Dynamics: Problem Sheet 4 (of 8)

1. Consider the following system of coupled second order ODEs for x(t), y(t):

& = l4siny—e3®,
= "W 1.

(a) Show that (z,y) = (0,0) is an equilibrium configuration, and that the linearized
equations of motion about this point are
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(b) By determining the eigenvalues and eigenvectors of M, hence show that the normal
mode solutions to the equations in part (a) are

x(t) B 1 x(t) B 1
(y(t)) = A (1) cos(V2t + ) , <y(t)> = B (_1> cos(2t + 1) ,

where A, B, ¢ and 1) are constants.

2. A particle of mass m moves in R? under the influence of a force F = —kr, where r is the
position vector of the particle and k& > 0 is constant.

(a) Explain why F is both a conservative force, and a central force, where a choice of
potential energy function is V(r) = 1k|r|?. Hence deduce that the particle moves in

a plane through the origin.

(b) Taking the plane of motion to be the (x,y) plane, the solution to the equation of
motion may be written as

r(t) = asin(wt+¢)i+bcos(wt+¢)j,

where w = \/k/m, and a, b and ¢ are constant. (This solution was found on Problem
Sheet 2, question 2.) Assuming this solution, compute the total energy E and total
angular momentum L about the origin, thus confirming that both are indeed constant.
Show in particular that the specific angular momentum |L|/m = 2A/T, where A is
the area of the ellipse traced out by the solution, and T is the period of the solution.

3. At a given instant of time, a particle of mass m has position vector r, measured from
the origin O of an inertial frame, and velocity v. Let £ be the straight line through r
with tangent vector v. Show that the angular momentum Lg of the particle about O has
magnitude |Lo| = d|p|, where d is the perpendicular distance between O and £, and p is
the (linear) momentum of the particle. When is Lo = 07

4. A point particle moves on a circle of radius [ in the (z,x) plane, centred on the origin.

(a) i. By introducing polar coordinates (z,x) = (—rcos @, rsinf), show that the parti-
cle has acceleration

P o= —l0%e +1l0ey,

where e, = —cosfk +sinfi, eg = sinfk + cosH1i.



ii. Suppose that the particle has mass m, and that the acceleration in part (a) arises
from Newton’s second law with a total force

F = —-mgk+T.
Show that
T-e, = —mlf>—mgcosh .

(b) i. Consider swinging on a swing with a chain of length . Explain why the chain
never becomes slack provided
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holds throughout the motion, where 6 is the angle the chain makes with the
downward vertical.

ii. The swing initially hangs downwards, and a friend gives you a push in the hor-
izontal direction with initial speed v. Using conservation of energy, show that
provided v > 1/5gl you'll swing all the way over the top without the chain ever
becoming slack. [Please don’t try this! @]

Please send comments and corrections to gaffney@maths.ox.ac.uk.



