
B4.4 Fourier Analysis HT22

Lecture 15: Fourier series for tempered distributions

1. Definition of Fourier series and examples
2. Characterisation of Fourier coefficients in two cases
3. Plancherel’s theorem for Fourier series

The material corresponds to pp. 53–57 in the lecture notes and should be
covered in Week 8.
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Recap from lecture 14 and a definition

If u ∈ D ′(R) is 2π periodic, then it is tempered and

û =
∑
k∈Z

2πckδk in S ′(R) (1)

with
ck =

1
2π

⟨u,Ψe−ik(·)⟩ , Ψ =
χ

Pχ
, χ = ρ ∗ 1(−1,2π+1].

By the Fourier inversion formula in S ′(R) we then get

u =
∑
k∈Z

ckeikx in S ′(R). (2)

Definition The series (2) is called the Fourier series for u and the
numbers ck are called the Fourier coefficients for u.
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Convergence of Fourier series for a tempered distribution

In what sense does the Fourier series (2) converge?
Definition Let vk ∈ S ′(R) and v ∈ S ′(R). Then we write

v =
∑
k∈Z

vk in S ′(R)

provided
k=m∑
k=−l

vk → v in S ′(R) as l , m → ∞.

This is the same as saying that
l∑

k=1

v−k → a in S ′(R) as l → ∞,

m∑
k=0

vk → b in S ′(R) as m → ∞

and v = a+ b.
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Fourier series for regular distributions

Example Assume u ∈ L1
loc(R) is 2π periodic. Then for k ∈ Z:

2π ck =
⟨
u,Ψe−ik(·)⟩ =

∫ ∞

−∞
u(x)Ψ(x)e−ikx dx

=
∑
j∈Z

∫ 2π(j+1)

2πj
u(x)Ψ(x)e−ikx dx

=
∑
j∈Z

∫ 2π

0
u(x + 2πj)Ψ(x + 2πj)e−ik(x+2πj) dx

=
∑
j∈Z

∫ 2π

0
u(x)Ψ(x + 2πj)e−ikx dx

=

∫ 2π

0
u(x)e−ikxPΨ(x) dx =

∫ 2π

0
u(x)e−ikx dx

Thus ck are in this case the usual Fourier coefficients that some of you
have seen in prelims.
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Characterization of Fourier coefficients in two cases

Proposition Let
(
ck
)
k∈Z be a doubly infinite sequence of complex

numbers.
(1) Then

(
ck
)
k∈Z are the Fourier coefficients for a 2π periodic C∞

function if and only if, for each m ∈ N0,

kmck → 0 as |k| → ∞.

In this case the Fourier series converges in the C∞ sense: the series,
together with all its term-by-term differentiated series, converge uniformly.
(2) Then

(
ck
)
k∈Z are the Fourier coefficients for a 2π periodic distribution

if and only if the sequence has moderate growth: there exist constants
C ≥ 0 and M ∈ N0 such that∣∣ck ∣∣ ≤ C

(
1 + k2)M

2

holds for all k ∈ Z.
The proof of (1) is left as an exercise and we proved (2) in lecture 14.
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Example Recall that we have shown that the periodisation of a test
function

Pϕ(x) =
∑
k∈Z

ϕ(x + 2πk)

gives rise to a linear map P : S (R) → C∞
2π(R), the space of 2π periodic

C∞ functions. By the Poisson summation formula we have

Pϕ(x) =
1
2π

∑
k∈Z

ϕ̂(k)eikx .

Given a 2π periodic C∞ function f , its Fourier coefficients ck satisfy
kmck → 0 as |k | → ∞ for any m ∈ N0. The function

ψ(x) =
∑
k∈Z

ck
(
ρε ∗ 1(k−2ε,k+2ε)

)
(x)

is therefore for ε ∈ (0, 1
10) a Schwartz test function, so by the Fourier

inversion formula its inverse Fourier transform is also a Schwatz test
function, say ϕ. It follows that Pϕ(x) = f (x), so that the map P is onto.
Exercise What is the kernel of P : S (R) → C∞

2π(R)?
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Plancherel’s theorem for Fourier series

Theorem If u : R → C is a 2π periodic L2
loc(R) function with Fourier

coefficients ck , then

u =
∑
k∈Z

ckeikx in L2(0, 2π]

and
1
2π

∫ 2π

0

∣∣u(x)∣∣2 dx =
∑
k∈Z

∣∣ck ∣∣2 (3)

The identity (3) is called Parseval’s identity and can also be expressed as
∥u∥2

2 = 2π∥(ck)k∈Z∥2
ℓ2

.
Conversely, if

(
Ck

)
k∈Z ∈ ℓ2(Z), then

u =
∑
k∈Z

Ckeikx

with convergence in L2(0, 2π] (and u is a 2π periodic L2
loc(R) function with

Fourier coefficients Ck).
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Plancherel’s theorem for Fourier series–proof

Proof. Assume first that u is a 2π periodic C∞ function. Then we have in
particular that its Fourier series converges uniformly:

u(x) =
∑
k∈Z

ckeikx holds uniformly in x ∈ R.

In particular it therefore also converges in L2(0, 2π] and∫ 2π

0

∣∣u(x)∣∣2 dx =

∫ 2π

0

∑
k,l∈Z

ckeikxcleilx dx

=
∑
k,l∈Z

ckcl

∫ 2π

0
ei(k−l)x dx

= 2π
∑
k∈Z

∣∣ck ∣∣2.
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Plancherel’s theorem for Fourier series–proof

Next, we consider the general case where u : R → C is 2π periodic and
L2

loc(R). Put ut = ρt ∗ u, where
(
ρt
)
t>0 is the standard mollifier on R.

Then ut is a 2π periodic C∞ function and∫ 2π

0

∣∣u − ut
∣∣2 dx → 0 as t ↘ 0.

Now for each t > 0 the Fourier series of ut converges uniformly, say

ut(x) =
∑
k∈Z

ck(t)eikx uniformly in x ∈ R.

It is not difficult to see that ck(t) → ck as t ↘ 0 for each k ∈ Z.
We clearly also have for s, t > 0 that us − ut is a 2π periodic C∞ function
with Fourier coefficients ck(s)− ck(t) and according to what we just
proved, ∫ 2π

0

∣∣us − ut
∣∣2 dx = 2π

∑
k∈Z

∣∣ck(s)− ck(t)
∣∣2.
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Plancherel’s theorem for Fourier series–proof

Because
(
ut
)
t>0 is Cauchy in L2(0, 2π] as t ↘ 0, also

(
ck(t)

)
k∈Z is

Cauchy in ℓ2(Z) as t ↘ 0. But the latter is complete by the Riesz-Fischer
theorem so for some

(
ak
)
k∈Z ∈ ℓ2(Z) we have∥∥(ck(t))− (

ak
)∥∥

ℓ2
→ 0 as t ↘ 0.

It follows that ck = ak for all k ∈ Z, hence that
(
ck
)
k∈Z ∈ ℓ2(Z) and that∫ 2π

0

∣∣u∣∣2 dx = lim
t↘0

∫ 2π

0

∣∣ut∣∣2 dx

= lim
t↘0

2π
∑
k∈Z

∣∣ck(t)∣∣2
= 2π

∑
k∈Z

∣∣ck ∣∣2.
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Plancherel’s theorem for Fourier series–proof

Finally in order to see that we also have convergence in L2(0, 2π] we
consider for m, n ∈ N:∫ 2π

0

∣∣∣∣∣u(x)−
k=n∑

k=−m

ckeikx

∣∣∣∣∣
2

dx =

∫ 2π

0
|u(x)|2 dx − 2π

k=n∑
k=−m

∣∣ck ∣∣2 → 0

as m, n → ∞. This concludes the proof in one direction.
Concersely suppose

(
Ck

)
k∈Z ∈ ℓ2(Z), that is, Ck ∈ C and∑

k∈Z
∣∣Ck

∣∣2 <∞. Define

u(x) =
∑
k∈Z

Ckeikx .

Clearly the sequence
(
Ck

)
k∈Z is in particular of moderate growth, so by an

earlier result u ∈ S ′(R) is a 2π periodic distribution with Fourier
coefficients Ck . By the previous part of the proof it follows that the
convergence is in L2(0, 2π] and so that u ∈ L2

loc(R). □
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