
B4.4 Fourier Analysis HT22

Lecture 12: Elliptic PDEs and fundamental solutions

1. Characterization of ellipticity
2. Mapping properties in Sobolev spaces
3. Gårding inequalities
4. Existence of fundamental solutions
5. Hypoellipticity
6. Non-examinable proofs FYI

The material corresponds to pp. 44–45 and 57–59 in the lecture notes and
should be covered in Week 6.

Lecture 12 (B4.4) HT22 1 / 28



Elliptic differential operators

Let p(∂) be a linear differential operator with constant coefficients

p(∂) =
∑
|α|≤m

cα∂
α cα ∈ C

of order m ∈ N0 (so cα ̸= 0 for at least one multi-index α of length m).
The symbol of p(∂) is the complex polynomial p(iξ) and its
m-homogeneous part

pm(iξ) =
∑
|α|=m

cα
(
iξ
)α

is called the principal symbol for p(∂).

Definition The differential operator p(∂) of order m is elliptic if its
principal symbol has no real zero except ξ = 0, that is,

pm(iξ) ̸= 0 for all ξ ∈ Rn \ {0}.
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Examples

• A 0 order differential operator is simply multiplication by a complex
constant. It is elliptic precisely when the constant is non-zero.

• The Laplacian ∆ on Rn is elliptic. Furthermore it is homogeneous of
order 2 because its symbol equals its principal symbol which is −|ξ|2.

• Powers of the Laplacian on Rn, ∆k , are elliptic for each k ∈ N. ∆k is
homogeneous of order 2k and has symbol

(
−|ξ|2

)k .
• (1 −∆)k is elliptic of order 2k for each k ∈ N. Its symbol is
(1+ |ξ|2)k and has no real zero. Note it is related to the Bessel kernel.

• If p(∂) is elliptic of order m ∈ N and q(∂) is a differential operator of
order at most m − 1, then p(∂) + q(∂) is also elliptic.

• The Cauchy-Riemann differential operators ∂
∂z and ∂

∂z on C are both
elliptic of order 1.

• The heat operator ∂t −∆ and the wave operator ∂2
t −∆ are not

elliptic (on Rn for any n ∈ N).
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Characterization of ellipticity

Lemma Let p(∂) be a linear differential operator with constant
coefficients of order m ∈ N:

p(∂) =
∑
|α|≤m

cα∂
α

Then p(∂) is elliptic if and only if there exist constants c > 0, R > 0 such
that ∣∣p(iξ)∣∣ ≥ c|ξ|m

holds for all ξ ∈ Rn with |ξ| ≥ R .

Proof. ‘Only if ’ Assume that p(∂) is elliptic of order m. The function
ξ 7→

∣∣pm(iξ)∣∣ is continuous and hence assumes its minimum value on the
unit sphere Sn−1. Say ξ0 ∈ Sn−1 and

∣∣pm(iξ)∣∣ ≥ ∣∣pm(iξ0)∣∣ for all ξ ∈ Sn−1.
Because ξ0 ̸= 0 we have

a :=
∣∣pm(iξ0)∣∣ > 0.

Lecture 12 (B4.4) HT22 4 / 28



Characterization of ellipticity–proof

For ξ ∈ Rn \ {0} we have a ≤
∣∣pm(i ξ

|ξ|)
∣∣, so by homogeneity∣∣pm(iξ)∣∣ ≥ a|ξ|m

holds for all ξ ∈ Rn. Because the polynomial p − pm has degree at most
m − 1 we have with

b :=
∑

|α|≤m−1

|cα|

that
∣∣p(iξ)− pm(iξ)

∣∣ ≤ b|ξ|m−1 holds for all ξ ∈ Rn with |ξ| ≥ 1. We
therefore get for ξ ∈ Rn with |ξ| ≥ 1:∣∣p(iξ)∣∣ ≥

∣∣pm(iξ)∣∣− ∣∣p(iξ)− pm(iξ)
∣∣

≥ a|ξ|m − b|ξ|m−1

=
(
a− b

|ξ|
)
|ξ|m
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Characterization of ellipticity–proof

If therefore R ≥ 1 and |ξ| ≥ R , then∣∣p(iξ)∣∣ ≥ (
a− b

R

)
|ξ|m

and so we conclude this part of the proof with c = a− b
R and

R > max
{
1, ba

}
.

‘if ’ Conversely if p(∂) is not elliptic, then for some ξ0 ∈ Rn \ {0} we have
pm(iξ0) = 0. Consequently

R ∋ t 7→ p(itξ0) =
(
p − pm

)
(iξ0t)

is a polynomial of degree at most m − 1, which is not compatible with the
bound in the lemma. □

Often we prefer to estimate the symbols with the quantity
(
1 + |ξ|2

) s
2 that

appears in the definition of the Sobolev spaces Hs(Rn).
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Characterization of ellipticity–another variant

Corollary The differential operator p(∂) of order m ∈ N is elliptic if and
only if there exist constants C > 0, r > 0 such that∣∣p(iξ)∣∣ ≥ C

(
1 + |ξ|2

)m
2

holds for all ξ ∈ Rn with |ξ| ≥ r .

Proof. The key to the proof is the elementary inequality

tm(
1 + t2

)m
2

(
1 + |ξ|2

)m
2 ≤ |ξ|m ≤

(
1 + |ξ|2

)m
2

that holds for all ξ ∈ Rn, t ≥ 0 with |ξ| ≥ t. [Prove it as an exercise]
The corollary now follows from the previous lemma where we note that the
relation between the constants can be taken as

C = c
Rm(

1 + R2
)m

2
and r = R.

We leave the details as an exercise. □
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A useful convention about Hs norms

When dealing with tempered distributions and the Sobolev spaces Hs(Rn)
that we defined for each s ∈ R as

Hs(Rn) :=

{
u ∈ S ′(Rn) :

(
1 + |ξ|2

) s
2 û ∈ L2(Rn)

}
it is often useful to define for v ∈ S ′(Rn) that

∥v∥2 :=

{
∥v∥2 when v ∈ L2(Rn)
+∞ when v /∈ L2(Rn)

and correspondingly for the Hs -norms we define for u ∈ S ′(Rn):

∥u∥Hs :=

∥∥∥∥(1 + |ξ|2
) s

2 û

∥∥∥∥
2
.

Thus for u ∈ S ′(Rn) we have that u ∈ Hs(Rn) if and only if

∥u∥Hs < +∞
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Mapping properties on the Sobolev scale Hs

Proposition Let p(∂) be a differential operator of order m ∈ N. Then for
each s ∈ R we have p(∂) : Hs(Rn) → Hs−m(Rn) is linear and

∥p(∂)u∥Hs−m ≤ c∥u∥Hs

for all u ∈ Hs(Rn), where
c =

∑
|α|≤m

|cα|.

Proof. First note that
∣∣p(iξ)∣∣ ≤ c

(
1 + |ξ|2

)m
2 holds for all ξ ∈ Rn. We

therefore have for u ∈ Hs(Rn),

∥p(∂)u∥Hs−m = ∥
(
1 + |ξ|2

) s−m
2 p(iξ)û∥2

≤ c∥
(
1 + |ξ|2

) s−m
2
(
1 + |ξ|2

)m
2 û∥2

= c∥
(
1 + |ξ|2

) s
2 û∥2

= c∥u∥Hs ,

as required. □
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Gårding inequalities for elliptic operators

Theorem Assume that p(∂) is an elliptic differential operator of order
m ∈ N and let s > 0. Then we have for u ∈ L2(Rn) that

∥u∥Hs ≤ c
(
∥u∥2 + ∥p(∂)u∥Hs−m

)
, (1)

where c > 0 is a constant.

Proof. By the characterization of ellipticity we can find constants C > 0,
r > 0 such that ∣∣p(iξ)∣∣ ≥ C

(
1 + |ξ|2

)m
2

holds for all ξ ∈ Rn with |ξ| ≥ r . We claim the constant

c = max
{
(2π)

n
2 (1 + r2)s ,

1
C

}
.

works in Gårding’s inequality (1). We can assume that p(∂)u ∈ Hs−m(Rn)
as otherwise there is nothing to prove.
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Gårding inequalities–proof

By Plancherel’s theorem, û ∈ L2(Rn), hence we can estimate∫
Br (0)

(
1 + |ξ|2

)s |û(ξ)|2 dξ ≤
(
1 + r2)s ∫

Br (0)
|û(ξ)|2 dξ

≤
(
1 + r2)s∥û∥2

2

≤ c2∥u∥2
2

and∫
Rn\Br (0)

(
1 + |ξ|2

)s |û(ξ)|2 dξ =

∫
Rn\Br (0)

(
1 + |ξ|2

)s
|p(iξ)|2

|p(iξ)û(ξ)|2 dξ

≤ 1
C 2

∫
Rn\Br (0)

(
1 + |ξ|2

)s−m|p(iξ)û(ξ)|2 dξ

≤ c2∥p(∂)u∥2
Hs−m .

Addition of the two inequalities concludes the proof. □
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Example 1 Let
q(∂) =

∑
|α|≤1

qα∂
α, qα ∈ C

be a first order differential operator and f ∈ L2(Rn). If u ∈ L2(Rn) satisfies
the PDE

∆u + q(∂)u = f in S ′(Rn).

Then u ∈ H2(Rn) and ∥u∥H2 ≤ c
(
∥u∥2 + ∥f ∥2

)
holds by Gårding’s

inequality because the Laplacian, and hence also ∆+ q(∂), is elliptic.

Example 2 The L2 norm cannot be removed on the right-hand side in the
Gårding inequality: The function u = ex2−y2

cos
(
2xy

)
, (x , y) ∈ R2, is C∞

but does not belong to Hs(R2) for any s ∈ R. Because

u = Re
(
ez

2)
, z = x + iy ∈ C ,

it is harmonic and so it is clear that we need the term c∥u∥2 on the
right-hand side in the Gårding inequality.
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Fundamental solutions were defined for linear differential operators p(∂)
in B4.3 as follows: Any E ∈ D ′(Rn) satisfying

p(∂)E = δ0 in D ′(Rn)

is a fundamental solution for p(∂).

In B4.3 we found fundamental solutions for the Laplacian on Rn and the
Cauchy-Riemann operators ∂

∂z , ∂
∂z on C. In each case they were tempered

distributions with singular support in {0}.

Example Find a fundamental solution for
(
1 −∆

)k on Rn for n, k ∈ N.
Assume E ∈ S ′(Rn) satisfies

(
1 −∆

)k
E = δ0 in S ′(Rn). Then we get by

use of the differentiation rule,(
1 + |ξ|2

)k
Ê = 1 in S ′(Rn).
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Fundamental solutions

The function
ξ 7→

(
1 + |ξ|2

)−k

is a moderate C∞ function, hence especially a tempered distribution, so by
the Fourier inversion formula

E = Ek := F−1
((

1 + |ξ|2
)−k

)
∈ S ′(Rn).

By inspection we see that this is a fundamental solution.

We record that Ek = g2k is the Bessel kernel of order 2k that we
encountered in lecture 9. We claim that it has singular support contained
in {0}. We will prove a slightly more general result.
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Bessel kernels again

Theorem The Bessel kernel of order s ∈ R, gs = F−1(1 + |ξ|2
)− s

2 , is a

tempered distribution, whose Fourier transform, ĝs =
(
1 + |ξ|2

)− s
2 , is a

moderate C∞ function. Furthermore, sing.supp(gs) = {0}.

Proof. Only the statement about the singular support needs proof. Fix a
direction 1 ≤ j ≤ n. Then for m ∈ N we calculate by use of Leibniz

∂m
j ĝs = −sξj∂

m−1
j ĝs+2 − s(m − 1)∂m−2

j ĝs+2. (2)

We next claim that for all s ∈ R, m ∈ N0 there exists a constant
c(m, s) > 0 such that ∣∣∂m

j ĝs
∣∣ ≤ c(m, s)ĝs+m (3)

We prove this by induction on m ∈ N0. It is trivially true for m = 0, and
for m = 1 and any s ∈ R we have∣∣∂j ĝs ∣∣ =

∣∣sξj ∣∣(1 + |ξ|2
)− s+2

2

≤ |s|
(
1 + |ξ|2

)− s+1
2 = |s|ĝs+1.
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Bessel kernels again–proof

Let k ∈ N and assume that (3) holds for m ∈ {0 , . . . , k} and all s ∈ R.
Then∣∣∂k+1

j ĝs
∣∣ (2)

=
∣∣−sξj∂

k
j ĝs+2 − sk∂k−1

j ĝs+2
∣∣

≤ |sξj |c(k , s + 2)ĝs+k+2 + |s|kc(k − 1, s + 2)ĝs+k+1

≤ |s|
(
c(k , s + 2) + kc(k − 1, s + 2)

)
ĝs+k+1

and the claim follows by induction.
Note that ĝt ∈ L1(Rn) for t > n, hence for given s ∈ R we have by virtue
of (3) that ∂m

j ĝs ∈ L1(Rn) for m+ s > n, and so by the differentiation rule
and Riemann-Lebesgue(

−ixj
)m

gs = F−1
ξ→x

(
∂m
j ĝs

)
∈ C0(Rn).

We generalize this as follows.
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Bessel kernels again–proof

Let α ∈ Nn
0 be a multi-index and note that by the differentiation rule

∂α
((
−ixj

)m
gs
)
= F−1

ξ→x

((
iξ
)α

∂m
j ĝs

)
and if m > n − s + |α|, then the right-hand side is in C0(Rn) by
Riemann-Lebesgue. We deduce that xmj gs ∈ C[m−n+s−1](Rn) for all m ∈ N
with m > n− s − 1, and therefore that gs ∈ C[m−n+s−1](Rn \ {x : xj = 0})
for all m > n − s − 1, that is, gs ∈ C∞(Rn \ {x : xj = 0}). But this is true
for each direction j and since

n∪
j=1

(
Rn \ {x : xj = 0}

)
= Rn \ {0}

we conclude that gs ∈ C∞(Rn \ {0}), and so sing.supp(gs) ⊆ {0}.
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Bessel kernels again–proof

Finally, note that ∂αĝs ∈ L1(Rn) for each multi-index α with |α| > n − s,
and so by the differentiation rule and Riemann-Lebesgue(

ix
)α

gs = F−1(∂αĝs
)
∈ C0(Rn).

If gs was C∞ on Rn it would follow that gs is rapidly decreasing. But the
same argument applies to the derivatives ∂βgs , and consequently it would
follow that gs ∈ S (Rn). But then also ĝs ∈ S (Rn) which is false.
Therefore 0 ∈ sing.supp(gs) and the proof is concluded. □
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Existence of fundamental solutions

Theorem Every linear elliptic differential operator of order m ∈ N with
constant coefficients,

p(∂) =
∑
|α|≤m

cα∂
α

has a fundamental solution E ∈ D ′(Rn).

A famous result by Ehrenpreiss (1954) and Malgrange (1955-56) states
that any linear differential operator with constant coefficients, not
identically zero, has a fundamental solution.
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Hypoellipticity

Definition The differential operator p(∂) is hypoelliptic if u ∈ D ′(Ω) and
p(∂)u ∈ C∞(Ω) imply that u ∈ C∞(Ω).

Proposition If E ∈ D ′(Rn) is a fundamental solution for p(∂) and
sing.supp(E ) ⊆ {0}, then p(∂) is hypoelliptic.

This follows from B4.3 Theorem 6.7.

Theorem An elliptic linear differential operator with constant coefficients
admits a fundamental solution that is singularly supported in {0}, hence is
hypoelliptic.
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Existence of fundamental solutions: How to prove it?

A formal calculation using the Fourier transform indicates that

“E = F−1( 1
p(iξ))

′′.

For the approach to be feasible we would need to know that 1
p(iξ) is a

tempered distribution, and at this stage this is far from clear. The problem
is that the zero set for the symbol,

Zp = {ξ ∈ Rn : p(iξ) = 0}

could be large. It is at this point where it is useful to know the differential
operator is elliptic, because it implies that Zp is contained in a ball
centered at 0 and that outside this ball the symbol p(iξ) is bounded away
from 0. In fact, it is bounded below by a positive multiple of |ξ|m when the
order of the differential operator is m.
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Existence of fundamental solutions: How to prove it?

However, even in the elliptic case we still cannot use the brute force direct
approach with the Fourier transform and the theory we have developed in
this course. Instead we must approach it in a more circumvential manner
where the calculation with the Fourier transform is merely a guiding
principle.

Using arguments from algebraic geometry it is possible to show that a
general linear differential operators with constant coefficients (not
identically zero) admits a fundamental solution that is a tempered
distribution. This was done, in increasing levels of generality, in works of
Hörmander in 1958, Bernstein and Gel’fand in 1969 and Atiyah in 1970.
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Existence of fundamental solutions–proof [Not examinable]

Proof. Let c , R > 0 be the constants in the lemma characterizing elliptic
operators: ∣∣p(iξ)∣∣ ≥ c |ξ|m for ξ ∈ Rn with |ξ| ≥ R. (4)

Consequently if χ = ρ ∗ 1BR+1 , then χ ∈ D(Rn) has support in BR+2(0)
and χ = 1 on BR(0), so

ξ 7→ 1 − χ(ξ)

p(iξ)
is a tempered distribution and we can define

F := F−1
(

1 − χ(ξ)

p(iξ)

)
∈ S ′(Rn).

Note that F
(
p(∂)F

)
= p(iξ)F̂ = 1 − χ, so

p(∂)F = F−1(1 − χ
)
.

We now need to find a feasible replacement for “F−1( χ(ξ)
p(iξ)

)′′.
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Existence of fundamental solutions–proof [Not examinable]

Fix ξ0 ∈ Sn−1. For ξ ∈ Rn with |ξ| ≤ R + 2 and z ∈ C we have

|ξ + ξ0z | ≥ |z | − R − 2.

Hence if we take r ≥ 2R + 2, then we infer from (4) that∣∣p(i(ξ + ξ0z)
)∣∣ ≥ cRm (5)

for all ξ ∈ Rn, z ∈ C with |ξ| ≤ R + 2, |z | ≥ r .
Guided by the Fourier inversion formula and Cauchy’s integral formula we
put

G (ζ) =
(
2π

)−n
∫
Rn

χ(ξ)
1

2πi

∫
|z|=r

ei(ξ+zξ0)·ζ

p(iξ + iξ0z)
dz
z

dξ , ζ ∈ Cn.

Here we used the shorthand i(ξ + ξ0z) · ζ := i
∑n

j=1(ξj + ξ0,jz)ζj in the
argument of the exponential (note: no complex conjugation in second
factor here).
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Existence of fundamental solutions–proof [Not examinable]

We claim that G : Cn → C is a well-defined entire function whose
derivatives can be calculated by differentiating behind the integral signs.
This is an easy consequence of Lebesgue’s dominated convergence theorem
and the following bound that follows from (5) and 0 ≤ χ(ξ) ≤ 1BR+2(0):∣∣∣∣χ(ξ) ei(ξ+ξ0z)·ζ

p
(
i(ξ + ξ0z)

)
z

(
i(ξ + ξ0z)

)α∣∣∣∣ ≤ e(R+2)|Im(ζ)|+r |ζ|

cRmr
(R + 2 + r)|α|

valid for any ξ ∈ Rn, z ∈ C with |z | = r and ζ ∈ Cn, α ∈ Nn
0. Taking

α = 0 shows that G (ζ) is well-defined, taking α = ej we see that G is
complex differentiable with respect to the variable ζj , and with a general
multi-index α we see that any differentiation of G can be done by
differentiating behind the integral signs.
In particular the restriction of G to Rn is therefore a C∞ function that can
be differentiated by differentiation behind the integral signs. (Note that
because of the complex variable z in the definition of G we cannot assert
that G is a tempered distribution.)
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Existence of fundamental solutions–proof [Not examinable]

Therefore by differentiation behind the integral signs we find(
p(∂)G

)
(x) =

(
2π

)−n
∫
Rn

χ(ξ)
1

2πi

∫
|z|=r

ei(ξ+ξ0z)·x dz
z

dξ

=
(
2π

)−n
∫
Rn

χ(ξ)eiξ·x dξ

= F−1
ξ→x

(
χ(ξ)

)
,

where we used Cauchy’s integral formula and then Fourier’s inversion
formula. Consequently if we define

E = F + G ∈ D ′(Rn),

then
p(∂)E = F−1(1 − χ

)
+ F−1(χ) = F−1(1) = δ0

and the proof is complete. □
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Hypoellipticity–proof [Not examinable]

The proof is similar to the proof that the Bessel kernels are singularly
supported in {0}. We have from the previous proof that E = G + F and
since G ∈ C∞(Rn) we only need to consider

F = F−1(1 − χ

p(iξ)
)
,

where we recall that χ = ρ ∗ 1BR+1(0) and
∣∣p(iξ)∣∣ ≥ c |ξ|m for |ξ| ≥ R . The

key to the proof is now to observe that if P ∈ C[ξ] is a polynomial, not
identically 0, and 1 ≤ j ≤ n a direction, then for each k ∈ N0 we have

∂k
j

( 1
P

)
=

Qk

Pk+1

valid at all ξ ∈ Rn with P(ξ) ̸= 0, where Qk is a polynomial recursively
determined by

Q0 = 1 and Qk = P∂jQk−1 − kQk−1∂jP

This is achieved by induction on k ∈ N0.
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Hypoellipticity–proof [Not examinable]

The recursion for the polynomials Qk shows that if P has degree m ∈ N,
then Qk has degree at most k(m − 1). Consequently we have for a
multi-index α ∈ Nn

0 by the ellipticity bound

ξα∂k
j F̂ = O(|ξ||α|−m−k) as |ξ| → ∞.

Given l ∈ N take k > n + l −m. Since then l −m − k < −n we have that
ξα∂k

j F̂ ∈ L1(Rn) for all multi-indices α of length at most l . By the
differentiation rule and Riemann-Lebesgue we therefore have

∂α
x

(
(−ixj)kF

)
= F−1

ξ→x

(
ξα∂k

j F̂

)
∈ C0(Rn),

so xkj F ∈ Cl(Rn), and hence F ∈ Cl(Rn \ {x : xj = 0}). Consequently,
F ∈ Cl(Rn \ {0}) for all l ∈ N and so we have proved that
sing.supp(F ) ⊆ {0}. As for the Bessel kernels we see that F cannot be
C∞ on Rn because it would mean that F is a Schwartz test function and
therefore also F̂ = 1−χ

p(iξ) would have to be, which it is not. □
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