2
+ 1− K2

6

]
sinK

K
+

[
− 4

K2
− 1

3
+
K2

6

]
cosK +

πK3

12
− Si(K),

where

Si(K) =

∫ K

0

sin s ds

s
,

and hence find the next term in the expansion.

3.30 An equation to determine σ in terms of a real parameter γ is

i

∫
U

f0(v)k.v dv

σ + ik.v
= γ,

where

f0(v) =
1

(2π)3/2
e−

1
2
v2

is the (dimensionless) Maxwellian. By taking the z axis in the direction of k,
show that

i√
2π

∫ ∞
−∞

kz e−
1
2
z2 dz

σ + ikz
= γ,

and show further that if
σ =
√

2kη,

this can be manipulated to the form

γ =
1√
π

∫ ∞
−∞

te−t
2
dt

t− iη
,

and then

1− γ =
2η2

√
π

∫ ∞
0

e−t
2
dt

t2 + η2
.

Assuming that η > 0, show that η is a monotonically decreasing function of γ
for 0 < γ < 1, and that there is no real solution for γ > 1. Sketch the graph of
η(γ).

Show that

1− γ =
√
πη eη

2

erfc η, erfc η =
2√
π

∫ ∞
η

e−s
2

ds.

[Hint: consider the integral

J(α) =

∫ ∞
0

e−α(t2+η2) dt

(t2 + η2)
.]
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3.31 In liquid lattice theory, the molecules of the liquid are conceived to lie on the
points of a lattice. If the liquid is a mixture of molecules A and B, with
the molar concentration of B being c, then if the lattice has N sites, there
are NA = (1 − c)N molecules of A and NB = cN molecules of B. Let z be
the coordination number of the sites; by consideration of the number W of
distinguishable states, show that the entropy of mixing is

S = −kN ln [(1− c) ln(1− c) + c ln c] .

Now suppose that the internal energy is determined as

E = nAAeAA + nABeAB + nBBeBB,

where nij is the number of i–j contacts, and eij is the corresponding internal
energy. Show that

nAA = 1
2
(zNA − nAB), nBB = 1

2
(zNB − nAB),

and explain why we can take

nAB =
zNANB

N
.

Deduce that if eAA = eBB = e0,

E = zN
[

1
2
e0 + c(1− c)∆e

]
,

where
∆e = eAB − e0.

Deduce that the Helmholtz free energy is

F = N
[

1
2
ze0 + kT{χc(1− c) + (1− c) ln(1− c) + c ln c}

]
,

where the interaction parameter is

χ =
z∆e

kT
.

Suppose a system is subject to constant temperature and pressure, and that
the molecular volumes of both A and B are the same, and equal to vm. Show
that the chemical potentials of A and B are

µA = µ0 + kT{ln(1− c) + χc2},

µB = µ0 + kT{ln c+ χ(1− c)2},
where

µ0 = 1
2
ze0 + pvm.

Draw graphs of the specific Gibbs free energy g =
G

N
as a function of concen-

tration c, and show that phase separation will occur if χ > 2.
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3.32 In the Earth, solid rock begins to melt as it rises (convectively) towards the
surface at mid-ocean ridges, or beneath volcanic island chains such as Hawaii.
The melting temperature depends on pressure as

TM(p) = T0 + Γp,

where Γ > 0. It then forms a partially molten solid-liquid mixture, in which the
liquid forms a network of veins interlaced through the grains of the now porous
solid. Denoting average solid pressure as ps and liquid pressure pl within the
mixture, why may we take the temperature in the mixed phase region to be
TM(pl)? [Hint: think of the time scales over which solid and liquid stresses
relax.]

Now we wish to calculate a thermodynamic boundary condition at the interface
between the partially molten region (m) and the surrounding cold solid (c)
mantle rocks. We assume that temperature is continuous,

[T ]mc = 0,

where the square brackets denote the jump at the interface, there is a normal
force balance

[φpl + (1− φ)ps]
m
c = 0,

where the liquid volume fraction (porosity) is denoted by φ, and the specific
Gibbs free energy is continuous:

[φgl + (1− φ)gs]
m
c = 0.

Noting that gs = gl on the partially molten side, show that these conditions
imply

φ(ps − pl) = 0

at the boundary.

3.33 A liquid binary alloy consists of a solvent A and a solute B of which the latter
has concentration c, and the liquid is in thermodynamic equilibrium with its
solid phase. The specific Gibbs free energies of solid and liquid phases are
denoted by gS and gL, and their dependence on concentration is given by

g = µA(1− c) + µBc,

for coefficients µSA and µSB, and µLA and µLB, respectively, which are defined by

µA = µ0
A + kT ln(1− c),

µB = µ0
B + kT ln c,

with similar additional superscripting S, L of the coefficients µ0
A and µ0

B.
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Show that the equilibrium conditions µLA = µSA and µLB = µSB are solved by
liquid and solid values of the concentration cL, cS which satisfy

g′S(cS) = g′L(cL) =
gS(cS)− gL(cL)

cS − cL
,

and illustrate the procedure graphically.

Show that if
∆µA = µ0L

A − µ0S
A , ∆µB = µ0L

B − µ0S
B ,

then at the melting points TA and TB of pure A and pure B, ∆µA = 0 and
∆µB = 0 respectively.

Suppose that for T 6= TA, TB, ∆µA < 0 and ∆µB > 0. Show that cS > cL, and
draw the phase diagram for the solidus and liquidus temperatures.

Now suppose that the solids are immiscible, in the sense that

µSA = µ0S
A + kT{ln(1− c) + χc2},

µSB = µ0S
B + kT{ln c+ χ(1− c)2}

(cf. question 3.31), where χ is positive. Draw typical forms for gS and gL,
and describe the consequent form of the phase diagram. [This gives the typical
eutectic phase diagram.]

3.34 The grain size distribution φ of a population of growing crystals is given by the
evolution equation

φt + (V φ)r = 0,

where the crystal growth rate V is given by

V = D

[
ψ

r
− α

r2

]
,

where r is grain radius and

ψ = ∆c0 −
∫ ∞

0

4
3
πr3φ dr,

and is initially positive.

Suppose that α is small and can be neglected. By solving the resulting problem,
show that if the initial grain size distribution is φ0(r), then at later times

φ =
r

{r2 − z(t)}1/2
φ0[{r2 − z(t)}1/2],

where z is given by

ż = 2D

[
∆c0 −

∫ ∞
0

4
3
π(z + ξ2)3/2φ0(ξ) dξ

]
,
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with z(0) = 0.

Deduce that z increases and approaches a constant at large t. For the particular

case where φ0(r) = Kδ(r− r0), where K is such that

∫ ∞
0

4
3
πr3φ0(r) dr = f∆c0,

f < 1, derive an ordinary differential equation for ζ =
z

r2
0

in terms of τ =

2D∆c0t

r2
0

, and deduce that ζ → 1

f 2/3
− 1 as τ →∞.

3.35 Consider the evolution of particle cluster size as a random walk on the integers
n ≥ 1, where n is the cluster number. If pn(t) is the probability that a cluster
has n particles at time t, qn dt is the probability of adding a particle to an
n-cluster in time dt, rn dt is the probability of removing one, and M(t) is the
total number of clusters, give an argument why the incremented probability at
t+ dt is

pn(t+ dt) = qn−1pn−1 dt+ rnpn+1 dt+ pn

[
1− qn dt− rn−1 dt−

dM

M

]
, n ≥ 2,

and deduce that in this case

ṗn = Sn−1 − Sn −
Ṁpn
M

, n ≥ 2,

where
Sn = qnpn − rnpn+1, n ≥ 1.

Hence show that

ṗ1 =
Ṁ

M
(1− p1)− S1.

Defining a generating function

G(s, t) =
∞∑
1

pns
n,

explain why G must be a monotonically increasing function of s with G = 1 at
s = 1. Show that if qn = q and rn = r are constant, then

∂G

∂t
= (s− 1)

[
qG− r

(
G

s
− p1

)]
+
Ṁ

M
(s−G),

and deduce that if q < r, there is a steady state in which

G =
(r − q)s
r − qs

,

and calculate the resulting probability density.

Equivalently, show that if q > r, a steady state is not possible. What do you
think happens in this case?

Show that, by identifying Nn = Mpn, this model is equivalent to the Becker–
Döring model.

138



References

Anderson, R. M. and R. M. May 1991 Infectious diseases of humans. Oxford Uni-
versity Press.

Arn’old, V. I. 1983 Geometric methods in ordinary differential equations. Springer-
Verlag, Berlin.

Ball, J. M., J. Carr and O. Penrose 1986 The Becker–Döring cluster equations: basic
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