
4. The integers, the rationals and the reals

One might have been forgiven, presented with the axioms for a complete ordered field,
for wondering whether these axioms made sense. Do these axioms make sense? Is there
such a thing as R after all?

One answer is that it is clear to our intuition that R does exist. But here we take
a different approach, by constructing R within Set Theory. One could argue that the
axioms of Set Theory—or rather, those we will be using (Pairs, Unions, Subset, Power Set,
Infinity)—are more clearly true, to the intuition, than is the existence of a continuum.

But let’s be clear about what we are doing. We will be constructing a complete
ordered field; that is, proving that the axiomatisation of the reals we saw in the First
Year, is consistent. Will the thing we build be “the” “true” real line? As mathematicians,
we don’t care, because we are accustomed to regarding isomorphic structures as being
indistinguishable, and any complete ordered field is isomorphic to R.* More compactly,
we may say that mathematicians are more interested in what things do than in what they
are.

In what follows, the proofs will be omitted. If you are feeling energetic, you could try
supplying them.

4.1. The integers
First, we construct Z from ω. The difference between Z and ω is, of course, that in Z,

we can do subtraction. In Z, we have to provide values for all expressions m−n, where m
and n are natural numbers. That idea underlies the construction that follows, where the
ordered pair 〈m,n〉 stands for m− n.

On ω × ω, define a relation ∼ so that

〈a, b〉 ∼ 〈c, d〉 iff a+ d = b+ c.

(You would expect a− b and c− d to be equal, after all, if and only if a+ d = b+ c.)
We define Z to be the set of equivalence classes, and define the following structure on

it.
1. We define [〈a, b〉] + [〈c, d〉] to be [〈a+ c, b+ d〉]. Of course, it is necessary to show

that this is well-defined.
2. We define [〈a, b〉].[〈c, d〉] to be [〈ac+ bd, ad+ bc〉]. Again, one would have to show

that this is well-defined.
3. We define the zero of Z, 0Z, to be [〈0, 0〉].
4. We define the one of Z, 1Z, to be [〈1, 0〉].
5. Additive inverses: we define −[〈a, b〉] to be [〈b, a〉].
6. Order: we say [〈a, b〉] ≤ [〈c, d〉] iff a+ d ≤ b+ c.
It is then necessary to prove that Z is an integral domain with an order relation such

that, if a ≤ b and c ≤ d, then a+ b ≤ c+ d, and ac ≤ bd provided a, b ≥ 0Z, and that the
map φ : n 7→ [〈n, 0〉] is an isomorphism between ω and the set of non-negative elements of
Z.

* Though that may not stop us wondering in our leisure hours.
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4.2. The rationals
Given any integral domain, we may construct its field of fractions, essentially by pro-

viding values for all quotients a/b in the same spirit that we provided values for differences
m− n when we constructed Z.

In the case of Z, the construction goes as follows.
On Z × (Z \ {0Z}), define a relation ∼ as follows:

〈a, b〉 ∼ 〈c, d〉 iff ad = bc.

As before, we define Q to be the set of equivalence classes, and make the following
definitions (and we will have proofs of well-definedness to do).

1. We define [〈a, b〉] + [〈c, d〉] to be [〈ad+ bc, bd〉].
2. We define [〈a, b〉].[〈c, d〉] to be [〈ac, bd〉].
3. We define the zero of Q, 0Q, to be [〈0Z, 1Z〉].
4. We define the one of Q, 1Q, to be [〈1Z, 1Z〉].
5. Additive inverses: we define −[〈a, b〉] to be [〈−a, b〉].

6. Multiplicative inverses: if a 6= 0Z, then we define
(

[〈a, b〉]
)

−1

to be [〈b, a〉].
6. Order: if b, d > 0Z, then we say [〈a, b〉] ≤ [〈c, d〉] iff ad ≤ bc.
Now we must show that Q is an ordered field, and that the map ψ : a 7→ [〈a, 1〉] is a

one-to-one, order-preserving ring homomorphism from Z to Q.

4.3. The reals
There are several ways to construct R from Q, and which one seems most natural will

depend on what aspect of the structure of R we are most interested in. The construction
given here, that of Dedekind cuts, focuses on the fact that R is an ordered set.

We define a Dedekind cut to be a subset R of Q such that
a. R 6= ∅,
b. R 6= Q,
c. For all q ∈ R, for all r ≤ q, r ∈ R,
d. R has no greatest element.
Intuitively, for some real number x, R is the set of all rationals less than x.
We define R to be the set of all Dedekind cuts (which exists, by an application of the

Subset Scheme to ℘Q), and impose the following structure on it.
1. We define 0R to be the set of negative rational numbers.
2. We define 1R to be the set of all rationals less than 1Q.
3. We define R + S to be {r + s : r ∈ R, s ∈ S}. Of course, we must prove that this

is a Dedekind cut.
4. We define −R to be {−r : ∃s < r (s /∈ R)}. We must, again, prove that is a

Dedekind cut.
(It would seem more natural to define −R to be the set {−r : r /∈ R}. But then

there’s the problem that this set might have a greatest element, and so not be a Dedekind
cut.)

5. We define R.S by cases.
If R or S is equal to 0R, then R.S is equal to 0R.
Now suppose that neither R nor S is equal to 0R.
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If R and S both contain 0Q, let T be the set of all products r.s such that r, s ≥ 0Q,
r ∈ R and s ∈ S. Define R.S to be T ∪ {q ∈ Q : q ≤ 0Q}.

If R does not contain 0Q but S does, define R.S to be −((−R).S).
If R contains 0Q but S does not, then define R.S to be −(R.(−S)).
If neither R nor S contains 0Q, define R.S to be (−R).(−S).
6. We define R−1 by cases, provided R is not equal to 0R.
If 0Q ∈ R, then we define R−1 to be the union of {q ∈ Q : q ≤ 0Q} with {r−1 : ∃s <

r (s /∈ R)}.
If 0Q /∈ R, then by assumption there exists s < 0R such that s /∈ R. Find r ∈ Q such

that s < r < 0Q (for instance, r = s/2). Then −r ∈ −R, and, since 0Q < −r, 0Q ∈ −R
also. So, define R−1 to be −(−R)−1.

7. Order: we say that R ≤ S iff R ⊆ S.
Finally, we must prove that R is a complete ordered field, and that the map χ : q 7→

{r ∈ Q : r < q} is an order-preserving field homomorphism from Q to R.
The proof of completeness is extremely simple: if S is a bounded non-empty subset

of R, then its supremum is simply
⋃

S.

4.4. The set-theoretic justification
Which axioms of Set Theory have we used?
Of course, we have used the Axiom of Infinity, which proves for us that ω exists. We

have used the Subset Axiom Scheme often; for instance, R is the set of all elements of ℘Q

satisfying a particular list of conditions; we use the Subset Axiom to derive R from ℘Q.
Of course we have used the Power Set Axiom, both explicitly, and not: we need the Power
Set Axiom to show that ω × ω exists, for instance. We have also used the Axiom of Pairs
and the Axiom of Unions.

But it is also interesting to notice what we have not used. We have not used the Axiom
of Foundation. More significantly, we have not used the Replacement Axiom Scheme, or
the Axiom of Choice.

This is significant because both the Axiom of Choice and the Replacement Axiom
Scheme have been doubted by mathematicians. I may go into why, a bit later in term,
when we have come to these axioms.
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