B4.4 Fourier Analysis HT22

Lecture 7: Multiplication with moderate C* functions

1. Definition of moderate C* functions
2. Multiplication with moderate C*° functions

3. The convolution of a tempered distribution and a Schwartz test
function is a moderate C* function

4. Approximation and mollification in the tempered context
5. The convolution rule: the basic case

6. Examples

The material corresponds to pp. 27-30 in the lecture notes and should be
covered in Week 4.
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Functions of polynomial growth

Definition A function f: R” — C is said to be of polynomial growth if
there exist constants ¢ > 0 and m € Ny so

m
2

‘f(x)! < c(l + |x|2)

holds for all x € R".
Note: f is of polynomial growth if and only if there exists a polynomial
p(x) € C[x] so |f(x)| < |p(x)| holds for all x € R". As it should be!

Example Let f: R" — C be of polynomial growth. When f is measurable
it is (representative of) a tempered L™ function, and if g: R” — C is a
continuous rapidly decreasing function, then f(x)g(x) is integrable on R".
In particular, we may view f as the tempered distribution ¢ — [5,f¢ dx.
In order to get a function we can multiply on a tempered distribution we
must require that the function is C* and that all its partial derivatives
have polynomial growth.
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Moderate C* functions

Definition A function a: R” — C is said to be a moderate C* function if
it is C*° and it and all its partial derivatives have polynomial growth: for
each multi-indicex a € Nj there exist constants ¢, > 0, m, € Ng so

‘(80‘3) (x)‘ < ca(l + \x\z)Ta
holds for all x € R".
Example Schwartz test functions, polynomials and functions such as

cos p(x), sin p(x), where p(x) € C[x], are moderate C* functions. The

functions

2
R3S x e and R" 3 x s /Xl

are not.
It is clear that a moderate C*° function a: R” — C in particular is a
tempered L*° function and so defines a tempered distribution:

¢ padx.
Rn
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Properties of the set of moderate C* functions

If a, b: R" — C are moderate C* functions, A € C and o € N, then
e a+ Ab (it is a vector space)
e ab (it is an algebra)
e 0% (it is closed under differentiation)

are moderate C°° functions.

The proof is straight forward and left as an exercise.
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The key bound for moderate C* functions
Proposition Let a: R” — C be a moderate C* function. Then the map
L (R") 3 ¢+ ap € S(R")

is linear and . continuous. More precisely we have the following bound:
for all k, I € Ny we have that

Ski(ag) <2'¢(n+1)™ Sy imm,.(0)
holds for all ¢ € .7(R"), where

Cj:=maxcg, Mm;:=maxmg
1B1<! 1B1<!

and the numbers cg > 0, mg € Ny are the numbers in the polynomial
growth condition satisfied by 9”a.
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BN
Proof of key bound

Let o, 8 € Nj be multi-indices with |a| < k, |8] < I. Then for ¢ € .#(R"):
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Proof of key bound and multiplication with moderate C* functions

hence we continue with

e < @3 (7)o ) Sk
v<B
< C(n+1)™2'S )k 1(0)

where we in the last inequality used that > ~<B ( ) = 28l < 2! This is the
required bound and the rest is then clear. O

We then have the obvious adjoint identity:

[ (aoypax= [ ofav)ax

holds for all ¢, v € #(R") that allows us to define au € ./(R") for each
u e ' (R") by the rule

(au, ¢) == (u,a9), ¢ S (R").

It is clear how to define ua and that we have au = va.
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Multiplication with moderate C* functions

As usual because the product is defined by the adjoint identity scheme it

defines a map
S'(R") 5 urs au e S'(R")

that is linear and .#’ continuous. Furthermore, the Leibniz rule holds:
aj (au) = (aja)u + aaju

for each direction 1 < j < n. The proof is straight forward from the
definitions and left as an exercise.

The consistency extends beyond .: when u is a tempered L! function,
then
T, =aTy,

holds. In fact, when u is a tempered measure we have consistency.
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Convolution of a tempered distribution and a Schwartz test function

We defined u x 6 for each u € .#/(R") and 6 € .(R") by the adjoint
identity scheme:

(0%0,0) = (u,00)
for ¢ € /(R"). Hereby the map
SRS ur uxh e ' (R")

is linear and .’ continuous. Furthermore, with the natural definitions we
have u x 6 = 6 * u. But we can say more:

Proposition If u € .7'(R"), 0 € #(R"), then u* 0 is a moderate C*
function and (u * 6)(x) = (u,f0(x — -)) for x € R". Furthermore, for each
multi-index o € N:

O%(ux0) = (0%) %0 = ux (00). (1)
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Convolution of a tempered distribution and a Schwartz test function

Proof. In order to show that v 6 € C*°(R"), that we have the formula
(ux0)(x) = (u,0(x —-)) and the differentiation rule (1) we can proceed as
we did in B4.3. We leave that as an exercise and we then only have to show
that u * 6 is a moderate C* function. In view of (1) it suffices to show
that u * @ has polynomial growth. To do that we invoke the boundedness
property of u. Accordingly we find constants ¢ > 0, k, | € Ny, so

(1, 9)] < €Ska()

holds for all ¢ € .7(R").
For each fixed x € R" we take ¢ = 6(x — -) = (70) in the bound for u
whereby, by virture of the formula for u x 6, we get

‘u * G(X)‘ < C§k7/(9(X — ))

To see that this bound implies polynomial growth we let o, 3 € Nj be
multi-indices with |o| < k, |5 < 1.
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Convolution of a tempered distribution and a Schwartz test function

For x, y € R" we estimate as follows using the binomial formula:

y“9,6(x — y)|

<

IA

<

(y = x+x)*(0°0)(x — y)

% <:> (x — ) (9%0) (x — y)| x>
£ (9)s01 2500 2 (3

SO TTA + 1) < Ska(0) (1 + Ix])

Jj=1

Sii(0)(1+x))* < 225,,(6) (1 + |x)

k
2

_ K
and consequently |u* f(x)| < c2§5k7,(0)(1 + |x[?)2 for all x € R" as

required.
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Approximation and mollification in the tempered context

We saw in B4.3 that many results about distributions could be established
by first proving them for C* functions and then use mollification to
transfer them to distributions. We can also use this technique for tempered
distributions. Recall the standard mollifier (pg)5>0 on R". We then have

Proposition If u € .'(R"), then p. x u is a moderate C* function and
pe*xu—u in S (R")
as € \,0.

Proof. We have more or less already proved it. That p. * u is a moderate
C* function follows from the previous result and to prove the convergence
we just need to observe that, because u is . continuous, for ¢ € .#(R"),

pe k= ¢ in F(R")

as ¢ \, 0. But this was established in example 3 of lecture 3. O
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Approximation and mollification in the tempered context

As in B4.3 we can go one step further and approximate a tempered
distribution by test functions from Z(R"). For that we must combine
mollification with truncation: simply multiply the mollified distribution by
cut-off functions that equal 1 on increasingly large balls.

Proposition Let u € .7/(R"). Then there exists a sequence (u;) in
Z(R") such that
ui— u in S(R")

as j — oo.
We leave the proof as an exercise. Note that we in particular have that
uj € Z(R"), and so, just as in B4.3, we can think of the extension of a

linear map T: .7 (R") — #(R") to T: ' (R") — .#'(R") by use of the
adjoint identity scheme as an extension of T by ./ continuity.
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The convolution rule: the basic case
Proposition Let u € ./(R") and 0 € .(R"). Then
ux0=100 and ub = (2r) "G % .
Proof. By definition we have for ¢ € .Z(R"): <m, ¢) = (u,0 $> We

can now use results for Schwartz test functions (FIF = Fourier inversion
formula on . and CR = convolution rule on .¥):

<ﬁ\9, ) = 2m)” "(u, 0 % ¢)
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The convolution rule: the basic case—proof continued...

For the second part we apply the just established result to o € ./(R"),

6 € .#(R") whereby we find (FIFs = Fourier inversion formulas in .# and
in .'):

)
*
<)
|
£y

and so by FIFs again we arrive at U * o= (27r) "u6. The proof is finished. [J
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Example The Hilbert transform is defined for each ¢ € .#(R) as

woy= () o) =tim( [+ [7)E0Y

We know that hereby 7{(¢) is a moderate C* function, so that in
particular H: 7(R) — /(R) is linear. It is the most basic example of a
singular integral operator. What can we say about the decay of H(¢) at
infinity and is it integrable?

We can use the convolution rule and Example 1 from lecture 6 to find its
Fourier transform:

H(9) = —isgn(€)(¢).

When qﬁ = [z dx # 0, then it is discontinuous at £ = 0 and so in that
case H(¢p ) ¢ LY(R) by the Riemann-Lebesgue lemma.

But can we get positive results?
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The Hilbert transform

To get positive results we can use the principle about smoothness versus
decay at infinity together with the Fourier inversion formula. Assume

6 € #(R) and /ijqﬁ(x) dx =0 for j € {0,1,2}. )

Then H(¢) € LY(R). Indeed, note that, by the differentiation rule, (2)

amounts to ¢(0) = ¢'(0) = ¢"(0) =0, so @ = —isgn(&)p(€) € C3(R)
and then because ¢ € .%(R) it is clear that also H(¢) € W2(R). Now by
the Fourier inversion formula in .’ and the differentiation rule,

(—ix) H(¢)(x) = %f@fx <£Z(—isgn(§)$(§))>

for j =0, 1, 2, and so x)H($)(x) € Co(R) by the Riemann-Lebesgue
lemma. Consequently we have for a constant ¢ > 0 that |H(¢)(x)| < T
for all x € R and so H(¢) € L(R) when (2) holds.
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