B4.4 Fourier Analysis HT21

Lecture 4: The Fourier inversion formula in .% and L!

1. The Fourier inversion formula in .#(R")
2. The Fourier inversion formula in L*(R")

3. The other convolution rule

The material corresponds to pp. 16-20 in the lecture notes and should be
covered in Week 2.
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The Fourier transform on .%

In Lecture 3 we saw that the Fourier transform defined for f € L1(R") by

f(e) = / F(x)e % dx

is an . continuous linear map F: .(R") — .#(R") and that the .
continuity is quantified through the Fourier bounds: for all k, | € Ng there
exists a constant ¢ = c(n, k, /) so

Ski(9) < Sipniii(0)

holds for all ¢ € .7(R").
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Regularity versus decay at infinity

In Lecture 3 we also observed and formulated some instances of the
important principle stating that regularity of f implies decay at infinity of f
and that decay at infinity of f implies regularity of f:

(a) Let m € No. If f € W™L(R"), then

©)
B

— 0 as [£] — oo,

(b) Let me Nand m> n+ 1. If (1+ [x[2)2 f(x) € L(R"), then
fecm (R,
(b1) Let m e No. If (1+[x|?) 2 f(x) € LY(R"), then f € C™(R").

The Fourier inversion formula in L, and its generalizations considered in
later lectures, will among other things allow us to swap the roles of f and f

in (a), (b), (bl) above.
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The Fourier inversion formula in .

Theorem The Fourier transform F: . (R") — .(R") is bijective with
inverse given by

FHA) = @m)" | #(E)e™* de.

Consequently we have in compact symbolic form

Fl=(n)"F,

where we recall that the operations () and F commute.
The proof is a beautiful calculation that starts with the product rule:
dpdx= | ¢vdx
Rn Rn
holds for all ¢, ¥ € LI(R"). The idea is to make a good choice for v that

allows us to relate ¢ and ¢.
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Proof of the Fourier inversion formula in .
x|2 ~ n
Lemma 1 If G(x) = e_%, x € R", then G = (27)2G.

Proof of Lemma 1. We start by reducing to the one-dimensional case. First
note that

2
X

G(x)=]]e =,
j=1
and so by use of Fubini's theorem

a7 ()

If therefore we can prove the lemma when n = 1, then the general case will
follow.
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Proof of the Fourier inversion formula in .
Assume now that n =1, so that
X2

G(x)=e 2,xeR.
Clearly G(0) =1 and G'(x) = —xG(x) for all x € R, that is, G is a
solution to the initial value problem

{ y'+xy=0, xeR

y(0) =1.
It is easy to check, using the Leibniz rule and the constancy theorem, that
this ODE admits a unique solution defined on R, that then must be G.
Now Fourier transform the identity G’ + xG = 0 by use of the
differentiation rules to get

G + SCA; =0 on R.
Next check that @(O) = [7°_G(x)dx = v/27 (a standard integral).

ConsequentIyA@/\/Zw solves the initial value problem, and so by uniqueness
of solutions, G/v/2m = G. This concludes the proof. O

Lecture 4 (B4.4) HT21 6/17



Proof of the Fourier inversion formula in .

The next result is an approximation that generalizes aspects of our result
for the standard mollifier on R".
Lemma 2 Let K € L'(R") with [;,K(x)dx = 1. Let K; be the L' dilation
of Kby t >0, so
1
Ke(x) = tnK(t), xE€R" and t > 0.
Then we have
(i) when ¢ € Z(R"), Kt % ¢ — ¢ in LY(R") and uniformly on R” as

t\,0,
(i) when f € LY(R"), K¢ * f — f in LY(R") as t \, 0.

Remark The family (Kt) £=0 1S called an approximate unit because if
¢ € Z(R"), then

(Ke.9) :/ K(x)6(tx) dx — 6(0) as £\, 0,
that is, K¢ — do in Z'(R") as t \, 0.
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Proof of Lemma 2. [The proof is not examinable]
We start with (i) and fix ¢ € .(R"). Let € > 0. Now clearly

(Kex6)00 = 00| < [ KMol + 1) — o) .

We split the integral into two parts corresponding to |y| < m and |y| > m,
respectively, where we choose m > 0 so

g
K d - .
/.y>m’ Wy < 33 20T)

Accordingly we estimate

(Kex9)00) =0 < [ IKOYIotc+ 1)~ o)l dy

ly|<m

2]/l /| IKay
y|>m

9

< [ KOO0 ) —oldy +
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Proof of Lemma 2 continued...

In order to estimate the integral over |y| < m we use the fundamental
theorem of calculus:

1
6+ 1) = 00 < [ 1V6(x + st elylds < [ Voot

Consequently

(Kexé) ()~ 60| < [ IKOIIVolwmedy + 5

lyl<m

g
< KLV olomt + 5 < e

provided we take
€

(T + 1KV elloom)

This establishes the uniform convergence.

t<
2

Lecture 4 (B4.4) HT21 9/17



Proof of Lemma 2 continued...
In order to see that the convergence also takes place in the L! sense we
proceed similarly, but this time we take m so

13
K d - .
/y|>m’ Wy < ST 279l)

Then we get, using Tonelli's theorem to swap the integration order:

Keso=ol < [ [ KGN0+ 1) - o0] dyax
- / K(y)| / 6(x + ty) — $(x)| dx dy.
Rn Rn

Splitting the y-integral and estimating with the fundamental theorem of
calculus as before results in

9
[Kex 6= 0ll < 5+ IKILIVollume < e

provided we take
€

(L + 1K1V Sllam)
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Proof of Lemma 2 continued...

Finally, for (ii) we pick ¢ € .7(R") with ||[f — ¢[[1 < 5. Then we estimate
using the triangle inequality

[Kex £ —flli < [[Kex (F =o)L+ [[Ke % & = lls + lo — Fla
< 2f = olli + [|Ke * ¢ — ol1x
< et |Kexd— ol

and the conclusion follows from (i) O

We can now return to the main line of proof.
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Proof of the Fourier inversion formula in .

By Lemma 1 we have
/ Gd¢ = [ (27)2G d¢ = (27)2G(0) = (27)"
n Rn

and so with K = (27)™"G we have JrnKdx = 1, hence accoding to
Lemma 2, K; x ¢ — ¢ uniformly on R™ as t 0. We now calculate:

(Kexo)0) = @07 | ox=)(6), () dy
dilation rule (27‘()7” /Rnd)(x _ y)]-"g_)y(G(tf)) dy
product rule (27r)—n /Rn]:’f%y (¢(X — f)) G(ty) dy

translat:ion rule (27’(‘)_” /]R g(_y)e_iy.XG(ty) dy
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Proof of the Fourier inversion formula in .#

Here we can use Lebesgue's dominated convergence theorem to find the
limit of the right-hand side as t \ 0:

(2m)~" A 5(—y)e‘iy'XG(ty) dy — _y)e—iy'x dy

@y [
= @0 [ dweray

and the proof is finished. O

Lecture 4 (B4.4) HT21 13 /17



The Fourier inversion formula in L!

Theorem Let f € LY(R"). Then

Fx) = lim(2m) ™" / f(f)ei“*t S de i L(R").

Consequently, when also 7 € L1(R"), then

n

Fx) = (2m)" / Fle)ee ae (1)

holds almost everywhere.

Note that when f € L!(R") the Riemann-Lebesgue lemma says that
right-hand side of (1) belongs to Co(R"). Therefore any f € LY (R") whose
Fourier transform f is also in L1(IR") has a representative in Co(R")! It was
therefore no accident that 1(/,\11) = 2sinc ¢ LY(R).
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Proof of the Fourier inversion formula in L!

Following the proof of the inversion formula in . we get by use of the
product, translation and dilation rules that

t2[¢[?

<((27T)_”(A;)*f>(x):(27r)_” / nf(g)eiﬁx— 2 d¢

for each x € R” and t > 0. By Lemma 2(ii) the left-hand side converges to
f in LY(R") as t \, 0 concluding the proof of the general case.

If additionally 7 € LY(R"), then we can pass to the limit under the integral
sign on the right-hand side by use of Lebesgue's dominated convergence
theorem and the desired identity follows. O
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The other convolution rule

Proposition If ¢, ¥ € #(R"), then

—

(0v) = (27) " 9.

Proof. Because ¢, 1 € Z(R") € LY(R") we have by the usual convolution
rule,

F(bx) = 0. (2)
Here we have by the Fourier inversion formula in ., 1 = (2r)~"F, so
F2 = (2m)"(-), and therefore

o0 = (2060 = (2r)" 0.
Fourier transforming this identity we get
()"0 = (2m)2" 00 = F2(3 % D).
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The other convolution rule

By virtue of (2) and the Fourier inversion formula in . we have

¢ x1p € L (R"), hence by another use of the Fourier inversion formula in
. we conclude. O

Corollary If ¢, ¥ € .#(R"), then also ¢ ¢ € L (R").

This can also be proved directly—see the lecture notes.
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