B1 Set Theory:
Solutions to questions on problem sheet 0

1. o has no elements. But {@} has an element, namely @. So @ and {@} do not have
precisely the same elements, so they are not equal.

2. (i) For any =,

re AN(BUC)iffre Aandxz € BUC
iff z € A and either x € Bor z € C
iffre Aand x € B,or bothz € A and x € C
ifre ANBorxe ANC
iff e € (ANB)U(ANC).

Hence AN (BUC)=(AUB)Nn(AUC().

(ii) For any z,

re AU(BNC)iffr€e Aorz e BNC
iffre Aorbothz e Bandz € C
iff t € Aorx € B, and either x € Aorx € C
iffre AUBand x € AUC
iff € (AUB)N(AUCQC).

Hence AN (BUC)=(AUB)Nn(AUC().

(iii) For any =,

zre X\(AUuB)iffr€ X and x ¢ AUB
iff z € X and = does not belong to either A or B
ifre Xandz ¢ Aand x ¢ B
ifre X\ Aandz € X\ B
iffre (X\A)N(X\ B),

so X\ (AUB)=(X\A4)N(X\ B).
(iv) For any «,
reX\(ANB)iffre X andz ¢ ANB

iff x € X and z does not belong to both A and B
ifre X,ande ¢ Aorz ¢ B
ifre X\ Aorze X\ B
iff e e (X\A)U(X\ B),

so X\ (ANB)=(X\A)U(X\B).

3. (i) Always true.



Forany y €Y,

ye f(AUf(B)iffy € f(A) ory € f(B)
iff there exists x € A such that f(z) =y
or there exists z € B such that f(z)
iff there exists x € AU B such that f(z)
iff y € f(AUB).
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(ii) Not always true.

Let X = {0,1}, Y = {0}, f be the function taking all elements of X to 0, A = {0},
and B = {1}.

Then f(A) = f(B) = {0}, s0 f(A)Nf(B) = {0}. However ANB = &, so f(ANB) = .

(iii) Always true.

For any z € X,

ze fTHC)u YD) iff x € f~HC) or z € f1(D)
iff f(x)e C or f(z) € D
iff f(x) e CUD
iff z € f~H(CUD).

(iv) Always true.
For any z € X,

re fHC)Nf D) if z € f~HC) and z € f~H(D)
iff f(x) € C and f(z) € D
iff f(x) e CND
iff z € f~1(CN D).

(v) Always true.
For any y €Y,

y € f(f7H(C) = 3w (z € f7(C) and f(z) =y)
= Jz (f(z) € C and f(z) =y)
=y e (.

(vi) Not always true.
Let X = {0,1}, Y = {0}, f be the function taking all elements of X to 0, and A = {0}.
Then f(A) = {0}, and f~1(f(A)) = {0, 1}, which is not a subset of A.

(vii) Not always true.

Let X = {0}, Y = {0,1}, and let f be the function taking 0 to 0. Let C =Y. Then
f7HC) = X, and f(f7H(C)) = {0}

(viii) Always true.

For any z € X,

r€e A= f(z) € f(A)
=z € fTH(f(A)).



4. (ii) True if f is one-to-one. For then, for any y € rany, if z is the unique element of
x such that f(z) =y, then

ye f(AnB)iffx € ANB
ifre Aand x € B

iff y e f(A) and y € f(B)
iff y € f(A)n f(B).

(vi) True if f is one-to-one. For then, for any z € X,

z € fTHf(A) = f(z) € f(A)
= 3z (f(2) = f(z) and z € A)
=z €A since f is one-to-one.

(vii) True if f is onto. For then, for any y € Y,

yeC=3z(f(z) =y) since f is onto
:>E|$(f($)=yandf()60) since y € C
= 3z (f(z) =y and z € f7(C))
=y f(f(0)).

5. There are a number of different correct ways to answer this question. We just give one
method for each part.

(i) We first prove that N x N is countable, by defining a bijection between it and N.
(We will assume that 0 € N.)
Define f : N x N — N so that

flm,n)=2"(2n+1) — 1.

First, we note that its range is included in N, for if m is a non-negative integer, than
2™ is a positive integer; likewise if n is a non-negative integer, then 2n + 1 is a positive
integer. So f(m,n) € N.

Next, we argue that f is one-to-one. Suppose that f(m,n) = f(m’,n’). Then 2™(2n+
1) = 2™ (2n' + 1). If m < m’, then we can perform cancellation to show that 2n + 1 =
2™'=m(2n/ +1). But 2n41 is odd and 2™ ~™(2n’+1) is even, which is impossible. Likewise
it is impossible that m’ < m. So m’ = m.

Now we cancel and see that 2n + 1 = 2n’ + 1. Then n = n’.

So m =m' and n = n’, as required.

Finally we show that f is onto. Suppose k is any non-negative integer. Let m be
the largest non-negative integer such that 2™ is a factor of k + 1; then if k¥ +1 = 2™q,
then ¢ must be odd. Thus there is a non-negative integer n such that ¢ = 2n + 1. So
k+1=2"2n+1),s0 k=2"(2n+1) — 1= f(m,n).

The function f thus defined is the Gadel pairing function. There are of course many
other bijections between N x N and N that one can define.



Now suppose that A and B are countably infinite sets. Suppose ¢ : N — A and
h : N — B are both bijections. Then we define a bijection between A x B and N thus:
define a function F' so that

F(g(m), h(n)) = f(m,n).

Then F' is clearly a bijection, and A x B is countable.
We can modify this argument to deal with the case when A or B is finite.

(ii) We show that Z is countable, using the previous part, by exhibiting a bijection
between {0,1} x N and Z. Define f : {0,1} x N — Z so that

fO,n)=mn

for all n € N, and
f(lan) =—-1-n

for all n € N.

We show that Q is countable, again using part (i), by exhibiting a one-to-one function
from Q to Z X N. Define g : Q — Z x N as follows. If ¢ € Q, then express g in lowest
terms; that is, write it as m/n, where m € Z, n € N\ {0}, and m and n have no common
factors. Let f(q) = (m,n).

(iii) There is a slick way to answer this question using factorisation of natural numbers
into primes. The method described here is a bit more sophisticated but uses less knowledge
of algebra.

First, we define, by induction on n, a one-to-one function g,, from N™ to N.

Let f be the pairing function defined in part (i).

There is only one element of N°, so let gy be the function mapping that element to 0.

Let g1 : N — N be the identity.

If k> 1and n=Fk+ 1, define

gn(m17m27 .- -amn) = f(gk(m17 .- 'Jmk)am'n,)'

Next, for each n, we define a one-to-one function from N to N, where N[ is the set
of n-element subsets of N.

Suppose A € N[M. Write out the elements of A in increasing order of size, as a; <
ag < -+ < an. Then define h,(A) to be the ordered n-tuple (a1, as,...,a,).

Finally, let N<“ be the set of all finite subsets of N, and define a one-to-one function
F from it to N as follows.

Suppose A is a finite subset of N. Suppose A has n elements.

Then define F(A) to be f(n, hn(gn(A))).

(iv) Suppose that b : N — pN is a bijection. Consider the set
E={neN:n¢h(n)}.

Since h is onto, there exists m € N such that E = h(m). But then, if m € E, then
m € h(m) and so m ¢ E, while if m € E, then m ¢ h(m) so m ¢ E. So we have a
contradiction.



