Dynamics: Problem Sheet 5 (of 8)

1. A particle moves on the inside surface of a smooth cone with its axis vertical, defined by the equation $z=r$ in cylindrical polar coordinates (r, θ, z). Initially the particle is at height $z=a$, and its velocity is horizontal, speed v, in the \mathbf{e}_{θ} direction. Starting from Newton's second law show that $r^{2} \dot{\theta}$ is constant. Explain why the total energy is conserved, and deduce that

$$
\dot{z}^{2}+\frac{1}{2} \frac{a^{2} v^{2}}{z^{2}}+g z=\frac{1}{2} v^{2}+g a
$$

Hence show that the particle remains at all times between two heights, which should be determined.
2. A particle of mass m, moving under gravity, is disturbed from rest at the highest point on the outside of a smooth sphere of radius a.
(a) Explain why the particle subsequently moves on a great circle.
(b) By introducing plane polar coordinates in the vertical plane of this circle (or otherwise), show that

$$
\ddot{\theta}=\frac{g}{a} \sin \theta, \quad N=m g \cos \theta-m a \dot{\theta}^{2}
$$

Here $\theta(t)$ denotes the angle between the upward vertical axis of the sphere and the straight line from the particle to the centre of the sphere (the usual polar angle for a sphere), and N is the magnitude of the normal reaction.
(c) Show that the normal reaction is given by

$$
N=m g\left(\frac{3 z}{a}-2\right)
$$

where z is the height of the particle above the centre of the sphere. At what height does the particle lose contact with the sphere?
3. A bead of mass m is free to slide on a smooth wire that is made to rotate at constant angular velocity ω about the vertical axis through a fixed point O on the wire. The wire is bent into the shape of a parabola, $z=r^{2} / 2 a$, where z is measured vertically upwards from O, and r is the horizontal distance from O.
(a) Show that if $z(t)$ and $r(t)$ are the vertical and horizontal distances of the bead from O, then

$$
m\left[\left(\ddot{r}-r \omega^{2}\right) \mathbf{e}_{r}+2 \omega \dot{r} \mathbf{e}_{\theta}+\ddot{z} \mathbf{e}_{z}\right]=-m g \mathbf{e}_{z}+\mathbf{N}
$$

where \mathbf{N} is the normal reaction.
(b) Hence deduce that

$$
\begin{equation*}
\left(a^{2}+r^{2}\right) \ddot{r}+r \dot{r}^{2}=\left(a^{2} \omega^{2}-g a\right) r \tag{*}
\end{equation*}
$$

(c) Show that $r=0$ is an equilibrium point. The linearized equation of motion about $r=0$ is

$$
a^{2} \ddot{\xi}=\left(a^{2} \omega^{2}-g a\right) \xi
$$

where we have written $r=\xi$, and kept only the linear terms in $\xi, \dot{\xi}$ in equation $(*)$, in a Taylor expansion around $\xi=0$. Discuss the stability of the equilibrium point.
4. (Optional) A particle of mass m is released from rest at a very large height $z=z_{0}$ above the Earth. The Newtonian gravitational potential energy of the particle is

$$
V(z)=-\frac{G_{N} M m}{z}
$$

where M is the mass of the Earth, and G_{N} is Newton's gravitational constant.
(a) Using conservation of energy show that the trajectory $z(t)$ satisfies

$$
\sqrt{2 G_{N} M} t=-\int_{z_{0}}^{z}\left(\frac{1}{s}-\frac{1}{z_{0}}\right)^{-1 / 2} \mathrm{~d} s
$$

(b) Using the substitution $s=z_{0} \sin ^{2} \theta$, show $z(t)$ satisfies the unlikely looking equation

$$
\frac{\pi}{2}-\sin ^{-1}\left(\sqrt{\frac{z(t)}{z_{0}}}\right)+\frac{1}{2} \sin \left[2 \sin ^{-1}\left(\sqrt{\frac{z(t)}{z_{0}}}\right)\right]=\sqrt{\frac{2 G_{N} M}{z_{0}^{3}}} t
$$

This is a radial Kepler trajectory (c.f. section 6.2 of the lecture notes).
Please send comments and corrections to gaffney@maths.ox.ac.uk.

