## Dynamics: Problem Sheet 4 (of 8)

1. Consider the following system of coupled second order ODEs for $x(t), y(t)$ :

$$
\begin{aligned}
& \ddot{x}=1+\sin y-\mathrm{e}^{3 x}, \\
& \ddot{y}=\mathrm{e}^{x-3 y}-1 .
\end{aligned}
$$

(a) Show that $(x, y)=(0,0)$ is an equilibrium configuration, and that the linearized equations of motion about this point are

$$
\binom{\ddot{x}}{\ddot{y}}=M\binom{x}{y}, \quad \text { where } M=\left(\begin{array}{cc}
-3 & 1 \\
1 & -3
\end{array}\right) .
$$

(b) By determining the eigenvalues and eigenvectors of $M$, hence show that the normal mode solutions to the equations in part (a) are

$$
\binom{x(t)}{y(t)}=A\binom{1}{1} \cos (\sqrt{2} t+\phi), \quad\binom{x(t)}{y(t)}=B\binom{1}{-1} \cos (2 t+\psi),
$$

where $A, B, \phi$ and $\psi$ are constants.
2. A particle of mass $m$ moves in $\mathbb{R}^{3}$ under the influence of a force $\mathbf{F}=-k \mathbf{r}$, where $\mathbf{r}$ is the position vector of the particle and $k>0$ is constant.
(a) Explain why $\mathbf{F}$ is both a conservative force, and a central force, where a choice of potential energy function is $V(\mathbf{r})=\frac{1}{2} k|\mathbf{r}|^{2}$. Hence deduce that the particle moves in a plane through the origin.
(b) Taking the plane of motion to be the $(x, y)$ plane, the solution to the equation of motion may be written as

$$
\mathbf{r}(t)=a \sin (\omega t+\phi) \mathbf{i}+b \cos (\omega t+\phi) \mathbf{j},
$$

where $\omega=\sqrt{k / m}$, and $a, b$ and $\phi$ are constant. (This solution was found on Problem Sheet 2, question 2.) Assuming this solution, compute the total energy $E$ and total angular momentum $\mathbf{L}$ about the origin, thus confirming that both are indeed constant. Show in particular that the specific angular momentum $|\mathbf{L}| / m=2 A / T$, where $A$ is the area of the ellipse traced out by the solution, and $T$ is the period of the solution.
3. At a given instant of time, a particle of mass $m$ has position vector $\mathbf{r}$, measured from the origin $O$ of an inertial frame, and velocity $\mathbf{v}$. Let $\mathcal{L}$ be the straight line through $\mathbf{r}$ with tangent vector $\mathbf{v}$. Show that the angular momentum $\mathbf{L}_{O}$ of the particle about $O$ has magnitude $\left|\mathbf{L}_{O}\right|=d|\mathbf{p}|$, where $d$ is the perpendicular distance between $O$ and $\mathcal{L}$, and $\mathbf{p}$ is the (linear) momentum of the particle. When is $\mathbf{L}_{O}=\mathbf{0}$ ?
4. A point particle moves on a circle of radius $l$ in the $(z, x)$ plane, centred on the origin.
(a) i. By introducing polar coordinates $(z, x)=(-r \cos \theta, r \sin \theta)$, show that the particle has acceleration

$$
\ddot{\mathbf{r}}=-l \dot{\theta}^{2} \mathbf{e}_{r}+l \ddot{\theta} \mathbf{e}_{\theta},
$$

where $\mathbf{e}_{r}=-\cos \theta \mathbf{k}+\sin \theta \mathbf{i}, \mathbf{e}_{\theta}=\sin \theta \mathbf{k}+\cos \theta \mathbf{i}$.
ii. Suppose that the particle has mass $m$, and that the acceleration in part (a) arises from Newton's second law with a total force

$$
\mathbf{F}=-m g \mathbf{k}+\mathbf{T} .
$$

Show that

$$
\mathbf{T} \cdot \mathbf{e}_{r}=-m i \dot{\theta}^{2}-m g \cos \theta .
$$

(b) i. Consider swinging on a swing with a chain of length $l$. Explain why the chain never becomes slack provided

$$
-\cos \theta<\frac{i \dot{\theta}^{2}}{g}
$$

holds throughout the motion, where $\theta$ is the angle the chain makes with the downward vertical.
ii. The swing initially hangs downwards, and a friend gives you a push in the horizontal direction with initial speed $v$. Using conservation of energy, show that provided $v>\sqrt{5 g l}$ you'll swing all the way over the top without the chain ever becoming slack. [Please don't try this! ©]

Please send comments and corrections to gaffney@maths.ox.ac.uk.

