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Chapter 6

Rotations, AngularMomentum, andTheir Representations
In this chapter, we analyse a crucial symmetry that appears time and again in important quantum systems: that of three-
dimensional rotations. You know well from your geometry course (and perhaps elsewhere) that the proper rotation
group in three dimensions is SO(3), which can be identified with the group of three-by-three orthogonal matrices with
unit determinant. In line with the general structures described in the previous chapter, we expect that for a quantum
system describing objects in three-dimensions, there should be a (projective) unitary representation of SO(3) on our
Hilbert space. We will have seen how this cashes out in practice by the end of the chapter.

6.1 Rotation group SO(3) and its infinitesimal generators

We begin with a review of some technical aspects of the the three-dimensional orthogonal group O(3). This group is
normally realised as a group of three-by-three real matrices acting on Cartesian coordinates xi = (x1, x2, x3) according
to,

xi −→
3∑

j=1
Rijxj , RRᵀ = 13×3 , (6.1)

where 13×3 is the three-by-three identity matrix. The special orthogonal group SO(3) restricts to those transformations
that are rotations—it is the subgroup of O(3) for which det(R) = 1.

As with translations, rotations can be taken arbitrarily close to the identity. To characterise this, let us consider a one-
parameter family of rotation matrices R(t) with R(0) = 13×3. (You may wish to think of this as the family of rotations
about a fixed axis with t proportional to the angle of rotation.) We can define the matrix elements of an infinitesimal
rotation matrix ω according to

Rij(t) = δij + tωij + O(t2) . (6.2)

Expanding the condition R(t)Rᵀ(t) = 13×3 to first order in t gives

ωij + ωji = 0 , (6.3)

or inmatrix notation, ω+ωᵀ = 0, i.e., ω is a skew symmetric matrix. As you saw in prelims, it is natural to organise the
components ωij of this matrix into a vector ω = (ω1, ω2, ω3) = (ω32, ω13, ω21) that encodes the axis about which the
instantaneous rotation is taking place and its magnitude. The vector and matrix index labelling for these parameters
are related according to

ωi = −
1
2
∑

j,k

εijkωjk , ωij = −
∑

k

εijkωk . (6.4)

The first-order action of R(t) on the coordinate xi then is given by

R(t)x = x+ tδx+ O(t2) ,

δxi =
∑

j
ωijxj =

∑

j
εijkωjxk = (ω ∧ x)i . (6.5)

The group SO(3) is non-Abelian, so in general pairs of rotations do not commute, i.e., RR̃ $= R̃R. This lack of commu-
tativity is encoded in the commutator RR̃R−1R̃−1, which is itself element of SO(3) that will be the identity if and only
if R and R̃ commute. Let us consider this commutator at the level of infinitesimal rotations. If we take t small in R(t)
and R̃(t), then expanding the commutator to second order we have38

R(t)R̃(t)R(t)−1R̃(t)−1 = (1 + tω + . . .) (1 + tω̃ + . . .) (1− tω + . . .) (1− tω̃ + . . .) ,

= 1 + t2 (ωω̃ − ω̃ω) + . . . ,
(6.6)

38You can feel free to take this equation for granted, but deriving it while keeping second-order terms might be instructive.
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so here the noncommutativity manifests in terms of the matrix commutator [ω, ω̃] = ωω̃ − ω̃ω. Notice that

[ω, ω̃]ik =
∑

j
ωijω̃jk − ω̃ijωjk = −

∑

l

εikl(ω ∧ ω̃)l , (6.7)

where to prove this it is useful to use the identity
∑

k εijkεklm = δilδjm − δimδjl. Alternatively, if we tacitly use (6.4) to
identify vectors with skew-symmetric matrices,

[ω, ω̃] = (ω ∧ ω̃) . (6.8)

The vector space of three-by-three skew-symmetric matrices endowed with the bilinear operation of the matrix com-
mutator (observe that this preserves skew-symmetry) is known as the Lie algebra so(3). In the theory of Lie groups,
one finds that this matrix commutator encodes the full structure of the group SO(3) up to a single ambiguity, to which
we will return later in our discussion of spin.

6.2 Rotations and wave functions

As our first example, we can define a an action of the rotation group on wave functions in three dimensions, i.e., on
the Hilbert space L2(R3), in a natural manner:

SO(3)× L2(R3) −→ L2(R3) ,

(R, ψ) &−→ (U(R)ψ) , (U(R)ψ) (Rx) = ψ(x) ,
(U(R)ψ) (x) = ψ(Rᵀx) .

(6.9)

The appearance of the transpose (i.e., inverse) in the argument is analogous to the minus sign that we included in our
translation operator, and analogously to that case we have for generalised position eigenstates,

U(R) |x〉 = |Rx〉 . (6.10)

This action is manifestly complex linear. It is also unitary, since we have

〈U(R)ψ|U(R)ψ〉 =
∫

R3
|ψ(Rᵀx)|2 d3x =

∫

R3
|ψ(x̃)|2 d3x̃ = 〈ψ|ψ〉 , (6.11)

where the change of variables x → x̃ = Rᵀ x introduces no Jacobian because R is an orthogonal matrix. Under
composition, we see the importance of the transpose:39

(U(R1)U(R2)ψ) (x) = (U(R2)ψ) (Rᵀ
1 x) = ψ(Rᵀ

2R
ᵀ
1 x) = ψ ((R1R2)

ᵀx) = (U(R1R2)ψ) (x) . (6.12)

so our operators satisfy the group law,
U(R1R2) = U(R1)U(R2) , (6.13)

and we have a unitary representation of SO(3).

Let us consider the infinitesimal version of this action. Using the expansion for rotation matrices in Equation (6.2), we
have

ψ(Rᵀ(t)x) = ψ
(
x− tω ∧ x+ O(t2)

)
,

≈ ψ(x)− t(ω ∧ x) ·∇ψ(x) ,
= ψ(x)− t ω · (x ∧∇ψ) ,

=

(
1L2(R) −

it
!ω · L

)
ψ(x) .

(6.14)

39You might try rewrite the manipulations in Equation (6.12) using bra-ket notations for wave functions to get a feeling for the way the
compositions here are behaving and the relation to the action on generalised position eigenstates.
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where L is the orbital angular momentum operator that you met in A11 Quantum Theory, which we can rewrite in
terms of position and momentum operators,

L := X ∧ P . (6.15)

You have seen in that previous course, and one can compute explicitly, that the components Li of the angular momen-
tum operator obey the commutation relations

[Li, Lj] = i!
∑

k

εijkLk . (6.16)

For general vectors ω and ω̃, one then finds

[ω · L, ω̃ · L] = i!(ω ∧ ω̃) · L , (6.17)

or alternatively, in terms of the infinitesimal generators with extra constants included,
[
− i
!ω · L,− i

! ω̃ · L
]
= − i

! (ω ∧ ω̃) · L , (6.18)

We observe that these exactly match the commutation relation (6.8) with the replacement

ω ←→ − i
!ω · L , (6.19)

where on the left hand side, ω represents a skew-symmetric matrix, and on the right hand side ω is a vector indicating
the axis of rotation and we have operators on L2(R). We say that these operators furnish a representation of the Lie
algebra so(3) on the Hilbert space L2(R).

6.3 General unitary representations

In the previous analysis, we had a manifest action of the rotation group on the space of wave functions. In a more
general and abstract setting, we must consider a general (projective) unitary representation of the rotation group on a
Hilbert spaceH. This isn’t such an easy thing to get our hands on, sowewill approach the problem through infinitesimal
rotations. We introduce infinitesimal generators of rotations (in the sense of Stone’s theorem) and denote them by J.
For a one-parameter families of rotations R(t), we then have (just as we did for wave functions),40

U (R(t)) = 1H −
it ω · J
! + O(t2) . (6.20)

We can compare the group-theoretic commutator of two rotations with the composition taken both before and after
applying the map to U(H); we have the equation

U (R(t))U
(
R̃(t)

)
U (R(t))∗ U

(
R̃(t)

)∗
= U

(
R(t)R̃(t)R(t)−1R̃(t)−1) , (6.21)

where on the left we have the commutator of elements of U(H), and on the right we have the image in U(H) of the
commutator of elements of SO(3). Letting each rotation be infinitesimal of the same order, we get, by comparing terms
at second order,

[ω · J, ω̃ · J] = i!(ω(1) ∧ ω(2)) · J (6.22)

which is exactly analogous to (6.18) with L replaced by J. In components, this is

[Ji, Jj] = i!
∑

k

εijkJk . (6.23)

This is an important result; whenever we have a representation of the rotation group on a Hilbert space, we get a trio
of self-adjoint angular momentum operators, {Ji}, that obey the commutation relations (6.23) and generate the action

40For the very discerning reader, the linear dependence on ω in (6.20) requires some explanation.
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of more general rotations via exponentiation in the sense of Stone’s theorem. This is an instance of a fundamental
relationship between representations of Lie groups and representations of Lie algebras.

6.4 Angular momentummultiplets

Wehave (at least partially) reduced problem of studying of rotations in quantum systems to the study of representations
of the angular momentum operators:

Definition 6.4.1. A representation of the angular momentum operators is a Hilbert space, H, equipped with an action
of three self-adjoint operators Ji : H→ H, i = 1, 2, 3, satisfying the commutation relations (6.23).

Remark 6.4.2. This is equivalent to a representation of the Lie algebra so(3) on H. The difference is in the factor of
! on the right hand side of (6.23), which can be removed by an appropriate rescaling of the Ji. Also, in some cases it
is conventional for a representation of so(3) to be described in terms of anti-self adjoint operators (operators obeying
A∗ = −A), in which case a factor of i is incorporated into the rescaling as well.

Definition 6.4.3. An irreducible representation of the angular momentum operators is a representation of the angular
momentum operators for which there is no a proper subspace Hsub ⊂ H with Ji : Hsub → Hsub, i.e., H contains no
proper sub-representation of the angular momentum operators.

InA11QuantumTheory, in the context of discussing orbital angularmomentum for three-dimensionalwave functions,
you identified the structure of general irreducible representations of the angular momentum operators. Here we will
recall the story in the general case. We define the total angular momentum operator J2 = J · J. A short calculation
shows that

[J2, Ji] = 0 , (6.24)

so the action of the Ji operators preserves eigenspaces of J2. Since J2 is self-adjoint, we can choose to work in a basis of
its eigenstates for any representation of the angular momentum operators, and so ifH is an irreducible representation,
then J2 must just act by a multiple of the identity on H. We can give a completely explicit description of all finite-
dimensional, irreducible representations if we furthermore choose to diagonalise J3.

Theorem 6.4.4. The irreducible representations of the angular momentum operators are labeled by a non-negative
half-integer j = 0, 1

2 , 1, . . . ∈
1
2N known as the spin of the representation. Denote the Hilbert space admitting such a

representation by Hspin j. The dimension of Hspin j is 2j + 1 and J2 acts with eigenvalue !2j(j + 1).

There is an orthonormal basis of Hspin j consisting of eigenvectors |j,m〉 of J3 with J3 |j,m〉 = !m |j,m〉 for m =
−j,−j + 1, . . . j− 1, j.

Proof. We introduce the ladder operators J± = J1 ± iJ2, which commute with J2. We also can check that

[J3, J±] = ±!J± . (6.25)

This gives them the interpretation as raising and lowering operators for eigenvectors |j,m〉 of J3 (with eigenvalue !m,
say):

J3 (J± |j,m〉) = ±!J± |j,m〉+ J±J3 |j,m〉 = !(m ± 1) (J± |j,m〉) . (6.26)

Thus J± |j,m〉 is a multiple of an eigenvector for J3 with eigenvalue !(m± 1). The following then shows that the values
for |m| must be bounded.

Lemma 6.4.5. Let J2 |ψ〉 = λ!2 |ψ〉 and J3 |ψ〉 = !m |ψ〉. Then for all ϕ ∈ H,

〈J±ϕ|J±ψ〉 = !2 (λ −m(m ± 1)) 〈ϕ|ψ〉 and ||J±ψ||2 = !2 (λ −m(m ± 1)) ||ψ||2 . (6.27)

Proof. Observe from the angular momentum commutation relations that

J+J− = J2 − J23 + !J3 , J−J+ = J2 − J23 − !J3 , (6.28)
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Figure 2. Depiction of irreducible representation of the angular momentum operators.

so the identities follow from

〈J−ϕ|J−ψ〉 = 〈ϕ|J+J−ψ〉 =
〈
ϕ
∣∣(J2 − J23 + !J3)ψ

〉
, (6.29)

and using the eigenvalue relations (and similarly for the J+ plus version of (6.29)). !

Given that λ is fixed on an irreducible representation, |m| cannot be too large as otherwise the norm squared of these
states would be negative. The only way to avoid |m| becoming arbitrarily large in the negative direction is if for some
smallest value m−, J−|ψm−

〉 = 0 where J3|ψm−
〉 = !m−|ψm−

〉, which requires λ = m−(m− − 1). The only way
that |m| can avoid becoming arbitrarily large in the positive direction is if analogously for some largest value m+,
J+|ψm+

〉 = 0, so λ = m+(m+ + 1). To realise both situations at once, we need

λ = j(j + 1) , m− = −j , m+ = j . (6.30)

By construction m+ − m− = 2j must be an integer (since starting with the |ψm−
〉 and acting repeatedly with J+ we

must arrive eventually at |ψm+
〉). Hence the constraints on the eigenvalues are as stated in the theorem.

To finish off the proof, we require that the J3 eigenvalues be nondegenerate. This follows from irreducibility. Suppose
that there are two linearly independent eigenvectors |j,m; 1〉 and |j,m; 2〉 that, without loss of generality, can be taken
to be mutually orthogonal. Then it follows from the expressions above that Jn± |j,m; 1〉 and Jn± |j,m; 2〉 are orthogo-
nal. Thus there will be two nontrivial Ji-invariant subspaces spanned by Jn± |j,m; 1〉 and by Jn± |j,m; 2〉, contradicting
irreducibility. !

We conclude with a few additional comments:

• If we are working in a definite irreducible representation of spin j, we might sometimes simply denote the state
kets |m〉 to encode the J3 eigenvalue.

• The basis |j,m〉 of Hspin j is unique up to an overall normalisation for the entire representation if we impose the
normalisation conditions

|j,m ± 1〉 = J± |j,m〉
!
√

j(j + 1)−m(m ± 1)
. (6.31)

This definition ensures in particular that the states |j,m〉 all have the same norm, so if we choose a particular
state, say |j, j〉, to be unit normalised and construct the rest of the representation by the action of J−, then all of
these states will be unit normalised.
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• Important examples of representations with integer spin were given in A11 QuantumTheory in terms of spher-
ical harmonics. These are angular momentum representations realised using the orbital angular momentum
operators L, which can be written in spherical polar coordinates as

L± = i! e±iφ
(
cot θ ∂

∂φ ± i ∂
∂θ

)
, L3 = −i! ∂

∂φ . (6.32)

The total spin j is usually denoted by # in this context and is required to be an integer. The wave functions
Ψm

! (φ, θ) corresponding to the basis states |#,m〉 take the form

Ym
! (φ, θ) = Pm

! (cos θ)eimφ , (6.33)

where Pm
! (x) are associated Legendre functions. The requirement that # and m be integral follows from the need

for eimφ to be single valued.

6.5 Spin 1/2

We saw that while half-integral spin is acceptable in the context of representations of the angularmomentumoperators,
it doesn’t arise in the context of orbital angular for three-dimensional wave functions. Let us investigate the simplest
case: spin j = 1/2.

The discussion above gives an explicit realisation of this representation,

Hspin 1
2
∼= C2 = Span

{ ∣∣ 1
2 ,

1
2
〉
,
∣∣ 1
2 ,−

1
2
〉 }

. (6.34)

Of course this is just our old friend the qubit. The above action of J± and hence J1 and J2 is determined by (6.31) for
which in this case the denominator is just !, and the eigenvalue condition determines J3. It follows that in this basis
we have

J = !
2 σ , (6.35)

where σ = (σ1, σ2, σ3) are the same Pauli spin matrices we met in our qubit discussion. Now let us consider a general
rotation by some angle θ about an axis designated by the unit vector n; we denote this by Rn(θ). By Stone’s theorem,
this should be realised on our two-dimensional Hilbert space by the unitary matrix

U(Rn(θ)) =: Un(θ) = exp
(
− iθ

! n · J
)

= exp
(
− iθ

2 n · σ
)

. (6.36)

An explicit computation of this matrix exponential yields a simple expression for the matrix that should represent the
rotation,

Un(θ) = cos
(

θ
2

)
12×2 − i sin

(
θ
2

)
n · σ . (6.37)

It is easy to confirm that these are unitary matrices, and in addition they are manifestly traceless, so are elements of
SU(2). Indeed, by letting n range over the unit sphere in three dimensions and letting θ run from 0 to 2π, this gives
a parameterisation of the most general element of SU(2). However, compared to rotations this is double counting!
Rotating by θ around the axis defined by n is the same as rotating by 2π − θ around the axis defined by−n.

Indeed, for fixed n, we see that setting θ = 2π doesn’t give us back the identity, but rather minus the identity. It is only
upon taking θ = 4π that our unitary matrix returns to the identity. So there is a two-to-one correspondence between
the elements of SU(2) and the inequivalent rotations, i.e., the elements of SO(3).

We are encountering in this example precisely a situation where our symmetry group ( SO(3)) is implemented via a
projective unitary representation that is not strictly a unitary representation of the group we started with. We can
see this in terms of the group law. Consider the rotation Rn(π) that performs a half rotation about the axis n. Then
performing this twice we have have

U (Rn(π))U (Rn(π)) = Un(2π) = −12×2 . (6.38)
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whereas if we compose the rotations before taking the map to unitary matrices, we have

U (Rn(π)Rn(π)) = U(Rn(2π)) = U(Rn(0)) = 12×2 . (6.39)

The sign difference is precisely the type of “extra phase” that is allowed for projective representations!

It turns out that this example is indicative of the general story for half-integer-spin representations. These are projective
unitary representations of SO(3) that do not lift to unitary representations of SO(3). Rather, they correspond to
unitary representations of SU(2), where the relation between the two groups is by a quotient,

P SU(2) := SU(2)/{±1} ∼= SO(3) . (6.40)

In the case of orbital angularmomentum, there ismanifestly a representation of the honest rotation group via the action
on wave functions; consequently only integer spin can occur.
Remark 6.5.1. There is a beautiful observation to make here that I cannot help but include for your entertainment (I
hope). As was observed above, we have a realisation of SU(2) by a choice of unit vector in R3 and an angle θ ∈ 2π.
This gives us a realisation of SU(2) as a circle fibration over the two-sphere (you can imagine a circle corresponding to
the choice of angle sitting over each point on the two-sphere corresponding to the choice of unit vector). This is what’s
known as the Hopf fibration, which realises the three sphere S3 ∼= SU(2) as a circle fibration over S2. The rotation
group SO(3) then gets identified as the quotient space S3/Z2, with Z2 acting as the antipodal map.


