B4.4 Fourier Analysis HT21

Lecture 4: The Fourier inversion formula in $\mathscr S$ and L^1

- 1. The Fourier inversion formula in $\mathscr{S}(\mathbb{R}^n)$
- 2. The Fourier inversion formula in $L^1(\mathbb{R}^n)$
- 3. The other convolution rule

The material corresponds to pp. 16–20 in the lecture notes and should be covered in Week 2.

The Fourier transform on \mathscr{S}

In Lecture 3 we saw that the Fourier transform defined for $f \in L^1(\mathbb{R}^n)$ by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x) \mathrm{e}^{-\mathrm{i}\xi \cdot x} \,\mathrm{d}x$$

is an \mathscr{S} continuous linear map $\mathcal{F} \colon \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$ and that the \mathscr{S} continuity is quantified through the Fourier bounds: for all $k, l \in \mathbb{N}_0$ there exists a constant c = c(n, k, l) so

$$\overline{S}_{k,l}(\widehat{\phi}) \leq c\overline{S}_{l+n+1,k}(\phi)$$

holds for all $\phi \in \mathscr{S}(\mathbb{R}^n)$.

Regularity versus decay at infinity

In Lecture 3 we also observed and formulated some instances of the important principle stating that *regularity of f implies decay at infinity of* \hat{f} and that decay at infinity of f implies regularity of \hat{f} :

(a) Let $m \in \mathbb{N}_0$. If $f \in W^{m,1}(\mathbb{R}^n)$, then

$$rac{\widehat{f}(\xi)}{|\xi|^m} o {\mathsf 0} \, \, {\mathsf {as}} \, \, |\xi| o \infty,$$

(b) Let $m \in \mathbb{N}$ and $m \ge n+1$. If $(1+|x|^2)^{\frac{m}{2}}f(x) \in L^{\infty}(\mathbb{R}^n)$, then $\widehat{f} \in C^{m-n-1}(\mathbb{R}^n)$,

(b1) Let $m \in \mathbb{N}_0$. If $(1+|x|^2)^{\frac{m}{2}}f(x) \in L^1(\mathbb{R}^n)$, then $\widehat{f} \in C^m(\mathbb{R}^n)$.

The Fourier inversion formula in L¹, and its generalizations considered in later lectures, will among other things allow us to swap the roles of f and \hat{f} in (a), (b), (b1) above.

The Fourier inversion formula in \mathscr{S}

Theorem The Fourier transform $\mathcal{F}: \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$ is bijective with inverse given by

$$\mathcal{F}^{-1}(\phi)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \phi(\xi) \mathrm{e}^{\mathrm{i} x \cdot \xi} \,\mathrm{d}\xi.$$

Consequently we have in compact symbolic form

$$\mathcal{F}^{-1} = (2\pi)^{-n} \widetilde{\mathcal{F}},$$

where we recall that the operations $\widetilde{(\cdot)}$ and $\mathcal F$ commute.

The proof is a beautiful calculation that starts with the product rule:

$$\int_{\mathbb{R}^n} \widehat{\phi} \psi \, \mathrm{d} x = \int_{\mathbb{R}^n} \phi \widehat{\psi} \, \mathrm{d} x$$

holds for all ϕ , $\psi \in L^1(\mathbb{R}^n)$. The idea is to make a good choice for ψ that allows us to relate ϕ and ϕ .

Proof of the Fourier inversion formula in $\mathcal S$

Lemma 1 If
$$G(x) = e^{-\frac{|x|^2}{2}}$$
, $x \in \mathbb{R}^n$, then $\widehat{G} = (2\pi)^{\frac{n}{2}}G$.

Proof of Lemma 1. We start by reducing to the one-dimensional case. First note that

$$G(x) = \prod_{j=1}^{n} e^{-\frac{x_j^2}{2}},$$

and so by use of Fubini's theorem

$$\widehat{G}(\xi) = \prod_{j=1}^{n} \mathcal{F}_{x_j \to \xi_j} \left(e^{-\frac{x_j^2}{2}} \right) (\xi_j).$$

If therefore we can prove the lemma when n = 1, then the general case will follow.

Proof of the Fourier inversion formula in \mathscr{S}

Assume now that n = 1, so that

$$G(x) = e^{-\frac{x^2}{2}}, x \in \mathbb{R}.$$

Clearly G(0) = 1 and G'(x) = -xG(x) for all $x \in \mathbb{R}$, that is, G is a solution to the initial value problem

$$\begin{cases} y' + xy = 0, & x \in \mathbb{R} \\ y(0) = 1. \end{cases}$$

It is easy to check, using the Leibniz rule and the constancy theorem, that this ODE admits a unique solution defined on \mathbb{R} , that then must be G. Now Fourier transform the identity G' + xG = 0 by use of the differentiation rules to get

$$\widehat{G}' + \xi \widehat{G} = 0$$
 on \mathbb{R} .

Next check that $\widehat{G}(0) = \int_{-\infty}^{\infty} G(x) dx = \sqrt{2\pi}$ (a standard integral). Consequently $\widehat{G}/\sqrt{2\pi}$ solves the initial value problem, and so by uniqueness of solutions, $\widehat{G}/\sqrt{2\pi} = G$. This concludes the proof.

Proof of the Fourier inversion formula in ${\mathscr S}$

The next result is an approximation that generalizes aspects of our result for the standard mollifier on \mathbb{R}^n .

Lemma 2 Let $K \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} K(x) dx = 1$. Let K_t be the L^1 dilation of K by t > 0, so

$$\mathcal{K}_t(x) = rac{1}{t^n} \mathcal{K}igg(rac{x}{t}igg), \, x \in \mathbb{R}^n \, ext{ and } \, t > 0.$$

Then we have

(i) when
$$\phi \in \mathscr{S}(\mathbb{R}^n)$$
, $K_t * \phi \to \phi$ in $L^1(\mathbb{R}^n)$ and uniformly on \mathbb{R}^n as $t \searrow 0$,
(ii) when $f \in L^1(\mathbb{R}^n)$, $K_t * f \to f$ in $L^1(\mathbb{R}^n)$ as $t \searrow 0$.

Remark The family $(K_t)_{t>0}$ is called an *approximate unit* because if $\phi \in \mathscr{D}(\mathbb{R}^n)$, then

$$\langle K_t, \phi
angle = \int_{\mathbb{R}^n} K(x) \phi(tx) \, \mathrm{d}x o \phi(0) \, \text{ as } \, t \searrow 0,$$

that is, $K_t \to \delta_0$ in $\mathscr{D}'(\mathbb{R}^n)$ as $t \searrow 0$.

Proof of Lemma 2. [The proof is not examinable] We start with (i) and fix $\phi \in \mathscr{S}(\mathbb{R}^n)$. Let $\varepsilon > 0$. Now clearly

$$\left| \left(K_t * \phi \right)(x) - \phi(x) \right| \leq \int_{\mathbb{R}^n} |K(y)| |\phi(x + ty) - \phi(x)| \, \mathrm{d}y.$$

We split the integral into two parts corresponding to $|y| \le m$ and |y| > m, respectively, where we choose m > 0 so

$$\int_{|y|>m} |K(y)| \,\mathrm{d}y < \frac{\varepsilon}{2(1+2\|\phi\|_{\infty})}.$$

Accordingly we estimate

$$\begin{split} \left| \left(K_t * \phi \right)(x) - \phi(x) \right| &\leq \int_{|y| \leq m} |K(y)| |\phi(x + ty) - \phi(x)| \, \mathrm{d}y \\ &+ 2 \|\phi\|_{\infty} \int_{|y| > m} |K(y)| \, \mathrm{d}y \\ &\leq \int_{|y| \leq m} |K(y)| |\phi(x + ty) - \phi(x)| \, \mathrm{d}y + \frac{\varepsilon}{2}. \end{split}$$

Proof of Lemma 2 continued...

In order to estimate the integral over $|y| \le m$ we use the fundamental theorem of calculus:

$$|\phi(x+ty)-\phi(x)|\leq \int_0^1 |
abla \phi(x+sty)|t|y|\,\mathrm{d}s\leq \|
abla \phi\|_\infty mt.$$

Consequently

$$\begin{aligned} \left| \left(K_t * \phi \right)(x) - \phi(x) \right| &< \int_{|y| \le m} |K(y)| \| \nabla \phi \|_{\infty} mt \, \mathrm{d}y + \frac{\varepsilon}{2} \\ &\leq \| K \|_1 \| \nabla \phi \|_{\infty} mt + \frac{\varepsilon}{2} < \varepsilon \end{aligned}$$

provided we take

$$t < rac{arepsilon}{2(1 + \|\mathcal{K}\|_1 \|
abla \phi\|_\infty m)}$$

This establishes the uniform convergence.

Proof of Lemma 2 continued...

In order to see that the convergence also takes place in the L^1 sense we proceed similarly, but this time we take m so

$$\int_{|y|>m} |K(y)| \,\mathrm{d} y < \frac{\varepsilon}{2(1+2\|\phi\|_1)}.$$

Then we get, using Tonelli's theorem to swap the integration order:

$$\begin{split} \|K_t * \phi - \phi\|_1 &\leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |K(y)| |\phi(x + ty) - \phi(x)| \, \mathrm{d}y \, \mathrm{d}x \\ &= \int_{\mathbb{R}^n} |K(y)| \, \int_{\mathbb{R}^n} |\phi(x + ty) - \phi(x)| \, \mathrm{d}x \, \mathrm{d}y. \end{split}$$

Splitting the y-integral and estimating with the fundamental theorem of calculus as before results in

$$\|K_t * \phi - \phi\|_1 \leq \frac{\varepsilon}{2} + \|K\|_1 \|\nabla \phi\|_1 mt < \varepsilon$$

provided we take

$$t < rac{arepsilon}{2(1+\|K\|_1\|
abla \phi\|_1 m)}$$

Proof of Lemma 2 continued...

Finally, for (ii) we pick $\phi \in \mathscr{S}(\mathbb{R}^n)$ with $||f - \phi||_1 < \frac{\varepsilon}{2}$. Then we estimate using the triangle inequality

$$\begin{aligned} \|K_t * f - f\|_1 &\leq \|K_t * (f - \phi)\|_1 + \|K_t * \phi - \phi\|_1 + \|\phi - f\|_1 \\ &\leq 2\|f - \phi\|_1 + \|K_t * \phi - \phi\|_1 \\ &< \varepsilon + \|K_t * \phi - \phi\|_1 \end{aligned}$$

and the conclusion follows from (i)

We can now return to the main line of proof.

Proof of the Fourier inversion formula in $\mathcal S$

By Lemma 1 we have

$$\int_{\mathbb{R}^n} \widehat{G} \,\mathrm{d}\xi = \int_{\mathbb{R}^n} (2\pi)^{\frac{n}{2}} G \,\mathrm{d}\xi = (2\pi)^{\frac{n}{2}} \widehat{G}(0) = (2\pi)^n$$

and so with $K = (2\pi)^{-n} \widehat{G}$ we have $\int_{\mathbb{R}^n} K dx = 1$, hence accoding to Lemma 2, $K_t * \phi \to \phi$ uniformly on \mathbb{R}^n as $t \searrow 0$. We now calculate:

$$\begin{split} (\mathcal{K}_t * \phi)(x) &= (2\pi)^{-n} \int_{\mathbb{R}^n} \phi(x - y) (\widehat{G})_t(y) \, \mathrm{d}y \\ \stackrel{\text{dilation rule}}{=} (2\pi)^{-n} \int_{\mathbb{R}^n} \phi(x - y) \mathcal{F}_{\xi \to y} (G(t\xi)) \, \mathrm{d}y \\ \stackrel{\text{product rule}}{=} (2\pi)^{-n} \int_{\mathbb{R}^n} \mathcal{F}_{\xi \to y} (\phi(x - \xi)) G(ty) \, \mathrm{d}y \\ \stackrel{\text{translation rule}}{=} (2\pi)^{-n} \int_{\mathbb{R}^n} \widehat{\phi}(-y) \mathrm{e}^{-\mathrm{i}y \cdot x} G(ty) \, \mathrm{d}y \end{split}$$

Proof of the Fourier inversion formula in $\mathcal S$

Here we can use Lebesgue's dominated convergence theorem to find the limit of the right-hand side as $t \searrow 0$:

$$(2\pi)^{-n} \int_{\mathbb{R}^n} \widehat{\phi}(-y) \mathrm{e}^{-\mathrm{i}y \cdot x} G(ty) \,\mathrm{d}y \quad \to \quad (2\pi)^{-n} \int_{\mathbb{R}^n} \widehat{\phi}(-y) \mathrm{e}^{-\mathrm{i}y \cdot x} \,\mathrm{d}y$$
$$= \quad (2\pi)^{-n} \int_{\mathbb{R}^n} \widehat{\phi}(y) \mathrm{e}^{\mathrm{i}y \cdot x} \,\mathrm{d}y$$

and the proof is finished.

The Fourier inversion formula in L^1

Theorem Let $f \in L^1(\mathbb{R}^n)$. Then

$$f(x) = \lim_{t \searrow 0} (2\pi)^{-n} \int_{\mathbb{R}^n} \widehat{f}(\xi) \mathrm{e}^{\mathrm{i}\xi \cdot x - \frac{t^2 |\xi|^2}{2}} \,\mathrm{d}\xi \quad \text{in} \quad \mathsf{L}^1(\mathbb{R}^n).$$

Consequently, when also $\widehat{f} \in \mathsf{L}^1(\mathbb{R}^n)$, then

$$f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \widehat{f}(\xi) \mathrm{e}^{\mathrm{i}\xi \cdot x} \,\mathrm{d}\xi \tag{1}$$

holds almost everywhere.

Note that when $\widehat{f} \in L^1(\mathbb{R}^n)$ the Riemann-Lebesgue lemma says that right-hand side of (1) belongs to $C_0(\mathbb{R}^n)$. Therefore any $f \in L^1(\mathbb{R}^n)$ whose Fourier transform \widehat{f} is also in $L^1(\mathbb{R}^n)$ has a representative in $C_0(\mathbb{R}^n)$! It was therefore no accident that $\widehat{\mathbf{1}_{(-1,1)}} = 2\operatorname{sinc} \notin L^1(\mathbb{R})$.

Proof of the Fourier inversion formula in L^1

Following the proof of the inversion formula in $\mathscr S$ we get by use of the product, translation and dilation rules that

$$\left(\left((2\pi)^{-n}\widehat{G}\right)*f\right)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \widehat{f}(\xi) \mathrm{e}^{\mathrm{i}\xi \cdot x - \frac{t^2|\xi|^2}{2}} \,\mathrm{d}\xi$$

for each $x \in \mathbb{R}^n$ and t > 0. By Lemma 2(ii) the left-hand side converges to f in $L^1(\mathbb{R}^n)$ as $t \searrow 0$ concluding the proof of the general case. If additionally $\hat{f} \in L^1(\mathbb{R}^n)$, then we can pass to the limit under the integral sign on the right-hand side by use of Lebesgue's dominated convergence theorem and the desired identity follows.

The other convolution rule

Proposition If ϕ , $\psi \in \mathscr{S}(\mathbb{R}^n)$, then

$$\widehat{(\phi\psi)} = (2\pi)^{-n}\widehat{\phi} * \widehat{\psi}.$$

Proof. Because $\hat{\phi}$, $\hat{\psi} \in \mathscr{S}(\mathbb{R}^n) \subset L^1(\mathbb{R}^n)$ we have by the usual convolution rule,

$$\mathcal{F}(\widehat{\phi} * \widehat{\psi}) = \widehat{\widehat{\phi}}\widehat{\widehat{\psi}}.$$
 (2)

Here we have by the Fourier inversion formula in \mathscr{S} , $\mathcal{F}^{-1} = (2\pi)^{-n} \widetilde{\mathcal{F}}$, so $\mathcal{F}^2 = (2\pi)^n \widetilde{(\cdot)}$, and therefore

$$\widehat{\widehat{\phi}}\widehat{\widehat{\psi}} = (2\pi)^{2n}\widetilde{\phi}\widetilde{\psi} = (2\pi)^{2n}\widetilde{\phi}\widetilde{\psi}.$$

Fourier transforming this identity we get

$$(2\pi)^{2n}\widetilde{\widehat{\phi\psi}} = (2\pi)^{2n}\widehat{\widetilde{\phi\psi}} = \mathcal{F}^2(\widehat{\phi} * \widehat{\psi}).$$

The other convolution rule

By virtue of (2) and the Fourier inversion formula in \mathscr{S} we have $\widehat{\phi} * \widehat{\psi} \in \mathscr{S}(\mathbb{R}^n)$, hence by another use of the Fourier inversion formula in \mathscr{S} we conclude.

Corollary If ϕ , $\psi \in \mathscr{S}(\mathbb{R}^n)$, then also $\phi * \psi \in \mathscr{S}(\mathbb{R}^n)$.

This can also be proved directly-see the lecture notes.