
B4.4 Fourier Analysis HT22

Lecture 5: Tempered distributions and the adjoint identity scheme revisited

1. Definition of tempered distributions
2. Comparison of the different classes of distributions
3. Examples: tempered Lp functions and tempered measures
4. The boundedness property of tempered distributions
5. The adjoint identity scheme in the tempered context

The material corresponds to pp. 20–25 in the lecture notes and should be
covered in Week 3.

Lecture 5 (B4.4) HT22 1 / 22



An adjoint identity for the Fourier transform

We have proved that the Fourier transform is a bijective S continuous
linear map F : S (Rn) → S (Rn) with inverse F−1 = (2π)−nF̃ . In view of
this the product rule, when restricted to Schwartz test functions, becomes
an adjoint identity: ∫

Rn

F(ϕ)ψ dx =

∫
Rn

ϕF(ψ) dx

holds for all ϕ, ψ ∈ S (Rn). We shall take advantage of this and extend the
Fourier transform, in a consistent manner, to a large class of distributions.
This is the motivation for introducing the class of Schwartz test function.
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Definition of tempered distributions

Definition A functional u : S (Rn) → C is a tempered distribution on Rn

if
(i) u is linear,
(ii) u is S continuous: if ϕj → ϕ in S (Rn), then u(ϕj) → u(ϕ).
The set of all tempered distributions on Rn is denoted by S ′(Rn).

Remarks
• When u : S (Rn) → C is linear, then (ii) holds provided u is S

continuous at 0.
• Under the usual definitions of vector space operations it is clear that

S ′(Rn) becomes a vector space over C.
• We shall also use the bracket notation for tempered distributions and

often write ⟨u, ϕ⟩ instead of u(ϕ).
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Relation to other classes of distributions from B4.3

We have introduced the classes of distributions D ′(Rn) and E ′(Rn) on Rn.
How are these classes related to the tempered distributions? – First note
that

D(Rn) ⊂ S (Rn) ⊂ C∞(Rn)

where the two inclusions are strict. We claim that

E ′(Rn) ⊂ S ′(Rn) ⊂ D ′(Rn)

and that the two inclusions are strict too. First, one may wonder what it
means. The argument below will however make that clear.
Let u ∈ S ′(Rn). Then its restriction u|D(Rn) to the subspace D(Rn) is
clearly still linear. If ϕj → 0 in D(Rn), then as we have seen before the
convergence also takes place in the S sense, so by assumption

⟨u|D(Rn), ϕj⟩ = ⟨u, ϕj⟩ → 0,

hence the restriction u|D(Rn) ∈ D ′(Rn). It is in this sense we intend the
inclusion above. We also emphasize that the restriction u|D(Rn) uniquely
determines u ∈ S ′(Rn) because D(Rn) is S dense in S (Rn).
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Relation to other classes of distributions

The inclusion is strict since e|x |2 ∈ D ′(Rn) \ S ′(Rn): if u ∈ S ′(Rn) and
⟨u, ϕ⟩ =

∫
Rnϕ(x)e|x |

2 dx for ϕ ∈ D(Rn), then approximating
e−|x |2 ∈ S (Rn) by ϕj ∈ D(Rn) in the S sense we get a constradiction,

⟨u, e−|·|2⟩ = lim
j→∞

⟨u, ϕj⟩ = lim
j→∞

∫
Rn

e|x |
2
ϕj(x) dx = ∞.

We turn to the compactly supported distributions and let u ∈ E ′(Rn). We
recall from B4.3 that u admits a unique extension, denoted u again, to a
linear functional on C∞(Rn) with the property that for each compact
neighbourhood K of the support supp(u) there exist constants
c = cK ≥ 0, m = mK ∈ N0 so∣∣⟨u, ϕ⟩∣∣ ≤ c

∑
|α|≤m

sup
K

∣∣∂αϕ∣∣
holds for all ϕ ∈ C∞(Rn).
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Relation to other classes of distributions

Clearly the restriction u|S (Rn) remains linear and if ϕj → 0 in S (Rn), then∣∣⟨u|S (Rn), ϕj⟩
∣∣ = ∣∣⟨u, ϕj⟩∣∣ ≤ c

∑
|α|≤m

sup
K

∣∣∂αϕj ∣∣
≤ c

( ∑
|α|≤m

1
)
S0,m(ϕj) → 0,

so u|S (Rn) ∈ S ′(Rn), and it is in this sense the inclusion should be
understood. Again, the inclusion is strict since e−|x |2 ∈ S ′(Rn) \ E ′(Rn).

As already indicated above, we shall omit writing restrictions here, and for
instance simply write that u ∈ S ′(Rn) when we actually mean
u|S (Rn) ∈ S ′(Rn).
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Example 1. Let f ∈ Lp(Rn), where p ∈ [1,∞]. Define

Tf (ϕ) =

∫
Rn

f ϕ dx , ϕ ∈ S (Rn).

Then Tf is well-defined and linear. By Hölder’s inequality and the inclusion
S (Rn) ⊂ Lq(Rn), where q is the Hölder conjugate exponent to p, we get

|Tf (ϕ)| ≤ ∥f ∥p∥ϕ∥q ≤ c(n, q)∥f ∥pSn+1,0(ϕ).

Therefore Tf is also S continuous, so Tf ∈ S ′(Rn). As observed before
Tf , or its restriction to D(Rn), is then a distribution in D ′(Rn) too, and so
f is uniquely determined (by the fundamental lemma of the calculus of
vairations). We shall therefore also identify Tf and f for tempered
distributions, and simply write Tf = f , where it is then clear from context
or else must be explicitly mentioned in what capacity f is considered.
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Example 2. Let µ be a finite Borel measure on Rn. Define

Tµ(ϕ) =

∫
Rn

ϕ dµ, ϕ ∈ S (Rn).

Then Tµ is well-defined and linear. Since also |Tµ(ϕ)| ≤ µ(Rn)S0,0(ϕ) it
follows that Tµ ∈ S ′(Rn). As in the previous example Tµ, or its restriction
to D(Rn) is a distribution in D ′(Rn) and so µ is uniquely determined by
Tµ. We therefore identify Tµ with µ and write simply Tµ = µ also in this
case. In particular note that the Dirac delta function δa also can be viewed
as a tempered distribution.

Example 3. Functions in Lploc(R
n) and locally finite Borel measures do not

in general define tempered distributions. As we have seen, e|x |2 ∈ L∞loc(Rn)
does not define a tempered distribution. In order to be a tempered
distribution a function should not grow too fast at infinity. This is vague
and, as it turns out, it has to be. For example you will show on problem
sheet 3 that ex /∈ S ′(R), while ex+eix ∈ S ′(R).
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Tempered Lp functions and measures

In the context of the distributions in D ′ the regular distributions were those
corresponding to L1

loc functions. The corresponding notion of regular
tempered distribution is the notion of a tempered L1 function.

Definition Let p ∈ [1,∞]. A measurable function f : Rn → C is (a
representative for) a tempered Lp function if there exists m ∈ N0 so

f (x)(
1 + |x |2

)m
2
∈ Lp(Rn). (1)

A Borel measure µ on Rn is a tempered measure if for some m ∈ N0 we
have ∫

Rn

dµ(x)(
1 + |x |2

)m
2
<∞. (2)
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Tempered Lp functions and tempered measures are tempered
distributions: Assume f is a tempered Lp function and µ a tempered
measure, say (1) and (2) hold. Then if ϕ ∈ S (Rn) we define

⟨Tf , ϕ⟩ =
∫
Rn

f (x)ϕ(x) dx and ⟨Tµ, ϕ⟩ =
∫
Rn

ϕ dµ.

We claim they are well-defined tempered distributions. To see that Tf is,
use Hölder’s inequality,

∣∣⟨Tf , ϕ⟩
∣∣ ≤ ∫

Rn

∣∣f ϕ∣∣ dx ≤

∥∥∥∥∥ f (·)(
1 + | · |2

)m
2

∥∥∥∥∥
p

∥∥∥∥(1 + | · |2
)m

2 ϕ

∥∥∥∥
q

≤ c

∥∥∥∥∥ f (·)(
1 + | · |2

)m
2

∥∥∥∥∥
p

Sn+1+m,0(ϕ)

so Tf is well-defined and hence linear. It also follows from the bound that
it is S continuous. The proof for Tµ is easier and left as an exercise.
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Tempered Lp functions and measures

As we have seen that S ′(Rn) ⊂ D ′(Rn) also Tf , Tµ ∈ D ′(Rn) and so we
may also in the tempered context identify Tf with f and Tµ with µ.
Henceforth we therefore also write

Tf = f

for tempered Lp functions and

Tµ = µ

for tempered measures.
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The boundedness property of tempered distributions

Proposition Let u : S (Rn) → C be linear. Then u is S continuous if
and only if there exist constants c ≥ 0, k , l ∈ N0 so∣∣⟨u, ϕ⟩∣∣ ≤ cSk,l(ϕ)

holds for all ϕ ∈ S (Rn).

Note that the boundedness property implies that tempered distributions
always have a finite order (the order is at most l if the above bound holds
for u).
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The boundedness property of tempered distributions

Proof. It is clear that the bound together with linearity implies S
continuity. So we focus on the opposite direction and assume that u is S
continuous. The proof goes by contradiction: assume that the boundedness
property fails. Then for all c = k = l = j ∈ N there exists ϕj ∈ S (Rn) so∣∣⟨u, ϕj⟩∣∣ > jS j ,j(ϕj).

Then clearly ϕj ̸= 0, so S j ,j(ϕj) > 0 and we may define

ψj =
ϕj

jS j ,j(ϕj)
∈ S (Rn).

Fix α, β ∈ Nn
0. Then for j > |α|+ |β| we have Sα,β(ψj) < 1/j , so by

arbitrariness of α, β we have shown that ψj → 0 in S (Rn). Consequently
we must by S continuity have ⟨u, ψj⟩ → 0. But this is impossible because
we also have |⟨u, ψj⟩| > 1. □
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Convergence of tempered distributions

Definition For a sequence (uj) in S ′(Rn) and u ∈ S ′(Rn) we write
uj → u in S ′(Rn) if ⟨uj , ϕ⟩ → ⟨u, ϕ⟩ holds for all ϕ ∈ S (Rn).

Because D(Rn) is a proper subspace of S (Rn) this mode of convergence
is clearly strictly stronger than convergence in D ′(Rn).

Example Find the limits in the sense of tempered distributions of
(i)

(
sin(jx)

)
as j → ∞,

(ii)
(
ρε
)

as ε↘ 0.

(i): We know from B4.3 that sin(jx) → 0 in D ′(Rn). Because D(R) is S
dense in S (R), given ϕ ∈ S (R) and ε > 0 we can find ψ ∈ D(R) with
S2,0(ϕ− ψ) < ε.
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Convergence of tempered distributions
Now∣∣∣∣∫

R
sin(jx)ϕ(x) dx

∣∣∣∣ ≤
∣∣∣∣∫

R
sin(jx)ψ(x) dx

∣∣∣∣+ ∫
R

∣∣sin(jx)∣∣∣∣ϕ(x)− ψ(x)
∣∣ dx

≤
∣∣∣∣∫

R
sin(jx)ψ(x) dx

∣∣∣∣
+

∫
R

dx
1 + x2 sup

x∈R

(
(1 + x2)

∣∣ϕ(x)− ψ(x)
∣∣)

≤
∣∣∣∣∫

R
sin(jx)ψ(x) dx

∣∣∣∣+ 2πS2,0(ϕ− ψ)

≤
∣∣∣∣∫

R
sin(jx)ψ(x) dx

∣∣∣∣+ 2πε.

It follows that sin(jx) → 0 in S ′(R) as j → ∞.
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Convergence of tempered distributions

We could of course also have proceeded exactly as we did in B4.3, simply
replacing the D test functions by Schwartz test functions throughout.
However we wanted to point out that many results from B4.3 can also be
transferred without much effort using S density of D(Rn) in S (Rn).

(ii): ρε → δ0 in S ′(R) as ε↘ 0.

Let ϕ ∈ S (Rn). Then by uniform convergence we get since
supp(ρ) = B1(0) has finite measure:

⟨ρε, ϕ⟩ =
∫
Rn

ρ(x)ϕ(εx) dx → ϕ(0)

as ε↘ 0.
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The adjoint identity scheme in the tempered context

The procedure is as in B4.3 and the only difference is that we replace
D(Ω) by S (Rn).

Given an operation T on S (Rn), assumed to be a linear map

T : S (Rn) → S (Rn),

that we would like to extend to tempered distributions.

Assume S : S (Rn) → S (Rn) is a linear and S continuous map, and that
we have the adjoint identity:∫

Rn

T (ϕ)ψ dx =

∫
Rn

ϕS(ψ) dx

holds for all ϕ, ψ ∈ S (Rn).
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The adjoint identity scheme in the tempered context

We can then define T : S ′(Rn) → S ′(Rn) for each u ∈ S ′(Rn) by the
rule

⟨T (u), ϕ⟩ := ⟨u,S(ϕ)⟩, ϕ ∈ S (Rn).

We record that hereby T (u) : S (Rn) → C is linear and S continuous,
that is, T (u) ∈ S ′(Rn), so T : S ′(Rn) → S ′(Rn) is well-defined. By
inspection we see that it is linear and S ′ continuous: if uj → u in S ′(Rn),
then also T (uj) → T (u) in S ′(Rn).

Note that the adjoint identity ensures that the extension is consistent,
T |S (Rn) = T and so as in D context we shall in the sequel write T also for
the extension T .
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The Fourier transform on tempered distributions

We have seen that the Fourier transform acts a linear and S continuous
map F : S (Rn) → S (Rn). The product rule is therefore an adjoint
identity and so we can define the Fourier transform on S ′ by the adjoint
identity scheme: for u ∈ S ′(Rn) we define Fu = û by the rule

⟨û, ϕ⟩ := ⟨u, ϕ̂⟩, ϕ ∈ S (Rn).

Hereby F : S ′(Rn) → S ′(Rn) is linear and S ′ continuous.

The adjoint identity ensures that our definition is consistent on Schwartz
test functions, but what about our definition on L1(Rn), do we also have
consistency there? – Let f ∈ L1(Rn) and let us compare our two definitions:

f̂ (ξ) =

∫
Rn

f (x)e−iξ·x dx and ⟨T̂f , ϕ⟩ =
∫
Rn

f ϕ̂ dx , ϕ ∈ S (Rn).

The product rule in L1 ensures that they are the same: T
f̂
= T̂f .
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The Fourier transform on tempered distributions

Example Find the Fourier transform of δa, where a ∈ Rn.

For ϕ ∈ S (Rn) we have

⟨δ̂a, ϕ⟩ = ⟨δa, ϕ̂⟩ = ϕ̂(a)

=

∫
Rn

ϕ(x)e−ia·x dx ,

so
δ̂a(ξ) = e−ia·ξ.

In particular record the result for a = 0: δ̂0 = 1.

Exercise Check that our definition of the Fourier transform on S ′ is
consistent with the definition we gave for the Fourier transform of finite
Borel measures in Lecture 1:

T̂µ = Tµ̂

holds for all finite Borel measures µ on Rn.
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Extending other operations to tempered distributions

Because S ′(Rn) ⊂ D ′(Rn) we can of course define many of the operations
introduced in B4.3 also for tempered distributions. What is needed for the
operation to produce a tempered distribution again is that the operation on
D(Rn) extends to a linear and S continuous map of S (Rn) to itself.
That is, we should have an adjoint identity in the S context.

This is easily seen to be the case with differentiation, where we define for a
direction 1 ≤ j ≤ n and u ∈ S ′(Rn) the tempered distribution partial
derivative ∂ju by the rule

⟨∂ju, ϕ⟩ := −⟨u, ∂jϕ⟩, ϕ ∈ S (Rn).

With this definition we can then, for each u ∈ S ′(Rn), make sense of ∂αu
and of p(∂)u as tempered distributions for any multi-index α ∈ Nn

0 and any
differential operator p(∂).
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Extending other operations to tempered distributions

Likewise, we can define the operations
• θ∗u for θ ∈ O(n) (and in particular ũ),
• dilations dru and ur for a scale factor r > 0,
• translation τhu for a vector h ∈ Rn

on tempered distributions in a straight forward manner.

Example Let u ∈ S ′(R). Then

τhu − u

h
→ u′ in S ′(Rn) as h → 0.

However, some care is needed for multiplication with C∞ function, where
the multiplying function must be restricted. We pick up on this in the next
lecture.
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