
B4.4 Fourier Analysis HT21

Lecture 4: The Fourier inversion formula in S and L1

1. The Fourier inversion formula in S (Rn)

2. The Fourier inversion formula in L1(Rn)

3. The other convolution rule

The material corresponds to pp. 16–20 in the lecture notes and should be
covered in Week 2.
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The Fourier transform on S

In Lecture 3 we saw that the Fourier transform defined for f ∈ L1(Rn) by

f̂ (ξ) =

∫
Rn

f (x)e−iξ·x dx

is an S continuous linear map F : S (Rn) → S (Rn) and that the S
continuity is quantified through the Fourier bounds: for all k , l ∈ N0 there
exists a constant c = c(n, k, l) so

Sk,l(ϕ̂) ≤ cS l+n+1,k(ϕ)

holds for all ϕ ∈ S (Rn).
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Regularity versus decay at infinity

In Lecture 3 we also observed and formulated some instances of the
important principle stating that regularity of f implies decay at infinity of f̂
and that decay at infinity of f implies regularity of f̂ :
(a) Let m ∈ N0. If f ∈ Wm,1(Rn), then

f̂ (ξ)

|ξ|m
→ 0 as |ξ| → ∞,

(b) Let m ∈ N and m ≥ n + 1. If
(
1 + |x |2

)m
2 f (x) ∈ L∞(Rn), then

f̂ ∈ Cm−n−1(Rn),

(b1) Let m ∈ N0. If
(
1 + |x |2

)m
2 f (x) ∈ L1(Rn), then f̂ ∈ Cm(Rn).

The Fourier inversion formula in L1, and its generalizations considered in
later lectures, will among other things allow us to swap the roles of f and f̂
in (a), (b), (b1) above.
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The Fourier inversion formula in S

Theorem The Fourier transform F : S (Rn) → S (Rn) is bijective with
inverse given by

F−1(ϕ)(x) = (2π)−n

∫
Rn

ϕ(ξ)eix ·ξ dξ.

Consequently we have in compact symbolic form

F−1 = (2π)−nF̃ ,

where we recall that the operations (̃·) and F commute.

The proof is a beautiful calculation that starts with the product rule:∫
Rn

ϕ̂ψ dx =

∫
Rn

ϕψ̂ dx

holds for all ϕ, ψ ∈ L1(Rn). The idea is to make a good choice for ψ that
allows us to relate ϕ and ϕ̂.
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Proof of the Fourier inversion formula in S

Lemma 1 If G (x) = e−
|x|2
2 , x ∈ Rn, then Ĝ = (2π)

n
2G .

Proof of Lemma 1. We start by reducing to the one-dimensional case. First
note that

G (x) =
n∏

j=1

e−
x2j
2 ,

and so by use of Fubini’s theorem

Ĝ (ξ) =
n∏

j=1

Fxj→ξj

(
e−

x2j
2

)
(ξj).

If therefore we can prove the lemma when n = 1, then the general case will
follow.
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Proof of the Fourier inversion formula in S

Assume now that n = 1, so that

G (x) = e−
x2
2 , x ∈ R.

Clearly G (0) = 1 and G ′(x) = −xG (x) for all x ∈ R, that is, G is a
solution to the initial value problem{

y ′ + xy = 0, x ∈ R
y(0) = 1.

It is easy to check, using the Leibniz rule and the constancy theorem, that
this ODE admits a unique solution defined on R, that then must be G .
Now Fourier transform the identity G ′ + xG = 0 by use of the
differentiation rules to get

Ĝ ′ + ξĜ = 0 on R.

Next check that Ĝ (0) =
∫∞
−∞G (x) dx =

√
2π (a standard integral).

Consequently Ĝ/
√

2π solves the initial value problem, and so by uniqueness
of solutions, Ĝ/

√
2π = G . This concludes the proof. □
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Proof of the Fourier inversion formula in S

The next result is an approximation that generalizes aspects of our result
for the standard mollifier on Rn.
Lemma 2 Let K ∈ L1(Rn) with

∫
RnK (x) dx = 1. Let Kt be the L1 dilation

of K by t > 0, so

Kt(x) =
1
tn

K

(
x

t

)
, x ∈ Rn and t > 0.

Then we have
(i) when ϕ ∈ S (Rn), Kt ∗ ϕ→ ϕ in L1(Rn) and uniformly on Rn as

t ↘ 0,
(ii) when f ∈ L1(Rn), Kt ∗ f → f in L1(Rn) as t ↘ 0.

Remark The family
(
Kt

)
t>0 is called an approximate unit because if

ϕ ∈ D(Rn), then

⟨Kt , ϕ⟩ =
∫
Rn

K (x)ϕ(tx) dx → ϕ(0) as t ↘ 0,

that is, Kt → δ0 in D ′(Rn) as t ↘ 0.
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Proof of Lemma 2. [The proof is not examinable]
We start with (i) and fix ϕ ∈ S (Rn). Let ε > 0. Now clearly∣∣(Kt ∗ ϕ

)
(x)− ϕ(x)

∣∣ ≤ ∫
Rn

|K (y)||ϕ(x + ty)− ϕ(x)| dy .

We split the integral into two parts corresponding to |y | ≤ m and |y | > m,
respectively, where we choose m > 0 so∫

|y |>m
|K (y)| dy < ε

2(1 + 2∥ϕ∥∞)
.

Accordingly we estimate∣∣(Kt ∗ ϕ
)
(x)− ϕ(x)

∣∣ ≤
∫
|y |≤m

|K (y)||ϕ(x + ty)− ϕ(x)| dy

+2∥ϕ∥∞
∫
|y |>m

|K (y)| dy

<

∫
|y |≤m

|K (y)||ϕ(x + ty)− ϕ(x)| dy +
ε

2
.
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Proof of Lemma 2 continued...

In order to estimate the integral over |y | ≤ m we use the fundamental
theorem of calculus:

|ϕ(x + ty)− ϕ(x)| ≤
∫ 1

0
|∇ϕ(x + sty)|t|y | ds ≤ ∥∇ϕ∥∞mt.

Consequently∣∣(Kt ∗ ϕ
)
(x)− ϕ(x)

∣∣ <

∫
|y |≤m

|K (y)|∥∇ϕ∥∞mt dy +
ε

2

≤ ∥K∥1∥∇ϕ∥∞mt +
ε

2
< ε

provided we take
t <

ε

2(1 + ∥K∥1∥∇ϕ∥∞m)
.

This establishes the uniform convergence.

Lecture 4 (B4.4) HT21 9 / 17



Proof of Lemma 2 continued...
In order to see that the convergence also takes place in the L1 sense we
proceed similarly, but this time we take m so∫

|y |>m
|K (y)| dy < ε

2(1 + 2∥ϕ∥1)
.

Then we get, using Tonelli’s theorem to swap the integration order:

∥Kt ∗ ϕ− ϕ∥1 ≤
∫
Rn

∫
Rn

|K (y)||ϕ(x + ty)− ϕ(x)| dy dx

=

∫
Rn

|K (y)|
∫
Rn

|ϕ(x + ty)− ϕ(x)| dx dy .

Splitting the y -integral and estimating with the fundamental theorem of
calculus as before results in

∥Kt ∗ ϕ− ϕ∥1 ≤ ε

2
+ ∥K∥1∥∇ϕ∥1mt < ε

provided we take
t <

ε

2(1 + ∥K∥1∥∇ϕ∥1m)
.
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Proof of Lemma 2 continued...

Finally, for (ii) we pick ϕ ∈ S (Rn) with ∥f − ϕ∥1 <
ε
2 . Then we estimate

using the triangle inequality

∥Kt ∗ f − f ∥1 ≤ ∥Kt ∗ (f − ϕ)∥1 + ∥Kt ∗ ϕ− ϕ∥1 + ∥ϕ− f ∥1

≤ 2∥f − ϕ∥1 + ∥Kt ∗ ϕ− ϕ∥1

< ε+ ∥Kt ∗ ϕ− ϕ∥1

and the conclusion follows from (i) □

We can now return to the main line of proof.
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Proof of the Fourier inversion formula in S

By Lemma 1 we have∫
Rn

Ĝ dξ =
∫
Rn

(2π)
n
2G dξ = (2π)

n
2 Ĝ (0) = (2π)n

and so with K = (2π)−nĜ we have
∫
RnKdx = 1, hence accoding to

Lemma 2, Kt ∗ ϕ→ ϕ uniformly on Rn as t ↘ 0. We now calculate:(
Kt ∗ ϕ

)
(x) = (2π)−n

∫
Rn

ϕ(x − y)
(
Ĝ
)
t
(y) dy

dilation rule
= (2π)−n

∫
Rn

ϕ(x − y)Fξ→y

(
G (tξ)

)
dy

product rule
= (2π)−n

∫
Rn

Fξ→y

(
ϕ(x − ξ)

)
G (ty) dy

translation rule
= (2π)−n

∫
Rn

ϕ̂(−y)e−iy ·xG (ty) dy
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Proof of the Fourier inversion formula in S

Here we can use Lebesgue’s dominated convergence theorem to find the
limit of the right-hand side as t ↘ 0:

(2π)−n

∫
Rn

ϕ̂(−y)e−iy ·xG (ty) dy → (2π)−n

∫
Rn

ϕ̂(−y)e−iy ·x dy

= (2π)−n

∫
Rn

ϕ̂(y)eiy ·x dy

and the proof is finished. □
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The Fourier inversion formula in L1

Theorem Let f ∈ L1(Rn). Then

f (x) = lim
t↘0

(2π)−n

∫
Rn

f̂ (ξ)eiξ·x− t2|ξ|2
2 dξ in L1(Rn).

Consequently, when also f̂ ∈ L1(Rn), then

f (x) = (2π)−n

∫
Rn

f̂ (ξ)eiξ·x dξ (1)

holds almost everywhere.

Note that when f̂ ∈ L1(Rn) the Riemann-Lebesgue lemma says that
right-hand side of (1) belongs to C0(Rn). Therefore any f ∈ L1(Rn) whose
Fourier transform f̂ is also in L1(Rn) has a representative in C0(Rn)! It was
therefore no accident that 1̂(−1,1) = 2sinc /∈ L1(R).
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Proof of the Fourier inversion formula in L1

Following the proof of the inversion formula in S we get by use of the
product, translation and dilation rules that((

(2π)−nĜ
)
∗ f

)
(x) = (2π)−n

∫
Rn

f̂ (ξ)eiξ·x− t2|ξ|2
2 dξ

for each x ∈ Rn and t > 0. By Lemma 2(ii) the left-hand side converges to
f in L1(Rn) as t ↘ 0 concluding the proof of the general case.
If additionally f̂ ∈ L1(Rn), then we can pass to the limit under the integral
sign on the right-hand side by use of Lebesgue’s dominated convergence
theorem and the desired identity follows. □

Lecture 4 (B4.4) HT21 15 / 17



The other convolution rule

Proposition If ϕ, ψ ∈ S (Rn), then(̂
ϕψ

)
= (2π)−nϕ̂ ∗ ψ̂.

Proof. Because ϕ̂, ψ̂ ∈ S (Rn) ⊂ L1(Rn) we have by the usual convolution
rule,

F
(
ϕ̂ ∗ ψ̂

)
=

̂̂
ϕ
̂̂
ψ. (2)

Here we have by the Fourier inversion formula in S , F−1 = (2π)−nF̃ , so
F2 = (2π)n

(̃
·
)
, and therefore

̂̂
ϕ
̂̂
ψ = (2π)2nϕ̃ψ̃ = (2π)2nϕ̃ψ.

Fourier transforming this identity we get

(2π)2n ˜̂ϕψ = (2π)2n ̂̃ϕψ = F2(ϕ̂ ∗ ψ̂
)
.
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The other convolution rule

By virtue of (2) and the Fourier inversion formula in S we have
ϕ̂ ∗ ψ̂ ∈ S (Rn), hence by another use of the Fourier inversion formula in
S we conclude. □

Corollary If ϕ, ψ ∈ S (Rn), then also ϕ ∗ ψ ∈ S (Rn).

This can also be proved directly–see the lecture notes.
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