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Chapter 1

Introduction

The use of computers is widespread in all areas of life, and at universities
they are used in both teaching and research. Computing fundamentally
influences many areas of both applied and pure mathematics. Matlab is
one of several systems used at Oxford for doing mathematics by computer;
others include Mathematica, Maple, Sage and SciPy/NumPy. These tools
are sufficiently versatile to support many different branches of mathematical
activity, and they may be used to construct complicated programs.

By the way, the correct way to write it is in all caps, “MATLAB”. But
I’ve always found this ugly, so in this document we’ll go with the incorrect
“Matlab”.

1.1 Objectives

The objective of this course is to help you learn about doing mathematics
using Matlab. Last term you were introduced to some basic techniques, by
working through the Michaelmas Term Student Guide, which you are due
to complete near the beginning of this term. After this, for the rest of this
term, you will work alone on any two of the three projects presented in this
booklet.

While Matlab complements the traditional part of the degree course,
we hope the projects may help you revise or understand topics which are
related to your past or future studies. It is hoped that at the end of this
course you will feel sufficiently confident to be able to use Matlab (and/or
other computer tools) throughout the rest of your undergraduate career.

1.2 Schedule

Lectures

There will be two lectures this term, at 11:00 on Wednesdays of weeks 1
and 3 in lecture theatre L1.

Deadlines

• 12 noon, Monday, week 6: Online submission of first project.
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CHAPTER 1. INTRODUCTION 2

• 12 noon, Monday, week 9: Online submission of second project.

You are free to choose any two of the three projects described here,
and you don’t have to do them in order. For instance, if you choose projects
(A) and (C), you may submit (C) in Week 6 and (A) in Week 9.

Computer and demonstrator access

This term, the schedule for the practical sessions with demonstrators in
Weeks 1 and 2 will be the same as for weeks 7 and 8, respectively, of Michael-
mas Term. From Week 3 onwards, there are no fixed hours for each college,
but drop-in sessions with demonstrators will be scheduled at times to be
announced. (Currently these are tentatively set at Mondays 3–4 and Thurs-
days 3–4 of Weeks 3–8 and also Wednesday 3–5 of Week 5, Friday 3–5 of
Week 5, and Friday 3–5 of Week 8.) See the course website (https://
courses.maths.ox.ac.uk/course/view.php?id=44) for updates and fur-
ther information.

Demonstrators will be happy to help resolve general problems, but will
not assist in the details of the actual project exercises.

1.3 Completing the projects

To carry out a project successfully, you need to master two ingredients: the
mathematics, and the Matlab programming. Picking up the mathematics
is a familiar activity that you practice when you attend a lecture or read
your notes or mathematics texts. Building up a repertoire of Matlab com-
mands and algorithmic ideas is a different skill that in some ways is more
akin to learning a language. It is perfectly normal to do things somewhat
inefficiently at first, and to achieve greater fluency as time goes by.

Before you get started on a project, it is a good idea to look over all
the exercises to understand what is being asked. To complete most of the
exercises, you will have to find the relevant commands that make Matlab
do what you want. There are clues and guidance given for this within
each project, although it will often be necessary to consult the Matlab help
system.

Each project is divided into several exercises, and earns a total of 20
marks, which are split between mathematical content and clarity
of presentation. The projects must be completed and submitted elec-
tronically before the Monday deadlines in weeks 6 and 9, according to the
instructions given below. The marks will count towards Prelims and will
not be released until after the examinations.

Your answers will ideally display both your proficiency in Matlab and
your appreciation of some of the underlying mathematics.

Try to make your Matlab code elegant and concise — with comments
as necessary so that it readable by human beings. Many of the exercises
require you to make plots. Please be sure your plots are legible, with all
their components well labelled and their fonts not too tiny.

https://courses.maths.ox.ac.uk/course/view.php?id=44
https://courses.maths.ox.ac.uk/course/view.php?id=44


CHAPTER 1. INTRODUCTION 3

1.3.1 Getting help

You may discuss with the demonstrators and others the techniques described
in the Michaelmas Term Student Guide, as well as those found in the Matlab
help pages and other sources. You may also ask the Course Director, i.e.,
me, to clarify any unclear points in the projects.

All projects must be your own unaided work. You will be asked
to make a declaration to this effect when you submit them.

1.3.2 Debugging and correcting errors

Debugging means eliminating errors in a program. When you write a pro-
gram, do not be disheartened if it does not work when you first try to run it.
In that case, before attempting anything else, type clear at the command
line and run it again. This has the effect of resetting all the variables, and
may be successful at clearing the problem.

If the program still fails, a good strategy is to locate the line where the
problem originates. Remove semicolons if necessary, so that intermediate
calculations are printed out and you can spot the first place where things
fail. You may also want to display additional output, for which the disp

command can be useful. If the program runs but gives the wrong answer,
try running it for simpler and simpler cases, until you reduce the problem to
a minimal instance for which it gives the wrong answer. Remember that you
can always remove code from execution that is not relevant to a particular
calculation by inserting the comment character %, so that Matlab ignores
everything that follows on that line. The command return can also be used
to halt execution of a Matlab program at a particular point.

The more advanced way to debug is to use the Matlab debugger, which
you may enjoy getting to know. Information can be found in a number of
places including https://www.mathworks.com/help/matlab/matlab_prog/
debugging-process-and-features.html.

Website

This manual can be found at https://courses.maths.ox.ac.uk/course/
view.php?id=44. This site will also incorporate up-to-date information on
the course, such as corrections of any errors, possible hints on the exercises,
and instructions for the submission of projects.

Legal note

Both the University of Oxford and the Mathematical Institute have rules
governing the use of computers, and these should be consulted at https:

//www.maths.ox.ac.uk/members/it/it-notices-policies/rules.

Cover image

If you’re curious about the image on the cover, take a look at the March 2021
essay at https://people.maths.ox.ac.uk/trefethen/essays.html.

https://courses.maths.ox.ac.uk/course/view.php?id=44
https://courses.maths.ox.ac.uk/course/view.php?id=44
https://www.maths.ox.ac.uk/members/it/it-notices-policies/rules
https://www.maths.ox.ac.uk/members/it/it-notices-policies/rules


Chapter 2

Preparing your project

To start, say, project A, find the template projAtemplate.m on the course
website https://courses.maths.ox.ac.uk/course/view.php?id=44. Save
this file as projectA.m, in a folder/directory also called projectA. Do not
use other names.

You will be submitting this entire folder, so please make sure it contains
only files relevant to your project. You will probably end up creating several
.m files within this folder as part of your project.

2.1 Matlab publish

Execution of the file projectA.m should produce your complete answer. We
will use the Matlab publish system.

publish('projectA.m','pdf')

This will create a PDF report in projectA/html/projectA.pdf. The lec-
turer will give examples of publish in the lectures and post an example
file on the course website. You should also read help publish and doc

publish.
The assessors will read this published report in assessing your project.

It is important that the report be well-presented. You will definitely lose
points if your projectA just executes the maths without any discussion.

• Divide projectA.m into headings for each exercise.

• You can call other functions and scripts from within projectA.m. A
good way to make this code appear in your published document is to
write type <name of function> where appropriate in projectA.m.

• Make sure that your discussion answers all the questions.

• Include appropriate Matlab output: not pages and pages, but enough
to make it clear you have understood and answered the question. This
will require some judgment, but it’s worth the effort. Clear presenta-
tion is a lifelong skill.

4
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CHAPTER 2. PREPARING YOUR PROJECT 5

The examiners may also run your codes.
Make sure you run publish one last time before submitting your project.

Then double-check the results.

2.2 Zip up your files

Make a projectA.zip or projectA.tar.gz file of your projectA folder or
directory including all files and subfolders or subdirectories. No .rar files
please. It is recommended you make sure you know how to do this well
before the deadline.

Double-check that you have all files for your project and only those files
for your project.

2.3 Submitting the projects

Projects will be submitted online via Inspera; see https://www.ox.ac.uk/

students/academic/exams/open-book/online-assessments. Further in-
formation about the submission process will be emailed to you later on if
necessary.

Submission deadlines were given in Section 1.2, and these deadlines are
strict. It is vital that you meet them, for the submission system will not al-
low submissions after these times. You should therefore give yourself plenty
of time to submit your projects, preferably at least a day or two in advance
of the deadline. Penalties for late submission are specified in the Exam-
ination Conventions, https://www.maths.ox.ac.uk/members/students/

undergraduate-courses/examinations-assessments/examination-conventions.
You will need your University Single Sign On username and password in or-
der to submit each project, and also your examination candidate number
(available from Student Self-Service). If you have lost track of your details
you will need to sort them out with OUCS well before the first deadline.

https://www.ox.ac.uk/students/academic/exams/open-book/online-assessments
https://www.ox.ac.uk/students/academic/exams/open-book/online-assessments
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examination-conventions
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examination-conventions


Chapter 3

(A) Random Fourier series

For some m ≥ 1, let aj (0 ≤ j ≤ m) and bj (1 ≤ j ≤ m) be independent
samples of the standard normal distribution with variance 1, i.e., numbers of
the kind generated by the Matlab randn command. Let fm be the function
of x ∈ [0, 2π] defined by the finite random Fourier series

fm(x) = a0 +
√

2

m∑
j=1

[
aj cos(jx) + bj sin(jx)

]
.

We call fm a smooth random function.

3.1 Exercise (A1)

Write a Matlab function

fm = smooth(m)

which takes m ≥ 1 as input and produces an anonymous function fm cor-
responding to the smooth random function fm as output. You may assume
that fm takes as its argument a row vector x. For reproducibility, ensure
that smooth calls randn to compute its random numbers exactly in the order
a0, a1, b1, a2, b2, . . . , am, bm. Show your result by executing

npts = 5000;

xx = linspace(0,2*pi,npts);

seed = 1; rng(seed), fm = smooth(20);

plot(xx,fm(xx))

and then adding appropriate labels to the plot. The point of the “seed”
part of the code is to make the random numbers reproducible. If you run
this multiple times without the rng command, you’ll get a different smooth
random function each time.

3.2 Exercise (A2)

As m increases, the size of fm can be expected to increase at a rate that
scales with

√
m. The standard deviation of this distribution is in fact

6



CHAPTER 3. (A) RANDOM FOURIER SERIES 7

σm =
√

2m+ 1. (The limit m → ∞ corresponds to that elusive concept
known as “white noise”.) To illustrate this numerically, first plot fm(xx)

for m = 50 and m = 200, including for comparison a pair of horizon-
tal dashed lines at heights ±σm. Then compute cm = max(abs(fm(xx)))

with fm = smooth(m) for m = 20, 40, . . . , 1000 and plot cm against m with
subplot(1,2,1) and cm against

√
m with subplot(1,2,2). In both cases

include for comparison a dashed curve showing 4σm. (The number 4 is just
a rough approximation; for a more precise analysis one would call upon the
field known as extreme value statistics.)

3.3 Exercise (A3)

Consider now the indefinite integral of fm,

gm(x) =

∫ x

0
fm(s)ds.

We call this a “smooth random walk”, and it can be proved that in a certain
precise sense, gm approaches a Brownian path with probability 1 as m→∞.
(You do not need to know anything about Brownian paths for this exercise.)
To verify this numerically, define the anonymous function

gmxx = @(fm) (2*pi/npts)*cumsum(fm(xx));

to approximate gm by a cumulative sum over the grid xx. Now plot gmxx

for m = 104−k, k = 1, 2, 3, making sure to reinitialize the random number
seed with rng(1) before each plot. (The reason for taking the powers in
decreasing order is just to make the plot a little nicer.) Comment on what
you see. Among the remarkable properties of Brownian paths are that, with
probability 1, they are continuous but nowhere differentiable.

3.4 Exercise (A4)

Illustrate Brownian paths by producing a plot with five different trajectories
gmxx on it for m = 1024, beginning with rng(1) but now without reinitial-
izing the seed between plots. Also illustrate 2D Brownian paths by plotting
a gmxx produced with rng(1) as the x coordinate against another gmxx

produced with rng(2) as the y coordinate. Be sure to set axis equal so
that your x and y components are equally scaled. Produce two plots: one
with subplot(1,2,1) for m = 100 and another with subplot(1,2,2) for
m = 1000.



Chapter 4

(B) Julia sets

Julia sets are named after Gaston Julia; they have nothing to do with the
computer language Julia. These are sets in the complex plane that give
beautiful examples of complicated geometry, in particular, fractals.

To define a Julia set we fix a real or complex number c and then we
consider the iteration

w := w2 + c. (1)

For some complex initial values w, the iteration blows up to infinity as we
take more and more steps. For others, it remains bounded. The Julia set
is the set in the complex plane defined as the boundary between the sets
with these two types of behavior. In this project we plot these domains
(approximately) on the computer.

4.1 Exercise (B1)

Write a Matlab function Z = makegrid(npts) that uses the commands

s = linspace(-1.7,1.7,npts);

[X,Y] = meshgrid(s,s);

Z = X + 1i*Y;

to set up a npts×npts grid of points in the square −1.7 ≤ x, y ≤ 1.7 of the
complex plane. Test this function by executing

plot(makegrid(20),'.k','markersize',10), axis equal

Now write a function plotW(W) that applies commands that have this effect:

pcolor(double(abs(W)<2)), shading flat

axis square off

In addition, plotW should put a title on the plot along the lines of “34952
yellow pixels” indicating how many of the pixels have satisfied the condition
|w| < 2. Explain what this function does and test it by executing

plotW(makegrid(1000))

8



CHAPTER 4. (B) JULIA SETS 9

(If 1000 causes trouble on your computer, use a slightly lower value.) Finally
write a function W = tensteps(W,c) that applies ten steps of the iteration
defined by (1) to a matrix of function values W. One could use a nested for

loop for this, but it is better Matlab style, and more efficient, to operate
on the whole matrix at once using the Matlab operation W.^2. Test this
function by executing

plotW(tensteps(makegrid(1000),0))

and comment on why the result looks the way it does for this special case
of c = 0.

4.2 Exercise (B2)

Now write a final function threeplots(c) that places three plots on a row
using subplot(1,3,j) for j = 1, 2, 3. The first plot should be the plotW

result from one call to tensteps with the initial values W equal to the matrix
Z of (B1). The second plot should be the result after a second call to
tensteps, and the third after a third call to tensteps. Together, then, the
plots show results corresponding to 10, 20 and 30 iterations of (1). Execute
threeplots with c = −1 and comment on the results. What differences
does you see between the three plots, and how do you explain these?

4.3 Exercise (B3)

Now execute threeplots with c = 0.3 and comment on the results. The
three plots differ more profoundly in this case than in the last exercise. How
do you interpret this?

4.4 Exercise (B4)

Further choices of c give a wide variety of different behaviors. In particular,
produce plots for c = 0.75i and c = 0.4 + 0.6i and comment on the results.
There has been a great deal of study of the geometry of sets like these, with
generalizations in many directions. It is a fine example of how mathematics
these days, like physics and chemistry for centuries, depends on laboratory
experiments to guide its advance.



Chapter 5

(C) Gauss quadrature

Suppose we have an integral over an interval [a, b], which we might as well
take to be [−1, 1]:

I =

∫ 1

−1
f(x)dx.

For most integrands f , I cannot be computed analytically and must be
approximated numerically. A standard way to do this is by applying an
n-point quadrature formula

In =
n∑

k=1

wkf(xk),

where x1, . . . , xn are a set of n ≥ 1 distinct nodes in [−1, 1] and w1, . . . , wn

are a corresponding set of weights.
One measure of the quality of a quadrature formula is that it gives exactly

the right answer, In = I, if f is any polynomial of a certain low degree d. It
is natural to ask, given n, what’s the highest such d that can be achieved by
some n-point quadrature formula? The answer turns out to be d = 2n− 1,
and the unique choice of {xk} and {wk} that achieves this corresponds to
Gauss quadrature, introduced by Carl Gauss in 1814. (To be precise, it’s
unique up to a permutation of the indices.)

5.1 Exercise (C1)

For n = 3, the Gauss nodes are −
√

3/5, 0,
√

3/5 and the Gauss weights are
5/9, 8/9, 5/9. Write a Matlab code that verifies numerically that I3 = I for
f(x) = xk with 0 ≤ k ≤ 5 but I3 6= I for k = 6. Specifically, print the errors
En = In− I for each of these cases. What happens to En for k = 7, 8, 9, 10?
How do you explain this?

5.2 Exercise (C2)

A remarkable method for computing Gauss nodes and weights was intro-
duced by Golub and Welsch in 1969. Let A be the n × n tridiagonal sym-

10



CHAPTER 5. (C) GAUSS QUADRATURE 11

metric Jacobi matrix whose entries are all zero apart from the numbers

1√
1 · 3

,
2√
3 · 5

,
3√
5 · 7

, . . . ,
n− 1√

(2n− 3) · (2n− 1)

in the upper-diagonal positions (1, 2), (2, 3), . . . , (n− 1, n) of the matrix and
also in the lower-diagonal positions (2, 1), (3, 2), . . . , (n, n − 1). Let {λj}
and {vj} be the eigenvalues and eigenvectors of A as computed e.g. by the
Matlab eig command. (In particular, each eigenvector should be normalized
so that the sum of the squares of its entries equal to 1.) Golub and Welsch
showed that the node xj is the eigenvalue λj , and the weight wj is twice
the square of the first component of the corresponding eigenvector vj . Use
these properties to write a Matlab function

[x,w] = gaussq(n)

that returns vectors of the n Gauss quadrature nodes and weights for any
n. Verify that for n = 3, you get the results given in (C1).

5.3 Exercise (C3)

Consider the function f(x) = ex tanh(4 cos(20x)) for x ∈ [−1, 1], where tanh
is as usual the hyperbolic tangent. Make a plot of f and estimate its integral
I by Gauss quadrature with n = 1000. Let’s call this estimate I even though
of course it is not quite exact. Now make a semilogy plot of |En| against n for
n = 50, 100, 150, . . . , 950, making sure that the plot shows clearly where the
data points lie. Comment on the shape of this curve, both its early stages
and its later stages. (As it happens, the rate of convergence is determined
by the locations of the singularities of f(x) in the complex plane.)

5.4 Exercise (C4)

Determine analytically the exact integrals over [−1, 1] of the functions

(a) f(x) =
1

1 + 25x2
, (b) g(x) = tanh(20(x+ 1

2)), (c) h(x) = |x|.

(You do not have to show your working.) Then make two plots with clearly-
labeled curves indicating convergence of n-point Gauss quadrature for these
three integrands as a function of n. One plot should be on semilogy axes,
and the other on loglog axes. Approximately how large must n be for 6-digit
accuracy in each of the three cases? What do the shapes of the curves on
the two axes indicate about convergence rates?
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