B4.4 Fourier Analysis HT22

Lecture 9: L 2 based Sobolev spaces and the general convolution rule

1. L^{2} based Sobolev spaces
2. A special case of the Sobolev embedding theorem
3. The Fourier transform of a compactly supported distribution
4. The general convolution rule
5. Representation in terms of Bessel kernel

The material corresponds to pp. 33-38 in the lecture notes and should be covered in Week 5.

Another look at Sobolev spaces

An often used approach when solving PDEs and related equations is to first find a distributional or weak (meaning generalized) solution by use of general principles. For instance, when it is a linear PDE with constant coefficients we could attempt to do it using the Fourier transform. But often we expect the solution is more regular and not just a general distribution. A convenient way to quantify regularity of distributions is by use of Sobolev spaces. Recall that we defined for $k \in \mathbb{N}_{0}$ and $p \in[1, \infty]$,

$$
\mathrm{W}^{k, p}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathrm{~L}^{p}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in \mathrm{~L}^{p}\left(\mathbb{R}^{n}\right) \text { for each }|\alpha| \leq k\right\},
$$

and the local variant

$$
\mathrm{W}_{\mathrm{loc}}^{k, p}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathrm{~L}_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in \mathrm{~L}_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right) \text { for each }|\alpha| \leq k\right\} .
$$

In fact, we defined these spaces on each open subset Ω of \mathbb{R}^{n}.

L^{2} based Sobolev spaces

These correspond to taking the exponent $p=2$:

$$
\mathrm{W}^{k, 2}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right) \text { for each }|\alpha| \leq k\right\}
$$

and

$$
\mathrm{W}_{\mathrm{loc}}^{k, 2}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathrm{~L}_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in \mathrm{~L}_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n}\right) \text { for each }|\alpha| \leq k\right\}
$$

The former is equipped with the inner product

$$
(u, v)_{\mathrm{W}^{k, 2}}:=\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left(\partial^{\alpha} u\right)(x) \overline{\left(\partial^{\alpha} v\right)(x)} \mathrm{d} x
$$

and corresponding norm $\|u\|_{\mathrm{W}^{k, 2}}=\sqrt{(u, u)_{\mathrm{W}^{k, 2}}}$. Because it is complete in the corresponding metric it is an example of a Hilbert space. If you follow Functional Analysis $1 \& 2$ you will have seen some of their general theory already. Here we will not use this abstract viewpoint.

L^{2} based Sobolev spaces

We can characterize the Sobolev space $\mathrm{W}^{k, 2}\left(\mathbb{R}^{n}\right)$ by use of the Fourier transform. Using the Plancherel theorem and then the differentiation rule we calculate for $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$:

$$
\begin{aligned}
\|\phi\|_{\mathrm{W}^{k, 2}}^{2} & =\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} \phi\right|^{2} \mathrm{~d} x \\
& =(2 \pi)^{n} \sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\widehat{\partial^{\alpha} \phi}\right|^{2} \mathrm{~d} \xi \\
& =(2 \pi)^{n} \sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|(\mathrm{i} \xi)^{\alpha} \widehat{\phi}(\xi)\right|^{2} \mathrm{~d} \xi \\
& =(2 \pi)^{n} \int_{\mathbb{R}^{n}}\left(\sum_{|\alpha| \leq k}\left|\xi^{\alpha}\right|^{2}\right)|\widehat{\phi}|^{2} \mathrm{~d} \xi .
\end{aligned}
$$

L^{2} based Sobolev spaces

Here we record the inequality

$$
n^{1-k}|\xi|^{2 k} \leq \sum_{|\alpha|=k}\left|\xi^{\alpha}\right|^{2} \leq|\xi|^{2 k} \quad(k \in \mathbb{N})
$$

and consequently

$$
\begin{equation*}
(2 n)^{1-k}\left(1+|\xi|^{2}\right)^{k} \leq \sum_{|\alpha| \leq k}\left|\xi^{\alpha}\right|^{2} \leq\left(1+|\xi|^{2}\right)^{k} \tag{1}
\end{equation*}
$$

It follows that the Sobolev norm $\|\cdot\|_{W^{k, 2}}$ is equivalent to the norm

$$
\|\phi\|_{\mathrm{H}^{k}}=\left\|\left(1+|\xi|^{2}\right)^{\frac{k}{2}} \widehat{\phi}\right\|_{2} .
$$

The norm $\|\cdot\|_{H^{k}}$ also derives from an inner product, namely

$$
(\phi, \psi)_{\mathrm{H}^{k}}=\int_{\mathbb{R}^{n}} \widehat{\phi}(\xi) \overline{\widehat{\psi}(\xi)}\left(1+|\xi|^{2}\right)^{k} \mathrm{~d} \xi
$$

L^{2} based Sobolev spaces

As indicated in the notation for the norm and inner product one often denotes

$$
\mathrm{H}^{k}\left(\mathbb{R}^{n}\right):=\left\{u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right):\left(1+|\xi|^{2}\right)^{\frac{k}{2}} \widehat{u} \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

By the equivalence of the norms $\|\cdot\|_{\mathrm{W}^{k, 2}}$ and $\|\cdot\|_{\mathrm{H}^{k}}$ on $\mathscr{S}\left(\mathbb{R}^{n}\right)$ it follows that

$$
\mathrm{H}^{k}\left(\mathbb{R}^{n}\right)=\mathrm{W}^{k, 2}\left(\mathbb{R}^{n}\right)
$$

and that the norms remain equivalent in this wider context. Exercise: Prove it using mollification.

Example If $u, \Delta u \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$, then $u \in \mathrm{H}^{2}\left(\mathbb{R}^{n}\right)$. The proof is another application of the Plancherel theorem and the diffeentiation rule (see lecture notes for details).

L^{2} based Sobolev spaces

Definition Sobolev spaces of order $s \in \mathbb{R}$ are defined as

$$
\mathrm{H}^{s}\left(\mathbb{R}^{n}\right):=\left\{u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right):\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{u} \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

and equipped with the inner product

$$
(u, v)_{\mathrm{H}^{s}}=\int_{\mathbb{R}^{n}} \widehat{u}(\xi) \overline{\widehat{v}(\xi)}\left(1+|\xi|^{2}\right)^{s} \mathrm{~d} \xi
$$

and corresponding norm $\|u\|_{\mathrm{H}^{s}}:=\sqrt{(u, u)_{\mathrm{H}^{s}}}$.
Remark Note that $H^{0}\left(\mathbb{R}^{n}\right)=\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$ and that the scale is nested: when $s<t$, then

$$
\mathrm{H}^{t}\left(\mathbb{R}^{n}\right)<\mathrm{H}^{s}\left(\mathbb{R}^{n}\right)
$$

To see the latter observe that $\left(1+|\xi|^{2}\right)^{s} \leq\left(1+|\xi|^{2}\right)^{t}$ holds for all $\xi \in \mathbb{R}^{n}$ and therefore that

$$
\|u\|_{\mathrm{H}^{s}} \leq\|u\|_{\mathrm{H}^{t}}
$$

when $u \in \mathrm{H}^{t}\left(\mathbb{R}^{n}\right)$.

A special case of the Sobolev embedding theorem

The regularity of tempered distributions in $H^{s}\left(\mathbb{R}^{n}\right)$ increases with $s \in \mathbb{R}$. An instance of this is documented in the following

Proposition Let $u \in \mathrm{H}^{s}\left(\mathbb{R}^{n}\right)$ and assume $s>\frac{n}{2}$. Then $u \in \mathrm{C}^{k}\left(\mathbb{R}^{n}\right)$ for each $k \in \mathbb{N}_{0}$ with $k<s-\frac{n}{2}$. In fact, $\partial^{\alpha} u \in \mathrm{C}_{0}\left(\mathbb{R}^{n}\right)$ for each $|\alpha|<s-\frac{n}{2}$.

Proof. The proof goes via the Plancherel theorem, the differentiation rule, the Fourier inversion formula and the Riemann-Lebesgue lemma. The assumption $u \in H^{s}\left(\mathbb{R}^{n}\right)$ amounts to

$$
u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) \text { and }\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{u} \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)
$$

Because $s>0$ this implies in particular that $\hat{u} \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$: note that $\left(1+|\xi|^{2}\right)^{-\frac{s}{2}}$ is a bounded C^{∞} function and so

$$
\widehat{u}=\left(1+|\xi|^{2}\right)^{-\frac{s}{2}}\left(\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{u}\right) \in \mathrm{L}^{2}\left(\mathbb{R}^{n}\right)
$$

A special case of the Sobolev embedding theorem-proof continued...

Fix a multi-index α of length $|\alpha|<s-\frac{n}{2}$. By the differentiation rule $\widehat{\partial^{\alpha} u}=(\mathrm{i} \xi)^{\alpha} \widehat{u}$. Now

$$
\left|\xi^{\alpha}\right|=\prod_{j=1}^{n}\left|\xi_{j}\right|^{\alpha_{j}} \leq \prod_{j=1}^{n}|\xi|^{\alpha_{j}}=|\xi|^{|\alpha|} \leq\left(1+|\xi|^{2}\right)^{\frac{|\alpha|}{2}}
$$

for all $\xi \in \mathbb{R}^{n}$. Consequently

$$
\begin{aligned}
\left|\xi^{\alpha} \widehat{u}(\xi)\right| & \leq\left(1+|\xi|^{2}\right)^{\frac{|\alpha|}{2}}|\widehat{u}(\xi)| \\
& =\left(1+|\xi|^{2}\right)^{\frac{|\alpha|-s}{2}}\left(\left(1+|\xi|^{2}\right)^{\frac{s}{2}}|\widehat{u}(\xi)|\right)
\end{aligned}
$$

Integrate over $\xi \in \mathbb{R}^{n}$ and use the Cauchy-Schwarz inequality to estimate.

A special case of the Sobolev embedding theorem-proof continued...

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|\xi^{\alpha} \widehat{u}(\xi)\right| \mathrm{d} \xi & \leq\left\|\left(1+|\cdot|^{2}\right)^{\frac{|\alpha|-s}{2}}\right\|_{2}\left\|\left(1+|\cdot|^{2}\right)^{\frac{s}{2}}|\widehat{u}|\right\|_{2} \\
& =\left\|\left(1+|\cdot|^{2}\right)^{\frac{|\alpha|-s}{2}}\right\|_{2}\|u\|_{\mathrm{H}^{s}}
\end{aligned}
$$

The right-hand side is finite since by integration in polar coordinates:

$$
\left\|\left(1+|\cdot|^{2}\right)^{\frac{|\alpha|-s}{2}}\right\|_{2}^{2}=\omega_{n-1} \int_{0}^{\infty} \frac{r^{n-1}}{\left(1+r^{2}\right)^{s-|\alpha|}} \mathrm{d} r .
$$

Here the exponent $n-1-2(s-|\alpha|)=2\left(|\alpha|-\left(s-\frac{n}{2}\right)\right)-1<-1$ so the integral converges, and thus $\widehat{\partial^{\alpha} u} \in \mathrm{~L}^{1}\left(\mathbb{R}^{n}\right)$. Using the Fourier inversion formula in \mathscr{S}^{\prime} we get

$$
\partial^{\alpha} u=(2 \pi)^{-n} \widetilde{\mathcal{F}}\left(\widehat{\partial^{\alpha} u}\right)
$$

and so $\partial^{\alpha} u \in C_{0}\left(\mathbb{R}^{n}\right)$ by Riemann-Lebesgue.

The Fourier transform of a compactly supported distribution

Proposition Let $v \in \mathscr{E}^{\prime}\left(\mathbb{R}^{n}\right)$. Then \widehat{v} is a moderate C^{∞} function and

$$
\widehat{v}(\xi)=\left\langle v, \mathrm{e}^{-\mathrm{i} \xi \cdot(\cdot)}\right\rangle .
$$

Proof. Take $\chi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ so $\chi=1$ near $\operatorname{supp}(v)$. Then we have $\chi v=v$. To check this simply calculate for $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$,

$$
\langle v, \phi\rangle=\langle v, \chi \phi+(1-\chi) \phi\rangle=\langle v, \chi \phi\rangle=\langle\chi v, \phi\rangle
$$

since $(1-\chi) \phi=0$ near $\operatorname{supp}(v)$. But then from previous results we get that $\widehat{v}=(2 \pi)^{-n} \widehat{v} * \widehat{\chi}$ is a moderate C^{∞} function and

$$
\widehat{v}(\xi)=(2 \pi)^{-n}(\widehat{v} * \widehat{\chi})(\xi)=(2 \pi)^{-n}\langle\widehat{v}, \widehat{\chi}(\xi-\cdot)\rangle .
$$

The Fourier transform of a compactly supported distribution-proof continued..

Here

$$
\begin{aligned}
\widehat{v}(\xi)=(2 \pi)^{-n}\langle\widehat{v}, \widehat{\chi}(\xi-\cdot)\rangle & =(2 \pi)^{-n}\langle\widehat{v}, \widetilde{\widehat{\chi}}(\cdot-\xi)\rangle \\
& \stackrel{\text { FIF }}{=}(2 \pi)^{-2 n}\left\langle\widehat{v}, \mathcal{F}^{3} \chi(\cdot-\xi)\right\rangle \\
& =(2 \pi)^{-2 n}\left\langle\widehat{v}, \tau_{-\xi} \mathcal{F}^{3} \chi\right\rangle \\
& =(2 \pi)^{-2 n}\left\langle v, \mathrm{e}^{-\mathrm{i} \xi \cdot(\cdot)} \mathcal{F}^{4} \chi\right\rangle \\
& \stackrel{\text { FIF }}{=}\left\langle v, \mathrm{e}^{-\mathrm{i} \xi \cdot(\cdot)} \chi\right\rangle \\
& =\left\langle v, \mathrm{e}^{-\mathrm{i} \xi \cdot(\cdot)}\right\rangle
\end{aligned}
$$

concluding the proof.
FIF $=$ Fourier inversion formula in \mathscr{S}^{\prime}

The general convolution rule

Theorem Let $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right), v \in \mathscr{E}^{\prime}\left(\mathbb{R}^{n}\right)$. Then $u * v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\widehat{u * v}=\widehat{u v} . \tag{2}
\end{equation*}
$$

Proof. We prove the result by use of mollification and the basic convolution rule. First recall from B4.3 that $u * v$ is defined by the rule

$$
\langle u * v, \phi\rangle=\langle u, \widetilde{v} * \phi\rangle, \quad \phi \in \mathscr{D}\left(\mathbb{R}^{n}\right) .
$$

For the standard mollifier $\left(\rho_{\varepsilon}\right)_{\varepsilon>0}$ we have that $v_{\varepsilon}:=\rho_{\varepsilon} * v \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and by the basic convolution and the dilation rules

$$
\widehat{v_{\varepsilon}}=\widehat{\rho_{\varepsilon}} \widehat{v}=d_{\varepsilon} \widehat{\rho} \widehat{v} .
$$

Here we have for $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ that $d_{\varepsilon} \widehat{\rho} \phi \rightarrow \phi$ in $\mathscr{S}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \searrow 0$. [Exercise: Check it.]

The general convolution rule - proof continued...

Another use of the basic convolution rule yields

$$
\widehat{u * v_{\varepsilon}}=\widehat{u} \widehat{v}_{\varepsilon}=\widehat{u} \widehat{v} d_{\varepsilon} \widehat{\rho}
$$

and we note that $\widehat{u} \widehat{v} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ since \widehat{v} is a moderate C^{∞} function. Next, for $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ we get as $\varepsilon \searrow 0$,

$$
\left\langle\widehat{u * v_{\varepsilon}}, \phi\right\rangle=\left\langle\widehat{u} \widehat{v}, d_{\varepsilon} \widehat{\rho} \phi\right\rangle \rightarrow\langle\widehat{u} \widehat{v}, \phi\rangle .
$$

From the Fourier inversion formula in \mathscr{S}^{\prime} and \mathscr{S}^{\prime} continuity of the Fourier transform, $u * v_{\varepsilon} \rightarrow \mathcal{F}^{-1}(\widehat{u} \widehat{v})$ in $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \searrow 0$. But we also have from B4.3 that $u * v_{\varepsilon} \rightarrow u * v$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \searrow 0$, so $\langle u * v, \phi\rangle=\left\langle\mathcal{F}^{-1}(\widehat{u} \widehat{v}), \phi\right\rangle$ for $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$. Because the right-hand side is a tempered distribution and because $\mathscr{D}\left(\mathbb{R}^{n}\right)$ is \mathscr{S} dense in $\mathscr{S}\left(\mathbb{R}^{n}\right)$ it follows that $u * v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and (2) holds. This concludes the proof.

Exercise: Show that $v * \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ when $v \in \mathscr{E}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. Use this to give another proof of the general convolution rule.

An extension of the convolution product

Definition Let $u, v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and assume that \widehat{v} is a moderate C^{∞} function. We then define the convolution $u * v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ by the rule

$$
u * v:=\mathcal{F}^{-1}(\widehat{u} \widehat{v})
$$

Remarks It is an extension because \widehat{v} can be a moderate C^{∞} function also when the support of v is not compact. Also note that the general convolution rule ensures it is a consistent extension of the convolution product defined for $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $v \in \mathscr{E}^{\prime}\left(\mathbb{R}^{n}\right)$.
With the obvious definition of $v * u$, we have $u * v=v * u$. Furthermore using the rules for the Fourier transform we can also show

$$
\partial^{\alpha}(u * v)=\left(\partial^{\alpha} u\right) * v=u *\left(\partial^{\alpha} v\right)
$$

remains true for any multi-index $\alpha \in \mathbb{N}_{0}$.

L^{2} based Sobolev spaces: representation using Bessel kernel

We defined for each $s \in \mathbb{R}$ the Sobolev space of order s by

$$
\mathrm{H}^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right):\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{u} \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

The function $\xi \mapsto\left(1+|\xi|^{2}\right)^{-\frac{s}{2}}$ is a moderate C^{∞} function and its inverse Fourier transform

$$
g_{s}:=\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\left(1+|\xi|^{2}\right)^{-\frac{5}{2}}\right)
$$

is called the Bessel kernel of order s. By the extended convolution rule and the Fourier inversion formula we have for $u \in \mathrm{H}^{s}\left(\mathbb{R}^{n}\right)$ that

$$
u=\mathcal{F}^{-1}\left(\left(1+|\xi|^{2}\right)^{-\frac{s}{2}}\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{u}\right)=g_{s} * \mathcal{F}^{-1}\left(\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{u}\right)
$$

Therefore

$$
\mathrm{H}^{s}\left(\mathbb{R}^{n}\right)=\left\{g_{s} * f: f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

and this is why these spaces are also known as Bessel potential spaces.

Bessel potential spaces with exponent p [Not examinable]
Let $s \in \mathbb{R}$ and $p \in(1, \infty)$. The corresponding Bessel potential space is then defined as

$$
\mathrm{H}^{s, p}\left(\mathbb{R}^{n}\right):=\left\{g_{s} * f: f \in \mathrm{~L}^{p}\left(\mathbb{R}^{n}\right)\right\}
$$

equipped with the norm $\|u\|_{H^{s, p}}:=\|f\|_{p}$.
Theorem on Bessel potentials: When $k \in \mathbb{N}_{0}$ and $p \in(1, \infty)$ we have $\mathrm{H}^{k, p}\left(\mathbb{R}^{n}\right)=\mathrm{W}^{k, p}\left(\mathbb{R}^{n}\right)$.

The Trace Theorem: The trace operator $\operatorname{Tr}: \mathscr{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{S}\left(\mathbb{R}^{n-1} \times\{0\}\right)$ is defined by $\operatorname{Tr}(\phi):=\phi\left(x^{\prime}, 0\right), x^{\prime} \in \mathbb{R}^{n-1}$. If $k \in \mathbb{N}, p \in(1, \infty)$ and $k>\frac{1}{p}$, then the trace operator extends by continuity to a continuous linear and surjective map

$$
\operatorname{Tr}: \mathrm{H}^{k, p}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{H}^{k-\frac{1}{p}, p}\left(\mathbb{R}^{n-1}\right)
$$

