B1 Set Theory: Solutions to questions on problem sheet 0

- **1.** \emptyset has no elements. But $\{\emptyset\}$ has an element, namely \emptyset . So \emptyset and $\{\emptyset\}$ do not have precisely the same elements, so they are not equal.
- **2.** (i) For any x,

$$x \in A \cap (B \cup C) \text{ iff } x \in A \text{ and } x \in B \cup C$$

$$\text{iff } x \in A \text{ and either } x \in B \text{ or } x \in C$$

$$\text{iff } x \in A \text{ and } x \in B, \text{ or both } x \in A \text{ and } x \in C$$

$$\text{iff } x \in A \cap B \text{ or } x \in A \cap C$$

$$\text{iff } x \in (A \cap B) \cup (A \cap C).$$

Hence $A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$.

(ii) For any x,

$$x \in A \cup (B \cap C)$$
 iff $x \in A$ or $x \in B \cap C$
iff $x \in A$ or both $x \in B$ and $x \in C$
iff $x \in A$ or $x \in B$, and either $x \in A$ or $x \in C$
iff $x \in A \cup B$ and $x \in A \cup C$
iff $x \in (A \cup B) \cap (A \cup C)$.

Hence $A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$.

(iii) For any x,

$$x \in X \setminus (A \cup B)$$
 iff $x \in X$ and $x \notin A \cup B$
iff $x \in X$ and x does not belong to either A or B
iff $x \in X$ and $x \notin A$ and $x \notin B$
iff $x \in X \setminus A$ and $x \in X \setminus B$
iff $x \in (X \setminus A) \cap (X \setminus B)$,

so
$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$
.

(iv) For any x,

$$x \in X \setminus (A \cap B) \text{ iff } x \in X \text{ and } x \notin A \cap B$$
 iff $x \in X$ and x does not belong to both A and B iff $x \in X$, and $x \notin A$ or $x \notin B$ iff $x \in X \setminus A$ or $x \in X \setminus B$ iff $x \in (X \setminus A) \cup (X \setminus B)$,

so
$$X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$$
.

3. (i) Always true.

For any $y \in Y$,

$$y \in f(A) \cup f(B)$$
 iff $y \in f(A)$ or $y \in f(B)$
iff there exists $x \in A$ such that $f(x) = y$
or there exists $x \in B$ such that $f(x) = y$
iff there exists $x \in A \cup B$ such that $f(x) = y$
iff $y \in f(A \cup B)$.

(ii) Not always true.

Let $X = \{0,1\}$, $Y = \{0\}$, f be the function taking all elements of X to 0, $A = \{0\}$, and $B = \{1\}$.

Then $f(A) = f(B) = \{0\}$, so $f(A) \cap f(B) = \{0\}$. However $A \cap B = \emptyset$, so $f(A \cap B) = \emptyset$.

(iii) Always true.

For any $x \in X$,

$$x \in f^{-1}(C) \cup f^{-1}(D)$$
 iff $x \in f^{-1}(C)$ or $x \in f^{-1}(D)$
iff $f(x) \in C$ or $f(x) \in D$
iff $f(x) \in C \cup D$
iff $x \in f^{-1}(C \cup D)$.

(iv) Always true.

For any $x \in X$,

$$x\in f^{-1}(C)\cap f^{-1}(D) \text{ iff } x\in f^{-1}(C) \text{ and } x\in f^{-1}(D)$$
 iff $f(x)\in C$ and $f(x)\in D$ iff $f(x)\in C\cap D$ iff $x\in f^{-1}(C\cap D)$.

(v) Always true.

For any $y \in Y$,

$$y \in f(f^{-1}(C)) \Rightarrow \exists x (x \in f^{-1}(C) \text{ and } f(x) = y)$$

 $\Rightarrow \exists x (f(x) \in C \text{ and } f(x) = y)$
 $\Rightarrow y \in C.$

(vi) Not always true.

Let $X = \{0, 1\}$, $Y = \{0\}$, f be the function taking all elements of X to 0, and $A = \{0\}$. Then $f(A) = \{0\}$, and $f^{-1}(f(A)) = \{0, 1\}$, which is not a subset of A.

(vii) Not always true.

Let $X = \{0\}$, $Y = \{0, 1\}$, and let f be the function taking 0 to 0. Let C = Y. Then $f^{-1}(C) = X$, and $f(f^{-1}(C)) = \{0\}$.

(viii) Always true.

For any $x \in X$,

$$x \in A \Rightarrow f(x) \in f(A)$$

 $\Rightarrow x \in f^{-1}(f(A)).$

4. (ii) True if f is one-to-one. For then, for any $y \in \operatorname{ran} y$, if x is the unique element of x such that f(x) = y, then

$$y \in f(A \cap B)$$
 iff $x \in A \cap B$
iff $x \in A$ and $x \in B$
iff $y \in f(A)$ and $y \in f(B)$
iff $y \in f(A) \cap f(B)$.

(vi) True if f is one-to-one. For then, for any $x \in X$,

$$x \in f^{-1}(f(A)) \Rightarrow f(x) \in f(A)$$

 $\Rightarrow \exists z \ (f(z) = f(x) \text{ and } z \in A)$
 $\Rightarrow x \in A \text{ since } f \text{ is one-to-one.}$

(vii) True if f is onto. For then, for any $y \in Y$,

$$y \in C \Rightarrow \exists x (f(x) = y)$$
 since f is onto
 $\Rightarrow \exists x (f(x) = y \text{ and } f(x) \in C)$ since $y \in C$
 $\Rightarrow \exists x (f(x) = y \text{ and } x \in f^{-1}(C))$
 $\Rightarrow y \in f(f^{-1}(C)).$

- **5.** There are a number of different correct ways to answer this question. We just give one method for each part.
- (i) We first prove that $\mathbb{N} \times \mathbb{N}$ is countable, by defining a bijection between it and \mathbb{N} . (We will assume that $0 \in \mathbb{N}$.)

Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ so that

$$f(m,n) = 2^m (2n+1) - 1.$$

First, we note that its range is included in \mathbb{N} , for if m is a non-negative integer, than 2^m is a positive integer; likewise if n is a non-negative integer, then 2n+1 is a positive integer. So $f(m,n) \in \mathbb{N}$.

Next, we argue that f is one-to-one. Suppose that f(m,n) = f(m',n'). Then $2^m(2n+1) = 2^{m'}(2n'+1)$. If m < m', then we can perform cancellation to show that $2n+1 = 2^{m'-m}(2n'+1)$. But 2n+1 is odd and $2^{m'-m}(2n'+1)$ is even, which is impossible. Likewise it is impossible that m' < m. So m' = m.

Now we cancel and see that 2n + 1 = 2n' + 1. Then n = n'.

So m = m' and n = n', as required.

Finally we show that f is onto. Suppose k is any non-negative integer. Let m be the largest non-negative integer such that 2^m is a factor of k+1; then if $k+1=2^mq$, then q must be odd. Thus there is a non-negative integer n such that q=2n+1. So $k+1=2^m(2n+1)$, so $k=2^m(2n+1)-1=f(m,n)$.

The function f thus defined is the Gödel pairing function. There are of course many other bijections between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} that one can define.

Now suppose that A and B are countably infinite sets. Suppose $g:\mathbb{N}\to A$ and $h:\mathbb{N}\to B$ are both bijections. Then we define a bijection between $A\times B$ and \mathbb{N} thus: define a function F so that

$$F(g(m), h(n)) = f(m, n).$$

Then F is clearly a bijection, and $A \times B$ is countable.

We can modify this argument to deal with the case when A or B is finite.

(ii) We show that \mathbb{Z} is countable, using the previous part, by exhibiting a bijection between $\{0,1\} \times \mathbb{N}$ and \mathbb{Z} . Define $f: \{0,1\} \times \mathbb{N} \to \mathbb{Z}$ so that

$$f(0,n) = n$$

for all $n \in \mathbb{N}$, and

$$f(1,n) = -1 - n$$

for all $n \in \mathbb{N}$.

We show that \mathbb{Q} is countable, again using part (i), by exhibiting a one-to-one function from \mathbb{Q} to $\mathbb{Z} \times \mathbb{N}$. Define $g: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N}$ as follows. If $q \in \mathbb{Q}$, then express q in lowest terms; that is, write it as m/n, where $m \in \mathbb{Z}$, $n \in \mathbb{N} \setminus \{0\}$, and m and n have no common factors. Let f(q) = (m, n).

(iii) There is a slick way to answer this question using factorisation of natural numbers into primes. The method described here is a bit more sophisticated but uses less knowledge of algebra.

First, we define, by induction on n, a one-to-one function g_n from \mathbb{N}^n to \mathbb{N} .

Let f be the pairing function defined in part (i).

There is only one element of \mathbb{N}^0 , so let g_0 be the function mapping that element to 0.

Let $g_1: \mathbb{N} \to \mathbb{N}$ be the identity.

If $k \ge 1$ and n = k + 1, define

$$g_n(m_1, m_2, \dots, m_n) = f(g_k(m_1, \dots, m_k), m_n).$$

Next, for each n, we define a one-to-one function from $\mathbb{N}^{[n]}$ to \mathbb{N} , where $\mathbb{N}^{[n]}$ is the set of n-element subsets of \mathbb{N} .

Suppose $A \in \mathbb{N}^{[n]}$. Write out the elements of A in increasing order of size, as $a_1 < a_2 < \cdots < a_n$. Then define $h_n(A)$ to be the ordered n-tuple (a_1, a_2, \ldots, a_n) .

Finally, let $\mathbb{N}^{<\omega}$ be the set of all finite subsets of \mathbb{N} , and define a one-to-one function F from it to \mathbb{N} as follows.

Suppose A is a finite subset of N. Suppose A has n elements.

Then define F(A) to be $f(n, h_n(g_n(A)))$.

(iv) Suppose that $h: \mathbb{N} \to \wp \mathbb{N}$ is a bijection. Consider the set

$$E = \{ n \in \mathbb{N} : n \notin h(n) \}.$$

Since h is onto, there exists $m \in \mathbb{N}$ such that E = h(m). But then, if $m \in E$, then $m \in h(m)$ and so $m \notin E$, while if $m \in E$, then $m \notin h(m)$ so $m \notin E$. So we have a contradiction.