
B4.4 Fourier Analysis HT22

Lecture 3: Schwartz test functions

1. The norms Sα,β and Sk,l on the Schwartz space S

2. S convergence with examples
3. The inclusion S ⊂ Lp with bounds
4. The Fourier transform on S and the Fourier bounds

The material corresponds to pp. 12–16 in the lecture notes and should be
covered in Week 2.
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The norms Sα,β and Sk,l on S (Rn)

Recall from last lecture that for ϕ ∈ C∞(Rn) we defined for multi-indices
α, β ∈ Nn

0 the quantity

Sα,β(ϕ) := sup
x∈Rn

∣∣∣∣xα(∂βϕ)(x)∣∣∣∣
and for k , l ∈ N0 the quantity

Sk,l(ϕ) := max
{
Sα,β(ϕ) : |α| ≤ k , |β| ≤ l

}
.

Here we have

0 ≤ Sα,β(ϕ) ≤ ∞ and 0 ≤ Sk,l(ϕ) ≤ ∞

and the value ∞ is not excluded.
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The norms Sα,β and Sk,l on S (Rn)

We have directly from the definitions that

S (Rn) =
{
ϕ ∈ C∞(Rn) : Sα,β(ϕ) <∞∀α, β ∈ Nn

0
}

=
{
ϕ ∈ C∞(Rn) : Sk,l(ϕ) <∞∀ k , l ∈ N0

}
Furthermore, it is easy to see that Sα,β and Sk,l are norms on S (Rn).

We observed that S (Rn) is a commutative algebra without multiplicative
unit. It clearly contains D(Rn) as a proper subalgebra.

Definition We say that a sequence (ϕj) in S (Rn) converges to
ϕ ∈ S (Rn) if

Sα,β(ϕj − ϕ) → 0 as j → ∞

for all multi-indices α, β ∈ Nn
0.

Clearly this can be stated in terms of the norms Sk,l too.
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S convergence versus D convergence and D(Rn)

How does S convergence compare to D convergence? – If (ϕj) is a
sequence in D(Rn) that converges to ϕ ∈ D(Rn) in D(Rn), then also
ϕj → ϕ in S (Rn) . This follows by comparing the definitions.

Proposition Let ϕ ∈ S (Rn). Then there exists a sequence (ϕj) in D(Rn)
so ϕj → ϕ in S (Rn).

Proof. Put χj := ρ ∗ 1Bj+1(0) for j ∈ N. Then χj ∈ D(Rn) and χj = 1 on
Bj(0). If we let ϕj = ϕχj , then ϕj ∈ D(Rn) and for all α, β ∈ Nn

0 we can
use the Leibniz rule to check that Sα,β(ϕ− ϕj) → 0 as j → ∞.
The details are left as an exercise on problem sheet 2. □
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Examples of S convergence

Example 1: Let p(x) ∈ C[x ] be a polynomial. If ϕj → ϕ in S (Rn), then
also p(x)ϕj → p(x)ϕ in S (Rn) and p(∂)ϕj → p(∂)ϕ in S (Rn).
To prove it one can just write out the definitions. This is straight forward
for the latter, but requires the Leibniz rule and some book-keeping for the
former. It is worthwhile to be more systematic. Assume that
p(x) =

∑
|γ|≤d cγx

γ . Then we have for all ϕ ∈ S (Rn) and k , l ∈ N0:

Sk,l(p(x)ϕ) ≤ (l + 1)d
( ∑

|γ|≤d

|cγ |
)
Sk+d ,l(ϕ) (1)

and

Sk,l(p(∂)ϕ) ≤
( ∑

|γ|≤d

|cγ |
)
Sk,l+d(ϕ) (2)

See the lecture notes for the proofs.
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Examples of S convergence

Example 2: Let ϕ ∈ S (Rn) and 1 ≤ j ≤ n. Then

∆hejϕ

h
→ ∂jϕ in S (Rn) as h → 0.

To see this fix multi-indices α, β ∈ Nn
0 and let 0 < |h| < 1. By two

applications of the fundamental theorem of calculus

∂βx

(
∆hejϕ(x)

h
−
(
∂jϕ

)
(x)

)
=

∫ 1

0

∫ 1

0

(
∂β+2ejϕ

)
(x + sthej) ds thdt,

hence, using |xαj

j | ≤
(
|xj + sth|+ st|h|

)αj ≤ 2αj−1(|xj + st|αj + 1
)
, we get

Sα,β

(
∆hejϕ

h
− ∂jϕ

)
≤ 2αj−2(Sα,β+2ej (ϕ) + Sα−αjej ,β+2ej (ϕ)

)
|h|

The desired conclusion follows from this inequality.
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Examples of S convergence

Example 3: Let
(
ρε
)
ε>0 be the standard mollifier. Then for ϕ ∈ S (Rn)

we have ρε ∗ ϕ ∈ S (Rn) and ρε ∗ ϕ→ ϕ in S (Rn) as ε↘ 0.

Fix multi-indices α, β ∈ Nn
0. For ε ∈ (0, 1) the fundamental theorem of

calculus yields:

∂βx

((
ρε ∗ ϕ

)
(x)− ϕ(x)

)
=

(
ρε ∗ ∂βϕ

)
(x)−

(
∂βϕ

)
(x)

=

∫
Rn

ρ(y)

∫ 1

0
∇
(
∂βϕ

)
(x + tεy) · y dt dyε.

Next we use the inequality∣∣xα∣∣ ≤
n∏

j=1

2αj−1(|xj + tεyj |αj + εαj
)
= 2|α|−n

n∏
j=1

(
|xj + tεyj |αj + εαj

)
≤ 2|α|−n

n∏
j=1

(
|xj + tεyj |αj + 1

)
≤ 2|α|−n

∑
γ≤α

∣∣(x + tεy)γ
∣∣.
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Examples of S convergence

Hereby we find, using also the Cauchy-Schwarz inequality,

∣∣∇(
∂βϕ

)∣∣ ≤ n∑
j=1

∣∣∂β+ejϕ
∣∣,

and
∫
Rnρ(y) dy = 1 that

Sα,β
(
ρε ∗ ϕ− ϕ

)
≤

n∑
j=1

2|α|−n
∑
γ≤α

Sγ,β+ej (ϕ)ε

≤ cS |α|,|β|+1(ϕ)ε,

where c = n2|α|−n
∑

γ≤α 1 is a constant (whose precise value is
unimportant here). This inequality allows us to conclude.
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Remark about approach

Note that the estimates in terms of the norms Sα,β and Sk,l can be quite
technical. We therefore advocate a systematic approach where we prove a
few key inequalities for these norms that allow many other such inequalities
to be deduced. The inequalities (1), (2) and those derived in Examples 2
and 3 are examples of key inequalities. Let us summarize the inequalities
from examples 2 and 3 as follows: Let α, β ∈ Nn

0 be two multi-indices.
Then there exists a constant c = c(n, |α|, |β|) with the following
properties. For each ϕ ∈ S (Rn), direction 1 ≤ j ≤ n, increment
0 < |h| < 1 and mollifier radius ε ∈ (0, 1) we have

Sα,β

(
∆hejϕ

h
− ∂jϕ

)
≤ cS |α|,|β|+2(ϕ)|h| (3)

and

Sα,β

(
ρε ∗ ϕ− ϕ

)
≤ cS |α|,|β|+1(ϕ)ε. (4)

Very often the actual value of the constant ‘c ’ is not important.
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The inclusion S ⊂ Lp and a corresponding bound

Proposition Let p ∈ [1,∞]. Then S (Rn) ⊂ Lp(Rn) and the inclusion
map is continuous. More precisely, there exists a constant c = c(n, p) so

∥ϕ∥p ≤ cSn+1,0(ϕ) (5)

holds for all ϕ ∈ S (Rn). When p = ∞ we have simply ∥ϕ∥∞ = S0,0(ϕ).

Proof. The claim is evidently true for p = ∞ so assume p <∞. The main
point to observe here is that the function x 7→

(
1 + |x |2

)− n+1
2 is integrable

over Rn. To see that we integrate using polar coordinates:

In+1 :=

∫
Rn

dx(
1 + |x |2

) n+1
2

=

∫ ∞

0

∫
∂Br (0)

dSx(
1 + |x |2

) n+1
2

dr

= ωn−1

∫ ∞

0

rn−1(
1 + r2

) n+1
2

dr <∞.
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The inclusion S ⊂ Lp and a corresponding bound

Now we can estimate as

∥ϕ∥pp =

∫
Rn

(
1 + |x |2

)− n+1
2

((
1 + |x |2

) n+1
2 |ϕ(x)|p

)
dx

≤
∫
Rn

dx(
1 + |x |2

) n+1
2

sup
x∈Rn

((
1 + |x |2

) n+1
2p |ϕ(x)|

)p

≤ In+1

(
sup
x∈Rn

(
1 + |x |2

) n+1
2 |ϕ(x)|

)p

Here we have(
1 + |x |2

) n+1
2 ≤

(
1 + |x1|+ . . . + |xn|

)n+1

≤ (n + 1)n
(
1 + |x1|n+1 + . . . + |xn|n+1)

and so we obtain the desired bound with c = c(n, p) = (n + 1)
n+1
p I

1
p

n+1. □
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An improved bound for S ⊂ Lp

Inspection of the previous estimation shows that it is far from optimal. For
instance we can use that

Iq :=

∫
Rn

dx(
1 + |x |2

) q
2
<∞ when q > n,

whereby we get for p ∈ [1,∞) and ϕ ∈ S (Rn):

∥ϕ∥p ≤ I
1
p
q

(
sup
x∈Rn

(
1 + |x |2

) q
2p |ϕ(x)|

)
(6)

This is obviously better than the bound we derived before. However, it is
usually not necessary to use this sharper bound and we shall therefore rely
on (5) in the following.
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The Fourier transform on S (Rn) and the Fourier bounds

Theorem The Fourier transform F : S (Rn) → S (Rn) is a linear and S
continuous map. The S continuity is expressed more precisely through the
Fourier bounds: for each k , l ∈ N0 there exists a constant c = c(n, k , l)
so

Sk,l(ϕ̂) ≤ cS l+n+1,k(ϕ)

holds for all ϕ ∈ S (Rn).

Note how the numbers k , l swap places in the Fourier bound.

Proof. Let ϕ ∈ S (Rn). We want to show that ϕ̂ ∈ S (Rn).
Now xjϕ, ∂jϕ ∈ S (Rn) and by the differentiation rules

∂j ϕ̂ = Fx→ξ

(
−ixjϕ(x)

)
and ξj ϕ̂(ξ) = −i∂̂jϕ(ξ).

Because S (Rn) ⊂ L1(Rn) the Riemann-Lebesgue lemma implies that ∂j ϕ̂,
ξj ϕ̂ belong to C0(Rn).
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The Fourier transform on S (Rn) and the Fourier bounds

By induction on the length of multi-indices we find for α, β ∈ Nn
0 that

∂βϕ̂(ξ) = Fx→ξ

(
(−ix)βϕ(x)

)
and ξαϕ̂(ξ) = (−i)|α|∂̂αϕ(ξ)

both belong to C0(Rn), and hence that

ξα∂βϕ̂(ξ) = (−i)|α|Fx→ξ

(
∂α

(
(−ix)βϕ(x)

))
(7)

belongs to C0(Rn). Therefore Sα,β(ϕ̂) <∞ and since in particular β was
arbitrary it follows that ϕ̂ ∈ C∞(Rn), hence ϕ̂ ∈ S (Rn).

We turn to the proof of the Fourier bounds, and start with the bound

∥ψ̂∥∞ ≤ ∥ψ∥1 ≤ cSn+1,0(ψ)

valid for all ψ ∈ S (Rn), where c = c(n, 1).
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The Fourier transform on S (Rn) and the Fourier bounds

Combine the previous inequality with (7) to get

sup
ξ∈Rn

∣∣ξα∂βϕ(ξ)∣∣ ≤ cSn+1,0

(
∂α

(
(−ix)βϕ

))
.

Here the right-hand side can be estimated by use of (1), (2), whereby

Sα,β(ϕ̂) ≤ c
(
|α|+ 1

)|β|
Sn+1+|β|,|α|(ϕ)

which implies the desired bound. □

Remark In particular it follows that the Fourier transform of the standard
mollifier kernel on Rn, ρ̂, is a Schwartz test function on Rn. On problem
sheet 1 you will show that it cannot have compact support.
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Smoothness versus decay at infinity

The Fourier bounds
Sk,l(ϕ̂) ≤ cS l+n+1,k(ϕ)

express a useful principle: the smoother a function f is, the faster its
Fourier transform f̂ decays to 0 at infinity. Of course we established the
Fourier bounds only for Schwartz test functions, that by definition are,
together with all their derivatives, rapidly decreasing, but the proof is easily
adapted to also give the following.

(a) Let m ∈ N0. If f ∈ Wm,1(Rn) (so ∂αf ∈ L1(Rn) for each |α| ≤ m),
then

sup
ξ∈Rn

(
1 + |ξ|2

)m
2 |f̂ (ξ)| ≤ c∥f ∥Wm,1

where c = c(m, n) is a constant. In fact the Riemann-Lebesgue lemma
yields that the function ξ 7→

(
1 + |ξ|2

)m
2 f̂ (ξ) belongs to C0(Rn).
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Smoothness versus decay at infinity

(b) Let m ∈ N with m ≥ n + 1. If
(
1 + |x |2

)m
2 f (x) ∈ L∞(Rn), then

f̂ ∈ Cm−n−1(Rn) and ∂αf̂ ∈ C0(Rn) for multi-indices α with
|α| ≤ m − n − 1.

There is a gap of n+ 1 derivatives between (a) and (b). It is incurred when
we go from L∞ to L1 using the bound from the inclusion S ⊂ Lp. As we
remarked that bound is not optimal. However, it might be worthwhile to
note that if we replace the L∞ hypotheis with an L1 hypothesis in (b), then
we get instead:

(b1) If
(
1 + |x |2

)m
2 f (x) ∈ L1(Rn), then f̂ ∈ Cm(Rn) and ∂αf̂ ∈ C0(Rn) for

all multi-indices α of length at most m.
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Smoothness versus decay at infinity

Looking at how the Fourier transform f̂ of f decays at infinity tells us
something about how smooth f is. Conversely, if we know that f decays to
0 at infinity with a certain rate, then its Fourier transform f̂ must enjoy a
certain smoothness. Here smoothness is often measured on the scale Ck or
on the Sobolev scale Wk,p, where the smoothness increases with k . A first
quantitative expression of this principle is contained in (a), (b) and (b1).

Example Recall that we calculated 1̂(−1,1) = 2sinc, which is in C0(R) but
is not integrable on R. Note that (a) does not apply because 1(−1,1) is
discontinuous. However, from (b) we infer that the Fourier transform is Cm

for every m, that is, it is C∞. The compactness of the support of 1(−1,1) is
responsible for this! But note that also all Schwartz test functions Fourier
transform to a C∞ function (in fact, a Schwartz test function again), so
the property compact support is not necessary for having a C∞ Fourier
transform. Later when we discuss Paley-Wiener theory we shall be able to
characterize the case of compact support in terms of the Fourier transform.
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