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Chapter 2

Dirac’s Formalism and ContinuumNormalisation

The subject of this section is, in some sense, a matter of notational formalism. We will (re-)introduce the bra-ket
formalism of Dirac for representing states and observables in quantum mechanical systems. In reality, Dirac’s for-
malism (in the broadest sense) is more substantive than just a change of notation. The novelty arises when discussing
observables with a continuous spectrum. This can happen only in infinite-dimensional Hilbert spaces.

2.1 States, dual states, and matrix elements

The basic notational device introduced by Dirac is the bra-ket. Here we represent vectors in a Hilbert space as kets,

ψ ∈ H ←→ |ψ〉 . (2.1)

Since a Hilbert space is equipped with an inner product, we can also assign to a given state a dual vector

φʘ : H → C ,

: χ %→ (ψ, χ) .
(2.2)

By sesquilinearity of the inner product on H, this map is C-conjugate-linear: φʌʘ = λ̄φʘ for λ ∈ C. An important
result in functional analysis is the following.

Theorem 2.1.1 (Riesz–Fréchet representation theorem). Let H be a Hilbert space. For every continuous linear func-
tional φ ∈ H∗, there exists a unique ψ ∈ H such that φ = φʘ (using the notations above).

We do not provide a proof here. In the finite-dimensional setting, it is not a difficult result, but in the infinite-
dimensional case it is not as obvious. Indeed, the presence of the adjective continuous in the above is relevant precisely
in the case of infinite-dimensionalH (all linear functionals are continuous in a finite dimensional Hilbert space). This
theorem establishes a canonical bijective, antilinear isometry between H and H∗.

In Dirac notation, we denote elements of the (continuous) dual space H∗ by bras:

φ ∈ H∗ ←→ 〈φ| . (2.3)

As a somewhat overloaded notational convention, we often use as the label for a bra the name of the state inH to which
it corresponds under the Riesz–Fréchet isometry,

φʘ ←→ 〈ψ| . (2.4)

With these conventions in place, we denote the inner product between two states φ and ψ as a composite bra-ket, where
the state and dual state are fused together in the visually natural manner,

(φ, ψ) ←→ 〈φ|ψ〉 . (2.5)

An operator A can act on states/kets from the left, whereupon we will notationally allow it to be “absorbed” into the
ket

A |ψ〉 = |Aψ〉 . (2.6)

Similarly, operators act from the right upon bras, and are replaced by their adjoint when absorbed into the bra,

〈φ|A = 〈A∗φ| . (2.7)
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Within an inner product, an operator can be moved about accordingly,

(φ,Aψ) = 〈φ|Aψ〉 = 〈φ|A|ψ〉 = 〈A∗φ|ψ〉 = (A∗φ, ψ) . (2.8)

The quantity 〈φ|A|ψ〉 will be referred to as the matrix element of A between φ and ψ.

2.2 Constructions with bra-kets

The bra-ket formalism is convenient for representing an array of natural constructions involving linear operators on
Hilbert spaces. For example, given the state |α〉 and the dual-state 〈β|, we can construct the outer product,

|α〉 〈β| : H → H ,

|ψ〉 %→ |α〉 〈β|ψ〉 = (〈β|ψ〉) |α〉 .
(2.9)

So we can concatenate bras and kets in the visually obvious manner and get meaningful operations. Outer products
also behave well under taking adjoints,15

(|α〉 〈β|)∗ = |β〉 〈α| . (2.10)

Now let {|i〉 , i ∈ I} be an orthonormal basis forH (here I is some finite or countably infinite indexing set). Orthonor-
mality means we have 〈i|j〉 = 〈j|i〉 = δJK. We can then write an arbitrary vector in H uniquely as a (possibly infinite)
linear combination of these basis vectors,

|ψ〉 =
∑

J∈*
cJ |i〉 . (2.11)

The components cK for some j ∈ I are extracted by acting with the bra corresponding to |j〉,

〈j|ψ〉 =
∑

J∈*
cJ 〈j|i〉 =

∑

J∈*
cJδJK = cK . (2.12)

We see that we can realise the orthogonal projection ΠK onto the one-dimensional subspace spanned by the basis vector
|j〉 using the outer product, |j〉 〈j|,16

|j〉 〈j|ψ〉 = cK |j〉 . (2.14)

More generally, for a linear subspace H′ ⊆ H with orthonormal basis |i′〉 , i′ ∈ I′, we can form the manifestly self-
adjoint, orthogonal projection operator from H onto H′:

ΠH′ =
∑

J′∈*′
|i′〉 〈i′| . (2.15)

In particular, for the case H′ = H, we have an expression for the identity operator,

ΠH ≡ 1H =
∑

J∈*
|i〉 〈i| . (2.16)

This expression is often referred to as a resolution of the identity or completeness relation. Given a linear operator
A : H→ H, we can then resolve it in terms of its matrix elements with respect to the given basis,

A = 1HA1H =
∑

J,K∈*
|i〉 〈i|A|j〉 〈j| =

∑

J,K∈*
AJK |i〉 〈j| . (2.17)

where
AJK = 〈i|A|j〉 . (2.18)

15Verify this relation if it isn’t obvious to you by inspection.
16For the a general state vector ʘ, not necessarily normalised, we have the orthogonal projection operator,

Πʘ =
|ʘ〉 〈ʘ|
〈ʘ|ʘ〉

. (2.13)



2 DIRAC’S FORMALISM AND CONTINUUM NORMALISATION 10

Finally, for A an observable if the states {|i〉} are an orthonormal basis of A eigenstates obeying A |i〉 = aJ |i〉 then we
have matrix elements AJK = aJδJK and (2.17) becomes the spectral decomposition of A,

A =
∑

J
aJ |i〉 〈i| . (2.19)

In the case whereH is finite-dimensional, this is all pretty familiar. The outer product |i〉 〈j| corresponds to the matrix
that is all zeroes except for having a one in the i’th row at the j’th column, and (2.17) describes the building up the
operator A entry by entry as a matrix, while (2.19) corresponds to the matrix expression for A in the basis where A is
diagonalised, which is the usual spectral decomposition of an Hermitian matrix. The resolution of the identity is just
the expression for the identity operator as the identity matrix.

In terms of bra-kets, we can represent the expectation value of an observable as follows. If our basis {|i〉} diagonalises
the observable A as above, then we have

Eʘ(A) = Eʘ(A1H) = =
∑

J∈*
〈ψ|A|i〉 〈i|ψ〉 ,

=
∑

J∈*
aJ| 〈i|ψ〉 |2 ,

(2.20)

which matches the notion of expectation value for a random variable.

2.3 Continuous observables

We now come to the important issue of observables with continuous spectrum. In finite dimensional Hilbert spaces
(and, it turns out, for something called a compact operator on an infinite-dimensional Hilbert space) the spectrum of
any observable is discrete, being just the set of eigenvalues. For more general operators in infinite-dimensional Hilbert
spaces we may potentially encounter a subtlety.

Just the definition of the spectrum of an operator is in fact more subtle in the infinite-dimensional case than just the
eigenvalues. Indeed, we have the following:

Definition 2.3.1. The spectrum of a self-adjoint operator A on a Hilbert space H is the subset σ(A) ⊆ R such that for
λ ∈ σ(A), the shifted operator A− λ1H does not have a (bounded, everywhere defined) inverse.

We will not dwell on the bounded/everywhere-defined caveats, which are relevant for a fully rigorous treatment. In
finite dimensions, the equivalence of non-invertibility and λ being an eigenvalue is automatic upon consideration of
the characteristic polynomial.

In the infinite-dimensional case, more elaborate situations are possible, and in particular the spectrum can include
a continuum. Indeed, we can think of the position operator X acting on L2(R). Considering our definition, a value
λ ∈ σ(X) if for any g ∈ L2(R) we can’t find an f ∈ L2(R) that solves the problem,

(x− λ)f(x) = g(x) . (2.21)

But clearly this is the case for any real λ (to be precise, we could take g(x) to be an indicator function for a finite interval
including x = λ). So for X the spectrum is the entire real line.

This is intuitively compatible with our Postulate III, since the possible observable values of the position operator should
be roughly the entire real line. However now there is apparently some tension with our desire to assign a basis of eigen-
states to the set of points in the spectrum of an observable. Dirac suggested in his original treatise on the subject to
forge ahead and formally extend his bra-ket formalism to include kets associated even to elements of a continuous
spectrum. This is indeed the approach method that is standard in the physics community. His proposal can in retro-
spect be understood as being essentially an application of the spectral theorem for self-adjoint operators in its most
sophisticated form. We will introduce the method now in an operational sense.
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2.3.1 Generalised position eigenstates

To get our discussion off the ground, let’s continue with our discussion of the particle moving on the real line, so with
Hilbert space L2(R).17 The two fundamental observables in this setting are the position and momentum operators,
and as we saw above, for the position operator X the spectrum is the entire real line.

Dirac instructs us to define an generalised position eigenstate |ξ〉 for this operator for each ξ ∈ R,18

X |ξ〉 = ξ |ξ〉 . (2.22)

Were we to use a wave function ψʏ(x) to represent such a state, it would have to satisfy the unlikely-looking identity

xψʏ(x) = ξψʏ(x) . (2.23)

For this to hold, it must be that ψʏ(x) = 0 for x *= ξ, and indeed if this were an element of L2(R) that would mean it
was the zero function, so certainly this can’t correspond to a non-zero element of the Hilbert space.

Nevertheless, we formally introduce such an object. Since this generalised state is meant to represent a situation where
the particle is definitely at x = ξ, it is reasonable to demand

〈ξ|ψ〉 = ψ(ξ) , 〈ψ|ξ〉 = ψ(ξ) . (2.24)

This is actually an important idea: the value of the wave function at a point x = ξ is the overlap of the state in question
with the generalised position eigenstate |ξ〉. Expressing this in terms of wave functions, we have

∞∫

−∞

dx ψʏ(x)ψ(x) = ψ(ξ) , (2.25)

We recognise this to be precisely the sifting property of (confusingly named) Dirac δ-function. Rather than a function,
this is a distribution, meaning it is a linear functional on functions. You have met the Dirac δ-function previously in
M4Multivariable Calculus, and maybe also in ASO Integral Transforms. Indeed, we will identify

|ξ〉 ←→ ψʏ(x) = δ(x− ξ) . (2.26)

Note that while these generalised position eigenstates are not normalisable in the usual sense of L2(R, they obey a
continuum normalisation condition,19

〈
ξ
∣∣ξ′
〉
=

∞∫

−∞

dx δ(x− ξ)δ(x− ξ′) = δ(ξ − ξ′) . (2.27)

This is a fairly natural generalisation of the usual normalisation condition where we have a Kronecker δ, but with the
Dirac δ instead.

Happily, it turns out that we can for the most part use these generalised position eigenstates in the same ways we would
use ordinary basis states as discussed previously, with various sums converted into integrals as appropriate. Justification
for this rests upon some deep pieces of functional analysis that we are sweeping under the rug,20 but as we mentioned

17A similar discussion here could take place for the particle moving on an interval [0, 1] ⊂ R, with Hilbert space -2([0, 1]). The free particle
on the entire real line is even a bit more subtle.

18Here we begin to adopt a fairly standard notational choice: in the context of discussing a particular observable (in this case 9), we denote
states whose eigenvalue is some number (in this case ʏ ∈ R) by a LFU whose label is UIBU TBNF FJHFOWBMVF (in this case |ʏ〉). There is some danger
of getting confused if not sufficiently diligent with this notational system, so be careful!

19Such (generalised) states are sometimes referred to as being ʅ-function normalisable states.
20There are several realisations of these generalised eigenstates within a more rigorous framework. In one version of the spectral theorem for

self-adjoint operators on infinite-dimensional Hilbert spaces, one constructs the Hilbert space of interest as a EJSFDU JOUFHSBM of smaller Hilbert
spaces, and these generalised states can be understood as elements of the (Hilbert-space) integrand of that direct integral. Alternatively, Hilbert
spaces arising in quantummechanics can be equipped with additional structure known as a (FM�GBOE USJQMF. In this case the generalised states are
elements of a larger space of distributions that form a part of that structure. You don’t need to know any of this for the present course, but it is a
beautiful subject!
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above, the quantum mechanical formalism (due to Dirac) actually predated the rigorous justification. In particular, we
have a resolution of the identity in terms of these position eigenstates,

1-2(R) =
∞∫

−∞

dξ |ξ〉 〈ξ| . (2.28)

Acting on genuine states (corresponding to authentic, normalisable wave functions), we have

1-2(R) |ψ〉 =
∞∫

−∞

dξ |ξ〉 〈ξ|ψ〉 ,

=

∞∫

−∞

dξ ψ(ξ) |ξ〉 ,

(2.29)

The final expression gives the continuum analogue of the decomposition of a general state in an orthonormal basis.

Generalising this resolution of the identity, if we integrate the outer product |ξ〉 〈ξ| over any measurable subset E ⊂ R,
we obtain the self-adjoint projection operator corresponding to multiplication by the indicator function 1& discussed
in Chapter 1.3,21

Π& =

∫

&

dξ |ξ〉 〈ξ| , 〈x|Π& |ψ〉 = 1&(x)ψ(x) . (2.30)

Indeed, we note that for a finite measure subset E this gives an actual projection operator onH, while the outer product
itself is not well-defined as a map on the Hilbert space. Since these projections are supposed to arise when considering
measurements, this state of affairs is often understood as corresponding to the physical impossibility of measuring
position with infinite precision; one could only ever check that a particle is within some error bar of a particular
position.

2.3.2 Generalised momentum eigenstates

There is a similar story with the momentum operator P = −i! d
dY . We introduce (generalised) momentum eigenstates

|p〉,

P |p〉 = p |p〉 , p ∈ R , (2.31)

and if we denote the actual wave function associated to this state as ψQ(x), then we can easily solve the corresponding
differential equation, at least formally,

− i! ψ′
Q(x) = pψQ(x) =⇒ ψQ(x) = N e

JQY
! , (2.32)

where N is some normalisation factor. The problem is now clear and and feels familiar: these wave functions are not
square-normalisable at all (on the entire real line), so this is not giving us an element of L2(R). Rather this is a kind of
generalised eigenstate, which we can interpret as a distribution.

Using our previous understanding of the relationship between wave functions and generalised position eigenstates, we
deduce the overlap equation

〈x|p〉 = ψQ(x) = N e
JQY
! . (2.33)

We can then derive the continuum normalisation condition for the momentum eigenstates,

〈p|p′〉 = |N |2
∞∫

−∞

dx e−
JQY
! e

JQ′Y
! = 2π!N 2

∞∫

−∞

ds e2ʑJ(Q−Q′)T = 2π!N 2δ(p− p′) , (2.34)

21In one rigorous treatment of these constructions, it is this assignment of a self-adjoint projection operator to (measurable) subsets of R that
is rigorously defined and guaranteed to exist by the spectral theorem; such an assignment is called a QSPKFDUJPO WBMVFE NFBTVSF.
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where in the last equation we have used the integral representation for the delta function. It is then natural to adopt the
normalisation conventionsN = (2π!)−1/2 giving canonical continuum normalisation to the generalised momentum
eigenstates. We have an analogous resolution of the identity in terms of momentum states,

1H =

∞∫

−∞

dp |p〉 〈p| . (2.35)

This formalism of position and momentum (generalised) bases for L2(R) gives us a nice new perspective on the quan-
tum mechanics of a particle. To a given state vector |ψ〉, we can associated either its expression in position space,

ψ(x) = 〈x|ψ〉 , |ψ〉 =
∞∫

−∞

dx ψ(x) |x〉 , (2.36)

or its expression in momentum space,

ψ̂(p) = 〈p|ψ〉 , |ψ〉 =
∞∫

−∞

dp ψ̂(p) |p〉 . (2.37)

So there are actually (at least) two wave functions associated to the state ψ of a particle on the real line. These, it turns
out, are related by the Fourier transform,

ψ(x) = 〈x|ψ〉 =
∞∫

−∞

dp 〈x|p〉 〈p|ψ〉 = 1√
2π!

∞∫

−∞

dp e
JQY
! ψ̂(p) . (2.38)

ψ̂(p) = 〈p|ψ〉 =
∞∫

−∞

dx 〈p|x〉 〈x|ψ〉 = 1√
2π!

∞∫

−∞

dx e−
JQY
! ψ(x) . (2.39)

Indeed, the Fourier transform is a unitarymap from L2(R) to itself (this is the Plancherel theorem), so the change from
position to momentum representation is just a change of basis for our Hilbert space.

Remark 2.3.2. This formalism for generalised position eigenstates generalises immediately to the case of a particle
moving in, say, d = 2 or d = 3 dimensions. There for x = (x1, . . . , xE) we have the generalised eigenstates

XJ |x〉 = xJ |x〉 , (2.40)

obeying the continuum normalisation condition,

〈x|x′〉 = δE(x− x′) , (2.41)

and the corresponding resolution of the identity,

1-2(RE) =

∞∫

−∞

· · ·
∞∫

−∞

dx1 · · · dxE |x〉 〈x| . (2.42)

Similarly, we have generalised momentum eigenstates corresponding to non-normalisable plane-wave wave functions,

|p〉 −→ ψp(x) =
1

(2π!)E/2 e
Jp·x
! , (2.43)

obeying the same continuum normalisation condition and admitting the same type of resolution of the identity. d-
dimensional wave functions in position space and momentum space are related now by the d-dimensional Fourier
transform.
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2.4 Application: free particle propagator

A nice application of the machinery we have developed here is in defining an important object in studying quantum
mechanical dynamics: the propagator. Intuitively, this is the quantity that tells you the quantum mechanical amplitude
(square root of probability density) for a particle that starts at a given position to be detected at some other position at
some definite time in the future. In terms of generalised position eigenstates, this is the quantity

U(x1, t1; x0, t0) := 〈x1|U(t1; t0)|x0〉 , (2.44)

where U(t1; t0) is the unitary time evolution operator introduced previously. If one has the propagator under good
control, then the time evolution of general quantum states can be described using the following double integral

〈
ψ1|U(t1, t0)|ψ0

〉
=
〈
ψ1
∣∣




∞∫

−∞

dx1 |x1〉 〈x1|



U(t1; t0)




∞∫

−∞

dx0 |x0〉 〈x0|



∣∣ψ0
〉
,

=

∞∫

−∞

∞∫

−∞

dx1 dx0 ψ1(x1)U(x1, t1; x0, t0)ψ0(x0) .

(2.45)

In general, the propagator is not so easy to compute. Here wewill do it for the case of the free particle in one dimension.
The Hamiltonian is H = P2/2m and the (generalised) energy eigenstates are precisely the (generalised) momentum
eigenstates:

H |p〉 = EQ |p〉 =
p2
2m |p〉 . (2.46)

As we know well, time evolution for these states then proceeds via phase multiplication,

U(t1, t0) |p〉 = exp
(
−iEQ(t1 − t0)

!

)
|p〉 = exp

(
−ip2(t1 − t0)

2m!

)
|p〉 . (2.47)

This means that the momentum-space propagator is very simple for the free particle,

〈p1|U(t1; t0) |p0〉 =: Û(p1, t1; p0, t0) = δ(p1 − p0) exp
(
− ip20(t1 − t0)

2m!

)
. (2.48)

The position-space propagator is then obtained by a double Fourier transform,22

U(x1, t1; x0, t0) = 〈x1|




∞∫

−∞

dp0 |p0〉 〈p0|



U(t1; t0)




∞∫

−∞

dp1 |p1〉 〈p1|



 |x0〉 , (2.49)

=

∞∫

−∞

∞∫

−∞

dp0 dp1 〈x1|p1〉 Û(p1, t1; p0, t0) 〈p0|x0〉 , (2.50)

=
1

2π!

∞∫

−∞

∞∫

−∞

dp0 dp1 δ(p1 − p0) exp
(

ip1x1 − ip0x0
! − ip20(t1 − t0)

2m!

)
, (2.51)

=
1

2π!

∞∫

−∞

dp exp
(

ip(x1 − x0)
! − ip2(t1 − t0)

2m!

)
, (2.52)

=

(
m

2πi!(t1 − t0)

) 1
2

exp
(
−m(x1 − x0)2

2i!(t1 − t0)

)
. (2.53)

22The attentive reader will notice that upon setting U → −Jʔ, the final result for the propagator becomes the Green’s function for the one-
dimensional heat equation, with the thermal conductivity given by !/2N. Indeed, the same “imaginary time” replacement applied to the time-
dependent Schrödinger equation for this system yields the heat equation with said thermal conductivity.
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The last integral is somewhat subtle, but can be computed using results for Fresnel integrals.23

It is interesting to observe that instantly when t1 > t0, the propagator is nonzero for arbitrarily large x1 − x0. This
reflects the infinite uncertainty in momentum that is associated with the completely localised position eigenstate at
time t0. However, the phase in the exponential is also very large for large x1− x0 and small t1− t0, so when we average
over positions (as we should if we start with a normalisable wave function) then there will be cancellations and the
wave function will remain somewhat localised near its original support.

23The general formula is
∞∫

−∞

dY exp
(

J
2
BY2 + JCY

)
=

( 2ʑJ
B

) 1
2
exp

(
−
JC2

2B

)
.


