Dynamics: Problem Sheet 6 (of 8)

1. Suppose that a particle moves in response to a central force per unit mass $-f(r) \mathbf{e}_{r}$, where

$$
f(r)=\frac{\alpha}{r^{2}}+\frac{\beta^{2}}{r^{3}}
$$

Here r denotes distance to the origin and α, β are constants. Initially the particle is at $r=\beta^{2} / 3 \alpha, \theta=0$ and is moving with speed $4 \alpha / \beta$ in a direction making an angle of $\pi / 3$ with the radius vector pointing towards the origin.
Starting from Newton's second law show that, if $u=1 / r$, then

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \theta^{2}}+\frac{u}{4}=\frac{3 \alpha}{4 \beta^{2}}
$$

with

$$
u=\frac{3 \alpha}{\beta^{2}}, \quad \frac{\mathrm{~d} u}{\mathrm{~d} \theta}=\frac{\alpha \sqrt{3}}{\beta^{2}} \quad \text { when } \theta=0 .
$$

Hence show that the solution is

$$
\frac{1}{r}=\frac{3 \alpha}{\beta^{2}}\left(\frac{2}{\sqrt{3}} \sin \frac{\theta}{2}+1\right) .
$$

Sketch the orbit.
2. A particle is dropped from the top of a tower on the Earth's equator. As a result of the Earth's rotation, does it land slightly to the East, or slightly to the West of the tower?
3. A particle of mass m is acted on by a central force $-F(r) \mathbf{e}_{r}$.
(a) Given the angular momentum per unit mass of the particle, $h=r^{2} \dot{\theta}$, show that a circular orbit is possible providing

$$
F(a)=\frac{m h^{2}}{a^{3}}
$$

(b) With h fixed show that this circular orbit is stable providing

$$
3 F(a)+a F^{\prime}(a)>0 .
$$

4. Two particles A, B of mass m_{1}, m_{2}, respectively, lie together on a smooth horizontal table.

Plan view

They are connected by a light inextensible string of length $2 a$ which passes through a light ring R fixed in the table at a distance a from the particles. The ring is smooth and can rotate freely. The particle A is given an initial velocity perpendicular to the string in the plane of the table.
Show that if $u=1 / r$, where r is the distance of A from R, then

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \theta^{2}}+\frac{m_{1}}{m_{1}+m_{2}} u=0
$$

where θ is the angle $A R B$. Hence find the equation of the path taken by A (up until the moment B reaches R).
[Hint: The tension in the string provides a central force for both particles.]

Please send comments and corrections to gaffney@maths.ox.ac.uk.

