
B4.4 Fourier Analysis HT22

Lecture 7: Multiplication with moderate C∞ functions

1. Definition of moderate C∞ functions
2. Multiplication with moderate C∞ functions
3. The convolution of a tempered distribution and a Schwartz test

function is a moderate C∞ function
4. Approximation and mollification in the tempered context
5. The convolution rule: the basic case
6. Examples

The material corresponds to pp. 27–30 in the lecture notes and should be
covered in Week 4.
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Functions of polynomial growth

Definition A function f : Rn → C is said to be of polynomial growth if
there exist constants c ≥ 0 and m ∈ N0 so∣∣f (x)∣∣ ≤ c

(
1 + |x |2

)m
2

holds for all x ∈ Rn.
Note: f is of polynomial growth if and only if there exists a polynomial
p(x) ∈ C[x ] so

∣∣f (x)∣∣ ≤ ∣∣p(x)∣∣ holds for all x ∈ Rn. As it should be!

Example Let f : Rn → C be of polynomial growth. When f is measurable
it is (representative of) a tempered L∞ function, and if g : Rn → C is a
continuous rapidly decreasing function, then f (x)g(x) is integrable on Rn.
In particular, we may view f as the tempered distribution ϕ 7→

∫
Rn f ϕ dx .

In order to get a function we can multiply on a tempered distribution we
must require that the function is C∞ and that all its partial derivatives
have polynomial growth.
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Moderate C∞ functions

Definition A function a : Rn → C is said to be a moderate C∞ function if
it is C∞ and it and all its partial derivatives have polynomial growth: for
each multi-indicex α ∈ Nn

0 there exist constants cα ≥ 0, mα ∈ N0 so∣∣(∂αa)(x)∣∣ ≤ cα
(
1 + |x |2

)mα
2

holds for all x ∈ Rn.

Example Schwartz test functions, polynomials and functions such as
cos p(x), sin p(x), where p(x) ∈ C[x ], are moderate C∞ functions. The
functions

R ∋ x 7→ ex and Rn ∋ x 7→ e|x |
2

are not.
It is clear that a moderate C∞ function a : Rn → C in particular is a
tempered L∞ function and so defines a tempered distribution:

ϕ 7→
∫
Rn

ϕa dx .
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Properties of the set of moderate C∞ functions

If a, b : Rn → C are moderate C∞ functions, λ ∈ C and α ∈ Nn
0, then

• a+ λb (it is a vector space)
• ab (it is an algebra)
• ∂αa (it is closed under differentiation)

are moderate C∞ functions.

The proof is straight forward and left as an exercise.
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The key bound for moderate C∞ functions

Proposition Let a : Rn → C be a moderate C∞ function. Then the map

S (Rn) ∋ ϕ 7→ aϕ ∈ S (Rn)

is linear and S continuous. More precisely we have the following bound:
for all k , l ∈ N0 we have that

Sk,l

(
aϕ

)
≤ 2lc l(n + 1)mlSk+ml ,l

(
ϕ
)

holds for all ϕ ∈ S (Rn), where

c l := max
|β|≤l

cβ , ml := max
|β|≤l

mβ

and the numbers cβ ≥ 0, mβ ∈ N0 are the numbers in the polynomial
growth condition satisfied by ∂βa.
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Proof of key bound

Let α, β ∈ Nn
0 be multi-indices with |α| ≤ k , |β| ≤ l . Then for ϕ ∈ S (Rn):

∣∣xα∂β(aϕ)∣∣ =

∣∣∣∣xα ∑
γ≤β

(
β

γ

)
∂γa∂β−γϕ

∣∣∣∣ ≤ ∑
γ≤β

(
β

γ

)∣∣∂γa∣∣∣∣xα∂β−γϕ
∣∣

≤
∑
γ≤β

(
β

γ

)
cγ
(
1 + |x |2

)mγ
2
∣∣xα∂β−γϕ

∣∣
≤ c l

∑
γ≤β

(
β

γ

)(
1 + |x1|+ · · ·+ |xn|

)ml
∣∣xα∂β−γϕ

∣∣
≤ c l

∑
γ≤β

(
β

γ

)
(n + 1)ml−1(1 +

n∑
j=1

|xj |ml
)∣∣xα∂β−γϕ

∣∣
≤ c l

∑
γ≤β

(
β

γ

)
(n + 1)ml−1(Sk,l(ϕ) + nSk+ml ,l(ϕ)

)
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Proof of key bound and multiplication with moderate C∞ functions

hence we continue with∣∣xα∂β(aϕ)∣∣ ≤ c l
∑
γ≤β

(
β

γ

)
(n + 1)mlSk+ml ,l(ϕ)

≤ c l(n + 1)ml2lSk+ml ,l(ϕ)

where we in the last inequality used that
∑

γ≤β

(
β
γ

)
= 2|β| ≤ 2l . This is the

required bound and the rest is then clear. □

We then have the obvious adjoint identity:∫
Rn

(
aϕ

)
ψ dx =

∫
Rn

ϕ
(
aψ

)
dx

holds for all ϕ, ψ ∈ S (Rn) that allows us to define au ∈ S ′(Rn) for each
u ∈ S ′(Rn) by the rule⟨

au, ϕ
⟩
:=

⟨
u, aϕ

⟩
, ϕ ∈ S (Rn).

It is clear how to define ua and that we have au = ua.
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Multiplication with moderate C∞ functions

As usual because the product is defined by the adjoint identity scheme it
defines a map

S ′(Rn) ∋ u 7→ au ∈ S ′(Rn)

that is linear and S ′ continuous. Furthermore, the Leibniz rule holds:

∂j
(
au

)
=

(
∂ja

)
u + a∂ju

for each direction 1 ≤ j ≤ n. The proof is straight forward from the
definitions and left as an exercise.

The consistency extends beyond S : when u is a tempered L1 function,
then

Tau = aTu

holds. In fact, when u is a tempered measure we have consistency.
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Convolution of a tempered distribution and a Schwartz test function

We defined u ∗ θ for each u ∈ S ′(Rn) and θ ∈ S (Rn) by the adjoint
identity scheme: ⟨

u ∗ θ, ϕ
⟩
:=

⟨
u, θ̃ ∗ ϕ

⟩
for ϕ ∈ S (Rn). Hereby the map

S ′(Rn) ∋ u 7→ u ∗ θ ∈ S ′(Rn)

is linear and S ′ continuous. Furthermore, with the natural definitions we
have u ∗ θ = θ ∗ u. But we can say more:

Proposition If u ∈ S ′(Rn), θ ∈ S (Rn), then u ∗ θ is a moderate C∞

function and (u ∗ θ)(x) = ⟨u, θ(x − ·)⟩ for x ∈ Rn. Furthermore, for each
multi-index α ∈ Nn

0:

∂α
(
u ∗ θ

)
=

(
∂αu

)
∗ θ = u ∗

(
∂αθ

)
. (1)
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Convolution of a tempered distribution and a Schwartz test function

Proof. In order to show that u ∗ θ ∈ C∞(Rn), that we have the formula
(u ∗ θ)(x) = ⟨u, θ(x − ·)⟩ and the differentiation rule (1) we can proceed as
we did in B4.3. We leave that as an exercise and we then only have to show
that u ∗ θ is a moderate C∞ function. In view of (1) it suffices to show
that u ∗ θ has polynomial growth. To do that we invoke the boundedness
property of u. Accordingly we find constants c ≥ 0, k , l ∈ N0, so∣∣⟨u, ϕ⟩∣∣ ≤ cSk,l(ϕ)

holds for all ϕ ∈ S (Rn).

For each fixed x ∈ Rn we take ϕ = θ(x − ·) =
(̃
τxθ

)
in the bound for u

whereby, by virture of the formula for u ∗ θ, we get∣∣u ∗ θ(x)
∣∣ ≤ cSk,l

(
θ(x − ·)

)
.

To see that this bound implies polynomial growth we let α, β ∈ Nn
0 be

multi-indices with |α| ≤ k , |β| ≤ l .
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Convolution of a tempered distribution and a Schwartz test function

For x , y ∈ Rn we estimate as follows using the binomial formula:∣∣yα∂βy θ(x − y)
∣∣ =

∣∣∣∣(y − x + x)α
(
∂βθ

)
(x − y)

∣∣∣∣
≤

∑
γ≤α

(
α

γ

)∣∣∣∣(x − y)γ
(
∂βθ

)
(x − y)

∣∣∣∣∣∣xα−γ
∣∣

≤
∑
γ≤α

(
α

γ

)
Sγ,β(θ)

∣∣xα−γ
∣∣ ≤ Sk,l(θ)

∑
γ≤α

(
α

γ

)∣∣xα−γ
∣∣

= Sk,l(θ)
n∏

j=1

(
1 + |xj |

)αj ≤ Sk,l(θ)
(
1 + |x |

)|α|
≤ Sk,l(θ)

(
1 + |x |

)k ≤ 2
k
2Sk,l(θ)

(
1 + |x |2

) k
2

and consequently
∣∣u ∗ θ(x)

∣∣ ≤ c2
k
2Sk,l(θ)

(
1 + |x |2

) k
2 for all x ∈ Rn as

required. □
Lecture 7 (B4.4) HT22 11 / 17



Approximation and mollification in the tempered context

We saw in B4.3 that many results about distributions could be established
by first proving them for C∞ functions and then use mollification to
transfer them to distributions. We can also use this technique for tempered
distributions. Recall the standard mollifier

(
ρε
)
ε>0 on Rn. We then have

Proposition If u ∈ S ′(Rn), then ρε ∗ u is a moderate C∞ function and

ρε ∗ u → u in S ′(Rn)

as ε↘ 0.

Proof. We have more or less already proved it. That ρε ∗ u is a moderate
C∞ function follows from the previous result and to prove the convergence
we just need to observe that, because u is S continuous, for ϕ ∈ S (Rn),

ρε ∗ ϕ→ ϕ in S (Rn)

as ε↘ 0. But this was established in example 3 of lecture 3. □
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Approximation and mollification in the tempered context

As in B4.3 we can go one step further and approximate a tempered
distribution by test functions from D(Rn). For that we must combine
mollification with truncation: simply multiply the mollified distribution by
cut-off functions that equal 1 on increasingly large balls.

Proposition Let u ∈ S ′(Rn). Then there exists a sequence (uj) in
D(Rn) such that

uj → u in S ′(Rn)

as j → ∞.

We leave the proof as an exercise. Note that we in particular have that
uj ∈ S (Rn), and so, just as in B4.3, we can think of the extension of a
linear map T : S (Rn) → S (Rn) to T : S ′(Rn) → S ′(Rn) by use of the
adjoint identity scheme as an extension of T by S ′ continuity.

Lecture 7 (B4.4) HT22 13 / 17



The convolution rule: the basic case

Proposition Let u ∈ S ′(Rn) and θ ∈ S (Rn). Then

û ∗ θ = ûθ̂ and ûθ =
(
2π

)−n
û ∗ θ̂.

Proof. By definition we have for ϕ ∈ S (Rn): ⟨û ∗ θ, ϕ⟩ = ⟨u, θ̃ ∗ ϕ̂⟩. We
can now use results for Schwartz test functions (FIF = Fourier inversion
formula on S and CR = convolution rule on S ):⟨

û ∗ θ, ϕ
⟩ FIF

=
(
2π

)−n⟨u, ̂̂θ ∗ ϕ̂⟩
CR
= ⟨u, ̂̂θϕ⟩
defs
= ⟨û, θ̂ϕ⟩
defs
= ⟨ûθ̂, ϕ⟩
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The convolution rule: the basic case–proof continued...

For the second part we apply the just established result to û ∈ S ′(Rn),
θ̂ ∈ S (Rn) whereby we find (FIFs = Fourier inversion formulas in S and
in S ′):

̂̂
u ∗ θ̂ = ̂̂û̂θ

FIFs
=

(
2π

)2n
ũθ̃

=
(
2π

)2n
ũθ

FIFs
=

(
2π

)n̂̂
uθ

and so by FIFs again we arrive at û ∗ θ̂ =
(
2π

)n
ûθ. The proof is finished. □
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Example The Hilbert transform is defined for each ϕ ∈ S (R) as

H(ϕ) :=
1
π

(
pv

( 1
y

)
∗ ϕ

)
(x) = lim

ε↘0

(∫ −ε

−∞
+

∫ ∞

ε

)
ϕ(x − y)

πy
dy .

We know that hereby H(ϕ) is a moderate C∞ function, so that in
particular H : S (R) → S ′(R) is linear. It is the most basic example of a
singular integral operator. What can we say about the decay of H(ϕ) at
infinity and is it integrable?

We can use the convolution rule and Example 1 from lecture 6 to find its
Fourier transform:

Ĥ(ϕ) = −i sgn(ξ)ϕ̂(ξ).

When ϕ̂(0) =
∫
Rϕ dx ̸= 0, then it is discontinuous at ξ = 0 and so in that

case H(ϕ) /∈ L1(R) by the Riemann-Lebesgue lemma.

But can we get positive results?
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The Hilbert transform

To get positive results we can use the principle about smoothness versus
decay at infinity together with the Fourier inversion formula. Assume

ϕ ∈ S (R) and
∫
R
x jϕ(x) dx = 0 for j ∈ {0, 1, 2}. (2)

Then H(ϕ) ∈ L1(R). Indeed, note that, by the differentiation rule, (2)
amounts to ϕ̂(0) = ϕ̂′(0) = ϕ̂′′(0) = 0, so Ĥ(ϕ) = −i sgn(ξ)ϕ̂(ξ) ∈ C2(R)
and then because ϕ̂ ∈ S (R) it is clear that also Ĥ(ϕ) ∈ W2,1(R). Now by
the Fourier inversion formula in S ′ and the differentiation rule,

(
−ix

)jH(ϕ)(x) =
1
2π

Fξ→−x

(
dj

dξj
(
−i sgn(ξ)ϕ̂(ξ)

))
for j = 0, 1, 2, and so x jH(ϕ)(x) ∈ C0(R) by the Riemann-Lebesgue
lemma. Consequently we have for a constant c > 0 that

∣∣H(ϕ)(x)
∣∣ ≤ c

1+x2

for all x ∈ R and so H(ϕ) ∈ L1(R) when (2) holds.
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