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Prologue

Review ofWaveMechanics and Examples
Usually, a first course on quantum theory focuses quite a bit on the study of the Schrödinger equation (primarily
time-independent, but occasionally time-dependent) for single-particle wave functions in one, two, or three spatial
dimensions. These topics generally fall within the realm of what is often called wave mechanics. We include in this
preparatory section a brief reprisal of that formalism along with a review of some standard examples that should be
familiar from your previous studies. In the remainder of this course we will freely refer back to these standard results.
This is not meant to be a comprehensive review of the material fromA11 QuantumTheory; you should be prepared to
refer back to material from that course when necessary.

Warning: the material in this section will not be the subject of any lectures.

0.1 Review of wave mechanics

The primary object of wave mechanics is Schrödinger’s wave function for a particle moving in, say, one spatial dimen-
sion. This is a C-valued function, often denoted Ψ,

Ψ : RY × RU → C , (0.1)

of a position variable x on the real line and time t. The wave function is conventionally normalised to obey (at any time
t)

∞∫

−∞

dx |Ψ(x, t)|2 = 1 . (0.2)

When so normalised, the wave function encodes, in particular, the probability density ρ for detecting the presence of
the particle in question at a given point and at a given time according to

ρ(x, t) = |Ψ(x, t)|2 . (0.3)

The normalisation condition ensures that the total probability for finding the particle somewhere at any given time is
one. Alternatively, one can work with wave functions that don’t necessarily obey (0.2), in which case we have

ρ(x, t) = |Ψ(x, t)|2∫∞
−∞ ds |Ψ(s, t)|2

. (0.4)

If a particle moves subject to an external potential energy function V(x), then the time-dependent Schrödinger equa-
tion—a partial differential equation that encodes time evolution of the wave function—takes the form

i!∂Ψ
∂t (x, t) = −

!2
2m

∂2Ψ
∂x2 (x, t) + V(x)Ψ(x, t) . (0.5)

Here ! is the reduced Planck constant, which is a fundamental unit of angular momentum (i.e., it has units of [mass]×
[length]2 × [time]−1).1 It is a simple exercise to confirm that if Ψ(x, t) evolves in time according to (0.5) then the
normalisation condition (0.2) will hold for all time t if it holds at any given time t0.

The differential operator (with respect to x) that acts on the wave function on the right hand side of this equation is
the Hamiltonian operator for the theory. If we introduce operators P and X that act on wave functions according to

(PΨ)(x, t) = −i!∂Ψ
∂x (x, t) , (XΨ)(x, t) = xΨ(x, t) , (0.6)

1In SI units, the reduced Planck constant is ! ≈ 1.0546× 10−34 LH ·N/T2. In a quantum mechanical world, it is often a better idea to make a
choice of units for which ! = 1 (so-called natural units). At some point in this course, it will make sense to think of !more like a formally small
parameter.
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then the Hamiltonian operator appears analogous to the total classical energy (alternatively, the Hamiltonian of the
corresponding classical system if you have taken B7.1 Classical Mechanics) with momentum and position replaced by
their operator counterparts,

H =
P 2

2m + V(X) . (0.7)

The time-dependent Schrödinger equation then takes the abstract form

i!∂Ψ
∂t (x, t) = (HΨ)(x, t) . (0.8)

In sufficiently well-behaved cases,2 we can look for separable solutions to this equation of the form

Ψ(x, t) = ψO(x) exp
(
− iEOt

!

)
, (0.9)

in which case the (real) numbers EO are identified with the energies of these solutions, and the functions ψO(x) are
stationary state wave functions (depending only on position) that obey the time-independent Schrödinger equation,

(HψO)(x) = −
!2
2mψ ′′

O (x) + V(x)ψO(x) = EOψO(x) . (0.10)

The time-dependence for a stationary state is determined by its energy through the time-dependent phase in (0.9). If
the stationary state wave functions {ψO} form a basis for the space of possible wave functions at a fixed time, we can
(in principle) understand time-evolution in complete generality,

Ψ(x, 0) =
∑

O
aOψO(x) =⇒ Ψ(x, t) =

∑

O
aO exp

(
− iEOt

!

)
ψO(x) . (0.11)

This follows from the linearity of the time-dependent Schrödinger equation and is one of the fundamental and unusual
features of the quantum picture of reality.

0.2 Standard examples

A significant portion of any introductory course on quantum mechanics involves learning the details of assorted stan-
dard examples where the stationary-state wave functions ψO(x) can be understood completely. In this subsection, we
review the most important of these for ease of reference in the future and to fix certain notational conventions.

Example 0.2.1 (Particle in a box). When a particle is restricted to move in a fixed interval, say x ∈ [0, a] for some
positive real number a, the system is referred to as the particle in a (one-dimensional) box. As part of the definition of
the system, one specifies that the wave function vanishes at the endpoints of the interval. This is sometimes phrapsed
as a particle moving on the real line with a potential that is zero in the given interval and (positive) infinite outside of
it.

The stationary state wave functions for the particle in the box satisfy the simple ordinary differential equation,

− !2
2mψ ′′

O (x) = EOψO(x) , ψO(0) = ψO(a) = 0 . (0.12)

This can be solved by inspection. The wave functions must be sin functions, and the boundary condition at a further
constrains the possible energies EO, giving the following set of solutions,

ψO(x) =
√

2
a sin

(nπx
a

)
, EO =

n2π2!2
a2 , n = 1, 2, 3, . . . . (0.13)

The numerical prefactor is chosen so the wave functions will satisfy the standard normalisation condition, and more

2At this point we won’t dwell on the conditions under which this is a sound strategy.



iii 0 PROLOGUE

generally we have the relation
B∫

0

dx ψO(x)ψN(x) = δO,N . (0.14)

These functions form an orthonormal basis for the space of wave function on the interval in the sense of Fourier series.
Time-evolution of any given wave function (taken as the wave function at time t = 0) can then be determined by
decomposing it into its Fourier representation and introducing time-dependent phases depending on the energies in
(0.13).

Example 0.2.2 (Harmonic Oscillator). Our next example is the simple harmonic oscillator, for which a particle is al-
lowed to range over the entire real line but with quadratic potential function V(x) = 1

2mω2x2 (here by convention we
take ω ∈ R+). This potential is parameterised so the classical angular frequency of oscillation for the system would
be ω.

Analysis of this system is simplified by introducing the first-order differential “ladder” operators,3

α± =
1√

2m!ω
(P ± imωX) , (0.15)

which obey a number of important relations,

[α−, α+] = 1 , (0.16)
[H, α±] = !ωα± , (0.17)

H = !ω(α±α∓ ± 1
2 ) . (0.18)

Here we’ve adopted standard notation for the commutator of two differential operators A and B: [A,B] := AB − BA.
Equation (0.17) implies that if Hψ = Eψ, then Hα±ψ = (E± !ω)α±ψ, so the α± operators move amongst stationary
states in the space of wave functions, shifting energy by a definite amount.

Consequently, the ground state wave function (the stationary state wave function of least energy)must obey α−ψ0 = 0,
and this can be immediately solved to give the expression

ψ0(x) =
(mω

π!

) 1
4 exp

(
−mωx 2

2!

)
, (0.19)

which has energy E0 = !ω/2 by virtue of (0.18) or direct calculation. The higher energy states are obtained by the
iterated action of α+,

ψO =
(−iα+)O√

n!
ψ0 , (0.20)

where the prefactor is such that the results are normalised and real. With a little bit of work, one finds that these
stationary state wave functions can be expressed explicitly as follows,

ψO(x) =
1√
2O n!

(mω
π!

) 1
4 exp

(
−mωx2

2!

)
HO

(√
mω
! x

)
, (0.21)

where HO(x) is the n’th Hermite polynomial.4 These form a basis for the space of normalisable wave functions on the
real line,so the possible energies (the energy spectrum) of the quantum harmonic oscillator is as follows,

EO = !ω
(

n +
1
2

)
. (0.23)

Example 0.2.3 (Hydrogenic atom). A famous example, which is also of key historical and physical importance, is

3Beware, the conventions for the ladder operators here differ from some appearing in standard text books by factors of±J.
4The Hermite polynomials are defined as

)O(Y) = (−1)OFY
2 dO

dYO
(
F−Y2

)
. (0.22)
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the Hydrogen atom (or the Hydrogen-like, or Hydrogenic, atom if you allow general nuclear charge Z > 0) in three
dimensions. This is the problem of a single electrically charged particle (the electron) moving in three dimensions
subject to a Coulomb potential,5

V(r) = −ZqF
|r| . (0.24)

A detailed analysis of the time-independent Schrödinger equation for this problem appeared inA11 QuantumTheory,
and we give a lightning review of the solution here. We will return to it several times throughout this course.

The normalisable stationary states for this system are labelled by three quantum numbers, (n, ",m), known as the
principal, orbital, and magnetic quantum numbers, respectively. These are restricted according to n = 1, 2, 3, . . .,
" = 0, 1, . . . , n− 1, and m = −",−"+ 1, . . . , "− 1, ". The stationary state wave functions take the form,6

ψO!N(r, θ, φ) = RO,!(r)YN
! (θ, φ) =

√
2"+ 1
4π

("−m)!

("+ m)!
RO,!(r)PN

! (cos θ)eJNʖ . (0.26)

The YN
! (θ, φ) are spherical harmonic functions, which obey

L2YN
! (θ, φ) = !2"("+ 1)YN

! (θ, φ) , L3YN
! (θ, φ) = !mYN

! (θ, φ) , (0.27)

with respect to the orbital angular momentum operators,

L = −i! (x ∧∇) , L3 = −i!
(

x ∂

∂y − y ∂

∂x

)
= −i!∂ʖ . (0.28)

The PN
! (cos θ) are the associated Legendre polynomials.7 The radial wave function takes the form

RO,!(r) = exp
(
− Zr

na0

)
fO,!(r) , (0.31)

where fO,!(r) is a polynomial of degree n − 1 and a0 = !2/(mq2F) is the Bohr radius. The energy, EO, depends only on
the principal quantum number and is given by

EO = −
mq4FZ2

2!2n2 = − q2FZ2

2a0n2 = −α2mc2Z2

2n2 , (0.32)

where in the last expression, α = q2F/!c ≈ 1/137 is the fine structure constant. Note that these stationary state energies
are always negative, so the exponential in (0.31) is decaying with r and the wave functions are indeed normalisable.

In contrast to the previous two examples, the stationary state wave functions for the Hydrogen atom do not form a
basis for all possible normalisable wave functions for the electron in a Coulomb potential. Rather, they form a basis
only for the bound state wave functions.8 The possibility of additional wave functions for the Hydrogen atom that are
not bound states is relevant in the context of scattering theory.

5We adopt Gaussian units to avoid factors of 4ʑʆ0. Here RF is the charge of the electron, often written as F.
6The normalisation in the last term in (0.26) is so that

∫

S2
:N
! (ʉ, ̶):

N′
!′ (ʉ, ̶) dʉ d̶ = ʅ!,!′ ʅN,N′ . (0.25)

7We recall that the (misnamed) associated Legendre polynomials, which in general are not polynomials, are given for non-negativeN by

1N
! (Y) =

(−1)N

2!!!
(1− Y2)

N
2

d!+N

dY!+N (Y2 − 1)! , (0.29)

while for negative N they are determined by the relation

1−N
! (Y) = (−1)N (!−N)!

(!+N)!
1N! (Y) . (0.30)

Evaluating these for Y = cos ʉ, we get that the 1N
! (cos ʉ) are indeed polynomials (of degree !) in cos ʉ and sin ʉ.

8We do not give a technical definition of bound state here, but physically it corresponds to states where the electron stays localised in the
neighborhood of the nucleus instead of running off to infinity, analogous to the classical distinction between bound (elliptical) orbits versus
parabolic or hyperbolic orbits in the Kepler problem.


