
B4.4 Fourier Analysis HT22

Lecture 11: The Paley-Wiener theorem for compactly supported
distributions

1. The Fourier transform of a compactly supported distribution
2. The Fourier-Laplace transform
3. A qualitative uncertainty principle
4. Nonexistence of compactly supported fundamental solutions
5. The Paley-Wiener theorem for distributions
6. An application

The material corresponds to pp. 41–45 in the lecture notes and should be
covered in Week 6.
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The Fourier transform of a compactly supported distribution

For u ∈ E ′(Rn) its Fourier transform is defined as the distribution⟨
û, ϕ

⟩
:=

⟨
u, ϕ̂

⟩
, ϕ ∈ S (Rn).

In lecture 9 we saw that û is a moderate C∞ function given by the formula

û(ξ) = ⟨u, e−iξ·(·)⟩ , ξ ∈ Rn.

Here the right-hand side means that u acts on the C∞ function x 7→ e−iξ·x .
Recall from B4.3 that each compactly supported distribution u admits a
unique extension to a linear functional defined on C∞ functions and
satisfying the boundedness property: for each compact neighbourhood K of
supp(u) there exist c = cK ≥ 0, m = mK ∈ N0 such that∣∣⟨u, ϕ⟩∣∣ ≤ c

∑
|α|≤m

sup
K

∣∣∂αϕ
∣∣ (1)

holds for all ϕ ∈ C∞(Rn).
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The Fourier transform of a compactly supported distribution

Evidently the function x 7→ e−iζ·x remains a C∞ function for ζ ∈ Cn and
we may still consider

û(ζ) = ⟨u, e−iζ·(·)⟩
for such ζ ∈ Cn. This extension of the Fourier transform, denoted again by
û, is also here called the Fourier-Laplace transform of u. We will show that
it is an entire function. Write ζ = ξ + iη ∈ Cn and consider the
Fourier-Laplace transform of u as a function of the 2n real variables (ξ, η),
û = û(ξ, η) : R2n → C.

Claim. û(ξ, η) is a C1 function of (ξ, η) ∈ R2n and we may calculate its
partial derivatives by differentiation behind the distribution sign.

To show it we consider û as a function of one the variables, say ξj , while
keeping the other variables fixed. For an increment h ∈ R \ {0} we have

û(ζ + hej)− û(ζ)

h
=

⟨
u,

e−i(ζ+hej )·(·) − e−iζ·(·)

h

⟩
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The Fourier transform of a compactly supported distribution

Here

∆h(x) :=
e−i(ζ+hej )·x − e−iζ·x

h
→ −ixje−iζ·x as h → 0

locally uniformly in x ∈ Rn. Likewise, we have for any multi-index α ∈ Nn
0

that
∂α
x ∆h(x) → −ixje−iζ·x(−iζ

)α as h → 0

locally uniformly in x ∈ Rn. In combination with the boundedness property
(1) of u this yields

û(ζ + hej)− û(ζ)

h
→

⟨
u,

∂

∂ξj
e−iζ·(·)

⟩
as h → 0.

Using the boundedness property (1) again we see that the partial derivative
∂ξj û(ζ) is a continuous function of ζ. The same argument applies to the
remaining 2n − 1 real variables and so we have established the validity of
claim.

Lecture 11 (B4.4) HT22 4 / 18



The Fourier transform of a compactly supported distribution

We can now check that û satisfies the Cauchy-Riemann equation with
respect to each of the variables ζj , where ζ =

(
ζ1, . . . , ζn

)
∈ Cn:

∂

∂ζ j
û(ζ) =

⟨
u,

∂

∂ζ j
e−iζ·(·)

⟩
= 0,

hence û is a holomorphic function of ζj , and since 1 ≤ j ≤ n was arbitrary
we have shown that û is an entire function on Cn. We have shown:

The Fourier transform of a compactly supported distribution u ∈ E ′(Rn)
extends to Cn as an entire function called the Fourier-Laplace transform of
u.

This result allows us to give a short proof of a qualitative uncertainty
principle.
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A qualitative uncertainty principle

Proposition If u ∈ E ′(Rn) and û ∈ E ′(Rn), then u = 0.

Proof. Because u has compact support, the Fourier-Laplace transform
û : Cn → C is entire, and because the Fourier transform û has compact
support we can find r > 0 so supp(û) ⊂ [−r , r ]n. Now fix
ξ0 ∈ Rn−1 × {0} ⊂ Rn and consider the entire function

C ∋ ζn 7→ û(ξ0 + ζnen) , where (ej)
n
j=1 is the standard basis for Cn.

This function vanishes when ζn ∈ R \ [−r , r ], and so by the identity
theorem for holomorphic functions it must vanish identically:

û(ξ0 + ζnen) = 0

for all ζn ∈ C. Because ξ0 ∈ Rn−1 × {0} was arbitrary we have shown that
the Fourier transform û(ξ) = 0 for all ξ ∈ Rn. But then u = 0 by the
Fourier inversion formula in S ′. □
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Nonexistence of compactly supported fundamental solutions

Recall from B4.3 that a fundamental solution to a linear differential
operator with constant coefficients

p(∂) =
∑
|α|≤m

cα∂
α

is any distribution E ∈ D ′(Rn) satisfying p(∂)E = δ0 in D ′(Rn).

A fundamental solution for a differential operator of order at least one is
never compactly supported:

We proceed by contradiction and assume E ∈ E ′(Rn) and p(∂)E = δ0. We
can then Fourier transform the equation. Using the differentiation rule we
get

p(iξ)Ê = 1 in S ′(Rn).
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Nonexistence of compactly supported fundamental solutions

Here Ê is a moderate C∞ function on Rn that admits an extension to Cn

as an entire function, so, by the identity theorem for holomorphic functions,
we still have

p(iζ)Ê (ζ) = 1 on Cn.

Because p(iζ) is a polynomial of degree at least one, we can find ζ0 ∈ Cn

and 1 ≤ j ≤ n such that C ∋ ζj 7→ p(i(ζ0 + ζjej)) is a polynomial of degree
at least one. It therefore has a zero in C and because

p
(
i(ζ0 + ζjej)

)
Ê (ζ0 + ζjej) = 1 for all ζj ∈ C

it follows that the holomorphic function ζj 7→ Ê (ζ0 + ζjej) must have a
singularity in C. A contradiction proving the claim.
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The Fourier transform of a compactly supported distribution

We return to the Fourier-Laplace transform û of u ∈ E ′(Rn). As we did
when considering the Fourier transform of a compactly supported test
function we now want to derive a boundedness property for the
Fourier-Laplace transform.

Take R ≥ 0 so that u is supported in BR(0). For the standard mollifier(
ρε
)
ε>0 on Rn we put

χ = χε := ρε ∗ 1BR+ε(0).

Then χ = 1 on BR(0), it has support BR+2ε(0) and we have

u = χu

Using the formula for the Fourier-Laplace transform we then get

û(ζ) =
⟨
u, χe−iζ·(·)⟩
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The Fourier transform of a compactly supported distribution

We estimate now the Fourier-Laplace transform using the boundedness
property (1) corresponding to the compact set K = BR+1(0):∣∣û(ζ)∣∣ =

∣∣∣∣⟨u, χe−iζ·(·)⟩∣∣∣∣
≤ c

∑
|α|≤m

sup
BR+1(0)

∣∣∂α
(
χe−iζ·(·))∣∣

≤ c
∑
|α|≤m

∑
γ≤α

(
α

γ

)
sup

x∈BR+1(0)

∣∣e−iζ·x(−iζ
)α−γ

∂γχ(x)
∣∣

≤ c
∑
|α|≤m

∑
γ≤α

(
α

γ

)
sup

x∈BR+1(0)

∣∣∂γχ(x)
∣∣e(R+2ε)|η||ζα−γ |

Here we have∣∣∂γχ(x)
∣∣ = ε−|γ|∣∣((∂γρ)ε ∗ 1BR+ε(0)

)
(x)

∣∣ ≤ ε−|γ|∥∂γρ∥1
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The Fourier transform of a compactly supported distribution

Therefore we get∣∣û(ζ)∣∣ ≤ ce(R+2ε)|η|
∑
|α|≤m

∑
γ≤α

(
α

γ

)
ε−|γ|∥∂γρ∥1|ζα−γ |

Put C := max|γ|≤m ∥∂γρ∥1, whereby∣∣û(ζ)∣∣ ≤ cCe(R+2ε)|η|
∑
|α|≤m

∑
γ≤α

(
α

γ

)
ε−|γ||ζα−γ |

= cCe(R+2ε)|η|
∑
|α|≤m

n∏
j=1

(
ε−1 + |ζj |

)αj

≤ cCe(R+2ε)|η|
∑
|α|≤m

(
ε−1 + (1 + |ζ|2)

1
2
)|α|

Here we take corresponding to ζ ∈ Cn,

ε =
(
1 + |ζ|2

)− 1
2 ∈ (0, 1].
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The Fourier transform of a compactly supported distribution

If
ε =

(
1 + |ζ|2

)− 1
2 ∈ (0, 1],

then
e(R+2ε)|η| ≤ eR|η|+2

and for |α| ≤ m, (
ε−1 + (1 + |ζ|2)

1
2
)|α| ≤ 2m

(
1 + |ζ|2

)m
2 .

Hereby we arrive at ∣∣û(ζ)∣∣ ≤ C0
(
1 + |ζ|2

)m
2 eR|η|

for all ζ = ξ + iη ∈ Cn, where C0 := cCe22m
∑

|α|≤m 1. This is the
boundedness property for the Fourier-Laplace transform of a distribution
supported in BR(0).

Lecture 11 (B4.4) HT22 12 / 18



The Paley-Wiener theorem for compactly supported distributions

(1) If u ∈ E ′(Rn) is of order m ∈ N0 and supp(u) ⊆ BR(0), then the
Fourier-Laplace transform û is an entire function on Cn given by

û(ζ) =
⟨
u, e−iζ·(·)⟩ , ζ ∈ Cn

and satisfying the boundedness condition∣∣û(ζ)∣∣ ≤ c
(
1 + |ζ|2

)m
2 eR|η|

for all ζ = ξ + iη ∈ Cn, where c ≥ 0 is a constant.

(2) If Φ: Cn → C is an entire function satisfying for some constants c ≥ 0,
m ∈ N0 and R ≥ 0 the boundedness condition∣∣Φ(ζ)∣∣ ≤ c

(
1 + |ζ|2

)m
2 eR|η|

for all ζ = ξ + iη ∈ Cn, then there exists a unique u ∈ E ′(Rn) whose
Fourier-Laplace transform is Φ. Furthermore, u is supported in BR(0) and
has order at most m + n + 1.
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The Paley-Wiener theorem–proof of (2)

We only give the proof for n = 1 [the proof in the case n > 1 is not
examinable].

Define φ := Φ|R. Then φ ∈ C∞(R) and because of the boundedness
condition satisfied by Φ we have∣∣φ(ξ)∣∣ ≤ c

(
1 + |ξ|2

)m
2

for all ξ ∈ R, so that φ is a tempered L∞ function and so in particular
φ ∈ S ′(R). We can then by the Fourier inversion formula in S ′ define

u := F−1φ ∈ S ′(R).

For the standard mollifier
(
ρε
)
ε>0 on R we put uε := ρε ∗ u. Then uε is a

moderate C∞ function and by the convolution and dilation rules,

ûε = ρ̂εû = dερ̂û.
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The Paley-Wiener theorem–proof of (2)

Here dερ̂(ξ) = ρ̂(εξ) and ρ̂ can by Paley-Wiener for test functions be
extended to C as an entire function, hence so can ûε:

ûε(ζ) = ρ̂(εζ)Φ(ζ).

Furthermore, ρ̂ satisfies the boundedness condition given in Paley-Wiener
for test functions: for any k ∈ N0 we find a constant ck+m ≥ 0 such that∣∣ρ̂(εζ)∣∣ ≤ ck+m

(
1 + |εζ|2

)− k+m
2 eε|η|

holds for all ζ = ξ + iη ∈ C. Combine this with the boundedness condition
we assume for Φ to get for ζ = ξ + iη ∈ C:

∣∣ûε(ζ)∣∣ ≤ ck+mc

(
1 + |ζ|2

)m
2(

1 + |εζ|2
) k+m

2
e(R+ε)|η|
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The Paley-Wiener theorem–proof of (2)

Here we have for ε ∈ (0, 1) and ζ = ξ + iη ∈ C that(
1 + |εζ|2

) k+m
2 = εk+m

(
ε−2 + |ζ|2

) k+m
2 ≥ εk+m

(
1 + |ζ|2

) k+m
2

and therefore ∣∣ûε(ζ)∣∣ ≤ ck+mcε
−k−m

(
1 + |ζ|2

)− k
2 e(R+ε)|η|

Note that we have shown validity of this bound for each k ∈ N0. But then
Paley-Wiener for test functions yields ϕε ∈ D(R) supported in
[−R − ε,R + ε] with Fourier-Laplace transform ϕ̂ε = ûε. But then uε = ϕε

follows from the Fourier inversion formula in S ′, that is, we have shown
that uε ∈ D(R) is supported in [−R − ε,R + ε]. Now we have clearly also
that uε → u in S ′(R) as ε ↘ 0 and it is not difficult to see that this
implies that u is supported in [−R,R] (check it as an exercise). □
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Paley-Wiener bounds

We have encountered many different boundedness conditions during B4.3
and this course. It is useful to distinguish some of them with special
names. Henceforth we will refer to the boundedness conditions in the
Paley-Wiener theorems as Paley-Wiener bounds. More precisely:
Let Φ: Cn → C be an entire function.

Φ satisfies a strong Paley-Wiener bound provided we can find R ≥ 0 with
the property that for each m ∈ N0 there exists cm ≥ 0 such that∣∣Φ(ζ)∣∣ ≤ cm

(
1 + |ζ|2

)−m
2 eR|η| (2)

holds for all ζ = ξ + iη ∈ Cn.

Φ satisfies a weak Paley-Wiener bound provided we can find R ≥ 0, c ≥ 0
and m ∈ N0 such that ∣∣Φ(ζ)∣∣ ≤ c

(
1 + |ζ|2

)m
2 eR|η| (3)

holds for all ζ = ξ + iη ∈ Cn.
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Compactly supported distributions are Sobolev

Example Let v ∈ E ′(Rn). Then v ∈ Hs(Rn) for some s ∈ R.

Recall that u ∈ Hs(Rn) provided

u ∈ S ′(Rn) and
(
1 + |ξ|2

) s
2 û ∈ L2(Rn).

Now by Paley-Wiener the Fourier-Laplace transform û satisfies a weak
Paley-Wiener bound, and more precisely we saw that if v is supported in
BR(0) and has order at most m ∈ N0 then for some constant c ≥ 0 we have∣∣v̂(ζ)∣∣ ≤ c

(
1 + |ζ|2

)m
2 eR|η|

holds for all ζ = ξ + iη ∈ Cn. Thus if ζ = ξ ∈ Rn, then(
1 + |ξ|2

)−m∣∣v̂(ξ)∣∣2 ≤ c2

It follows that v ∈ Hs(Rn) for s < −m − n
2 .
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