Dynamics: Problem Sheet 8 (of 8)

1. (a) Consider a rigid body that is rotating about a general point O that is fixed both in the body and fixed in an inertial frame. Starting from the point particle model of a rigid body, show that its kinetic energy is

$$
T \equiv \sum_{I=1}^{N} \frac{1}{2} m_{I}\left|\dot{\mathbf{r}}_{I}\right|^{2}=\frac{1}{2} \sum_{i, j=1}^{3} \mathcal{I}_{i j}^{(O)} \omega_{i} \omega_{j},
$$

where $\mathcal{I}^{(O)}$ is the inertia tensor of the body about O, and $\boldsymbol{\omega}$ is its angular velocity. [Hint: You might find the vector identity $|\mathbf{a} \wedge \mathbf{b}|^{2}=|\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}$ helpful.]
(b) Using the result in part (a), hence show that the kinetic energy of the heavy pendulum, considered at the end of section 8.3 of the lecture notes, is

$$
T=\frac{1}{6} M l^{2} \dot{\theta}^{2} .
$$

Here recall that θ is the angle the pendulum makes with the downward vertical, and the pendulum has length l and mass M.
(c) Given that the potential energy is $V=M g Z_{G}$, where Z_{G} is the height of the centre of mass of the pendulum, hence write down the total energy $E=T+V$. Show that conservation of E is implied by the equation of motion (8.47) derived in the lecture notes.
2. A smooth straight wire rotates with constant angular speed ω about the vertical axis through a fixed point O on the wire, and the angle between the wire and the upward vertical is constant and equal to α, where $0<\alpha<\pi / 2$. A bead of mass m is free to slide on the wire.
(a) Starting from the general form of Newton's second law in a rotating frame, show that

$$
m\left(\frac{\mathrm{~d}^{2} \mathbf{r}}{\mathrm{~d} t^{2}}\right)_{\mathcal{S}}=\mathbf{N}-m g \mathbf{k}-2 m \omega \mathbf{k} \wedge\left(\frac{\mathrm{~d} \mathbf{r}}{\mathrm{~d} t}\right)_{\mathcal{S}}-m \omega^{2} \mathbf{k} \wedge(\mathbf{k} \wedge \mathbf{r})
$$

where $\mathbf{r}(t)$ is the position of the bead in the frame \mathcal{S} that rotates with the wire, \mathbf{k} is a unit vector pointing vertically, and \mathbf{N} is the normal reaction of the wire.
(b) Hence show that $z(t)$, the height of the bead above O, satisfies the equation

$$
\ddot{z}-\left(\omega^{2} \sin ^{2} \alpha\right) z=-g \cos ^{2} \alpha .
$$

Show that an equilibrium point for the bead exists, and determine its stability.
3. A bead P of mass m slides on a smooth circular wire of radius a and centre C. The wire lies in a horizontal plane and is forced to rotate at a constant angular speed ω about the vertical axis through a fixed point O in the plane of the wire. The distance from O to C is constant and equal to b.
Let θ be the angle that the line joining the centre C to the bead makes with the diameter through O. (See the figure on the next page.)
(a) Show that the position of the bead may be written as

$$
\mathbf{r}=(b+a \cos \theta) \mathbf{e}_{1}+a \sin \theta \mathbf{e}_{2},
$$

where $\mathbf{e}_{i}, i=1,2,3$, are an orthonormal basis for a frame that rotates with the wire.
(b) Using Newton's second law in this rotating frame, hence show that

$$
\ddot{\theta}+\frac{b}{a} \omega^{2} \sin \theta=0 .
$$

(c) Show that the bead can remain in equilibrium relative to the wire at two points. Decide whether these positions of equilibrium are stable or unstable.

4. Optional

Consider (again) dropping a particle from the top of a tower, of height h above the ground, at time $t=0$. Use a reference frame \mathcal{S} fixed to the surface of the Earth with \mathbf{e}_{1} is a unit vector pointing North, \mathbf{e}_{2} is a unit vector pointing West, and \mathbf{e}_{3} is a unit vector pointing upwards. The origin of this frame is at a latitude θ on the surface of the Earth and hence the angular velocity of the Earth is given by $\boldsymbol{\omega}=\omega \cos \theta \mathbf{e}_{1}+\omega \sin \theta \mathbf{e}_{3}$, where $\omega=2 \pi /[1$ day $]$.
(a) Including only the effects of a uniform gravitational field and the Coriolis force, show that Newton's second law in the frame \mathcal{S} implies

$$
\ddot{\mathbf{r}} \simeq-g \mathbf{e}_{3}+2 g t \boldsymbol{\omega} \wedge \mathbf{e}_{3},
$$

where we have assumed that terms of order ω^{2} are negligible.
(b) Hence show that the trajectory of the particle is given by

$$
\mathbf{r} \simeq\left(h-\frac{1}{2} g t^{2}\right) \mathbf{e}_{3}-\frac{1}{3} \omega g t^{3} \cos \theta \mathbf{e}_{2}
$$

and that it lands a distance d to the East of the tower, where

$$
d=\frac{1}{3} \omega \sqrt{\frac{8 h^{3}}{g}} \cos \theta .
$$

Please send comments and corrections to gaffney@maths.ox.ac.uk.

