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Chapter 7

Intrinsic Spin and Addition of AngularMomentum
When we model a quantum mechanical particle or system that has some internal structure, the action of the rotation
group can be more complicated than what we have in the case of wave functions. We could describe such a system in
terms of its center of mass, which will be labelled by a point in R3, as well as some internal structure whose quantum
mechanical configurations are encoded in a Hilbert spaceHinternal. The full Hilbert space for such a structured particle
will then given by

H = L2(R3)⊗Hinternal . (7.1)

We will then have a (projective) unitary representation of SO(3) on this Hilbert space generated by some total angular
momentum operators J. At the infinitesimal level, we know that J will act on the center of mass wave function as the
orbital angular momentum operator L, while we can introduce operators S that describe the action on Hinternal,

J = L⊗ 1Hinternal + 1L2(R) ⊗ S , (7.2)

where the L and S operators commute and each satisfy the angular momentum commutation relations,

[Li, Lj] = i!
∑

k

εijkLk , [Si, Sj] = i!
∑

k

εijkSk . (7.3)

If we are describing elementary particles, we expectHinternal to support an irreducible angular momentum representa-
tion; otherwise we would think of the different subrepresentations as corresponding to (detectably!) different versions
of the elementary particle, and therefore we would call them different types of elementary particles. If a particle has
Hspin j as its internal Hilbert space with the attendant operators S describing rotations, then we say the particle itself
has intrinsic spin j (though often we simply shorten this to say the particle has spin j). This intrinsic spin is the quantity
that appears in the spin statistics theorem of Chapter 4.

7.1 Addition of angular momentum

To understand the full action of rotations on a system with both orbital angular momentum and intrinsic spin, we will
have to understand the action of the total angular momentum operators in a system where we initially understand
the action of the components L and S separately. Similarly, if we have a system of n particles each of which has some
angular momentum operator Ji acting on its single-particle Hilbert space, then we will want to understand the total
angular momentum41 J = J(1)+ . . .+ J(n) acting on the composite Hilbert space starting with an understanding of the
individual angular momentum representations. This procedure is, in the physics literature, usually referred to as the
addition of angular momentum. We first pose the problem in the context of there being two constituent representations
of angular momentum.

Problem 7.1.1. Consider the Hilbert space H ∼= H1 ⊗H2 where Hi supports an irreducible representation of the angular
momentum operators J(i) with spin ji. We have dimH = (2j1 + 1)(2j2 + 1). How does this composite system decompose
into irreducible representations of the total angular momentum operator J = J(1) + J(2)?

The answer is given in the following Proposition.

Proposition 7.1.2. Under the action of the total angular momentum, the tensor product H ∼= H1 ⊗H2 of irreducible
representations with spins j1 and j2, respectively, decomposes into irreducible representations according to

H1 ⊗H2 =

j1+j2⊕

J=|j1−j2|

Hspin J . (7.4)

41Here and in what follows we drop the explicit tensor notation for these sums of operators acting on different tensor factors of a composite
Hilbert space.
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Thus we can find an orthonormal basis for this tensor product that we denote by |J,M〉 with J = |j1 − j2|, |j1 − j2| +
1, . . . , j1 + j2 − 1, j1 + j2 and M = −J,−J + 1, . . . , J− 1, J which obey42

(J(1))2 |J,M〉 = !2j1(j1 + 1) |J,M〉 , J2 |J,M〉 = !2J(J + 1) |J,M〉 , (7.5)
(J(2))2 |J,M〉 = !2j2(j2 + 1) |J,M〉 , J3 |J,M〉 = !M |J,M〉 . (7.6)

Figure 3. Depiction of states in the tensor product of irreducible representations of angular momentum with spins j1 and j2, where
we assume j1 ! j2.

Proof. Thesituation described in the following proof is illustrated in Figure 3, which hopefullymakes the combinatorics
of the proof easier to follows.

We assume, without loss of generality, that j1 ! j2. We then proceed inductively, first finding the representation of
highest total spin Hspin (j1+j2) inside H, then in the complement H⊥

spin (j1+j2) ⊂ H finding the representation of next
highest total spin, and so on.

We will write our pure-tensor basis vectors as |j1,m1〉 ⊗ |j2,m2〉 = |m1;m2〉,43 which as a reminder, obey

(J(1))2 |m1;m2〉 = !2j1(j1 + 1) |m1;m2〉 , J (1)3 |m1;m2〉 = !m1 |m1;m2〉 ,

(J(2))2 |m1;m2〉 = !2j2(j2 + 1) |m1;m2〉 , J (2)3 |m1;m2〉 = !m2 |m1;m2〉 .
(7.7)

These are evidently already eigenvectors of J3 = (J (1))3 + (J (2))3, with eigenvalues M = m1 + m2. There is a unique
state with maximum M = j1 + j2, which we must be able to identify with the “top” state in a spin j1 + j2 representation;
we can therefore identify

|J = j1 + j2,M = j1 + j2〉 = |j1; j2〉 . (7.8)

42These states are often written as |j1, j2; J,M〉 to make manifest the constituent spins that are being combined. We will leave these implicit to
avoid overly burdensome notation whenever possible.

43As with the previous basis states, these will sometimes be labelled |j1,m1; j2,m2〉 to indicate the constituent spins. We will avoid this when
possible to minimise notational clutter.
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The rest of the spin J = j1+j2 representation can be recovered by actingwith the total lowering operator J− = J (1)− +J (2)− .
Normalising these using (6.31), we obtain the states |J = j1 + j2,M〉 for M < J. These necessarily constitute a complete
spin J = j1 + j2 subrepresentation in H.

Nextwe consider the stateswithM = j1+j2−1. There are two linearly independent such states, |j1 − 1; j2〉 and |j1; j2 − 1〉.
One combination of these occurs in the spin j1+j2 representation defined above as |J = j1 + j2,M = j1 + j2 − 1〉. Taking
a vector in the orthogonal complement, we get a state vector that is necessarily the top state in a spin j1+ j2−1 represen-
tation, since acting with a raising operator must give zero, else this would be part of the previous spin j1 + j2 represen-
tation. We therefore denote a normalised element of this orthogonal complement by |J = j1 + j2 − 1,M = j1 + j2 − 1〉.
Again acting with J (1)− + J (2)− on this state generates a full irreducible subrepresentation, this time of spin j1 + j2 − 1.

If j2 = 1
2 , then the degeneracy for M eigenvalues with j1 + j2 − 1 ! M ! −(j1 + j2 − 1) is just two, corresponding to

the m2 = ± 1
2 states, and so must be spanned by the corresponding M-eigenstates of the two multiplets we have just

found. In this case we would be done.

If j2 > 1
2 , then the degeneracy for the M = j1 + j2 − 2 eigenvalue is three with (m1,m2) = (j1, j2 − 2), (j1 − 1, j2 − 1)

or (j1 − 2, j2). Thus, as before, there is a nontrivial orthogonal normalised vector |j1 + j2 − 2, j1 + j2 − 2〉 orthogonal
to those M = j1 + j2 − 2 eigenvalues of total spin j1 + j2 and j1 + j2 − 1, unique up to a phase. This gives rise to a spin
J = j1 + j2 − 2 representation by lowering.

In general, the degeneracy states with J3 eigenvalue M is given by 1 + j1 + j2 − |M| for |M| ! j1 − j2, but is 2j2 + 1
otherwise as it cannot exceed the number of choices 2j2 + 1 for m2 (see Figure 3). So we can carry on by induction,
generating a new multiplet at each stage, until we eventually produce all the angular momentum multiplets with spins
from J = j1 − j2 to J = j1 + j2, as required. This gives a total of 2j2 + 1 irreducible representations (2j2 + 1 being the
maximal degeneracy of the M eigenvalue, realised for |M| " j1 − j2). #

Before moving on, we will look at the simplest case of addition of angular momentum: the tensor product of two spin
1/2 systems.

Example 7.1.3 (Two qubits). We can be very explicit in examining the two-qubit system,

H = H⊗2
spin 1

2
. (7.9)

If we adopt the basis for the spin- 12 qubit from the last chapter, we have as our basis for the tensor product Hilbert space∣∣± 1
2 ;±

1
2
〉
, with the signs chosen independently. To make things easier on the eyes, we will adopt the notation |±±〉.

If we organise these by J3 eigenvalue M = m1 + m2, we have

M = +1 : |++〉
M = 0 : |+−〉 |−+〉
M = −1 : |−−〉

(7.10)

Starting with the top state, we produce the following states in the spin-one subrepresentation of this system,

|1, 1〉 = |++〉 , |1, 0〉 = |+−〉+ |−+〉√
2

, |1,−1〉 = |−−〉 . (7.11)

There is an additional spin-zero state (so a rotationally-invariant state),44

|0, 0〉 = |+−〉 − |−+〉√
2

. (7.12)

It may be worth remarking that the spin-one representation consists of bosonic (symmetric) states, while the spin-zero
representation is the one fermionic (anti-symmetric) state in this tensor product. Indeed, the total angular momentum
operators can be seen (by inspection) to commute with the action of permutations on the n-fold tensor product of
identical representations of angular momentum, which means that the bosonic and fermionic subspaces will always
transform among themselves under rotations.

44You might recognise this as the EPR state from our brief discussion of entanglement.
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Example 7.1.4 (Everything from spin one half). The previous example suggests a general construction of the spins j
representation for any j using spin- 12 representations as building blocks. Consider the n-fold symmetric tensor product
of the qubit Hilbert space'nHspin 1

2
. By our results in Chapter 4, this has dimension

dim
(
'nHspin 1

2

)
= n + 1 . (7.13)

If we consider the state |++ · · ·+〉, this has

J(tot)3 |++ · · ·+〉 = !n
2 |++ · · ·+〉 , (7.14)

so this must be an element of a representation with spin greater than or equal to n/2. But on dimensionality grounds,
this can only be a representation of spin n/2 exactly, and indeed it is clear that this state is the top state of its angular
momentum representation. Thus, if you like, you can think of any irreducible representation of angular momentum
in terms of an appropriate number of identical (bosonic) qubits. This can prove a useful mental heuristic for these
representations.

7.2 Clebsch–Gordan coefficients

Equation (7.4) tells us—in general terms—how the tensor product of irreducible angular momentum representations
will transform under the total angular momentum. However, to work with these composite systems and do calcula-
tions in practice, one needs to be able to concretely construct and manipulate the elements of the different irreducible
representations appearing in the direct sum on the right hand side of that equation. In practice, this usually means
having expressions for the precise linear combinations of the states |m1;m2〉 that constitute the states |J,M〉 and vice
versa. To this end we make the following definition.

Definition 7.2.1. The Clebsch–Gordan coefficients Cj1 j2(J,M;m1,m2) are defined by

|J,M〉 =
∑

m1,m2
m1+m2=M

Cj1j2(J,M;m1,m2) |m1;m2〉 , (7.15)

so these are the coefficients of the expansion of our orthonormal basis of states in the (J,M) basis in terms of those in
the separable, (m1,m2) basis.

The coefficients defined as such are not uniquely specified defined, because there is some choice of overall phases
in the states for each irreducible representation involved. However, this freedom can be fixed by requiring that the
Clebsch–Gordan coefficients be real along with an additional convention that we will describe momentarily.

Because both bases are orthonormal, we can deduce a number of useful expressions involving the Clebsch–Gordan
coefficients. For example, we can realise them explicitly in terms of inner products of the form

Cj1j2(J,M;m1,m2) = 〈m1;m2|J,M〉 . (7.16)

If we adopt the conventions mentioned above to ensure reality of the Clebsch–Gordan coefficients, then we will also
have

Cj1j2(J,M;m1,m2) = 〈J,M|m1;m2〉 . (7.17)

The completeness relation for our Hilbert space leads to the following identity,

1 = 〈J,M|J,M〉 ,

=
∑

m1,m2

〈J,M|m1;m2〉 〈m1;m2|J,M〉 ,

=
∑

m1,m2

|Cj1j2(J,M;m1,m2)|2 .

(7.18)
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Analogously, the completeness relation for the |J,M〉 states gives

1 = 〈m1;m2|m1;m2〉 ,

=
∑

J,M
〈m1,m2|J,M〉 〈J,M|m1;m2〉 ,

=
∑

J,M
|Cj1j2(J,M;m1,m2)|2 .

(7.19)

More generally, we have

δJJ′δMM′ =
∑

m1,m2

〈J,M|m1;m2〉 〈m1;m2|J′,M′〉 ,

=
∑

m1,m2

Cj1j2(J,M;m1,m2)Cj1j2(J′,M′;m1,m2) ,

δm1m′
1
δm2m′

2
=
∑

J,M
〈m1,m2|J,M〉 〈J,M|m′

1;m′
2〉 ,

=
∑

J,M
Cj1j2(J,M;m1,m2)Cj1j2(J,M;m′

1,m′
2) .

(7.20)

We will now see take a look at how the computation of these coefficients works out in some simple examples.

Example 7.2.2. Let j2 = 1
2 with j1 )= 0 an arbitrary spin. Then the highest-spin state takes the usual form

∣∣j1 + 1
2 , j1 +

1
2
〉
=∣∣j1; 1

2
〉
. Acting with the total lowering operators, we get

∣∣j1 + 1
2 , j1 −

1
2
〉
=

1
!√2j1 + 1 J−

∣∣j1 + 1
2 , j1 +

1
2
〉
,

=
1

!√2j1 + 1

(
J (1)− + J (2)−

) ∣∣j1; 1
2
〉
,

=
1√2j1 + 1

(√
2j1
∣∣j1 − 1; 1

2
〉
+
∣∣j1;− 1

2
〉)

. (7.21)

We can identify the most general (normalised) orthogonal complement in the M = j1 − 1
2 eigenspace as

∣∣j1 − 1
2 , j1 −

1
2
〉
∼ 1√2j1 + 1

(∣∣j1 − 1; 1
2
〉
−
√

2j1
∣∣j1;− 1

2
〉)

. (7.22)

At this point we can use some of our freedom in introducing phases to fix the overall phase of this state. Demanding
that the Clebsch–Gordan coefficients (so the coefficients of the expansion) be real gives us

∣∣j1 − 1
2 , j1 −

1
2
〉
= ± 1√2j1 + 1

(√
2j1
∣∣j1;− 1

2
〉
−
∣∣j1 − 1; 1

2
〉)

. (7.23)

To fix the final sign ambiguity, one may adopt a standard convention known as the Condon–Shortley convention. This
amounts to declaring that

Cj1j2(J, J; j1, J− j1) > 0 . (7.24)

In the above, this selects the plus sign, and with that highest state fixed, we can produce the rest of the spin j1 − 1
2

multiplet by acting with J−. (Note that this convention depends on the order of the two constituent spins j1 and j2.)

One can read off the Clebsch–Gordan coefficients from the resulting expressions for our states, e.g., from (7.21) and
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(7.23). We have:

Cj1 1
2

(
j1 + 1

2 , j1 +
1
2 ; j1,

1
2
)

= 1 ,

Cj1 1
2

(
j1 + 1

2 , j1 −
1
2 ; j1,−

1
2
)

=
1√2j1 + 1 ,

Cj1 1
2

(
j1 + 1

2 , j1 −
1
2 ; j1 − 1, 1

2
)

=
√

2j1
2j1+1 , (7.25)

Cj1 1
2

(
j1 − 1

2 , j1 −
1
2 ; j1,−

1
2
)

=
√

2j1
2j1+1 ,

Cj1 1
2

(
j1 − 1

2 , j1 −
1
2 ; j1 − 1, 1

2
)

=
−1√2j1 + 1 .

You can look up tables of Clebsch–Gordan coefficients in textbooks and online, but you should learn to love them and
practice deriving some!
Example 7.2.3 (Application to hydrogen energy levels). An important application of this general story arises in the
analysis of atoms. Let us start with a single-electron atom (a.k.a., a Hydrogen-like atom). We model this as an electron
moving in an external Coulomb potential, and you have studied the corresponding stationary state wave functions in
A11 Quantum Theory. However, the electron has intrinsic spin 1/2, so we should really think of its Hilbert space as
being the tensor product

Helectron ∼= L2(R3)⊗Hspin 1/2 . (7.26)

A general state in the electron Hilbert space will then consist of two wavefunctions, one for each of the possible internal
spin states

|ψ〉 =
∣∣ψ+ ⊗+ 1

2
〉
+
∣∣ψ− ⊗−

1
2
〉
, (7.27)

where
∣∣± 1

2
〉
are the ms = ± 1

2 intrinsic spin eigenstates for, say, the S3 operator, and ψ±(x) give the wave functions for
the situation that the electron hasms = ± 1

2 . In non-relativistic quantummechanics, the Schrödinger equation does not
mix the two m-values, so the component wave functions ψ±(x) must both individually satisfy the same Schrodinger
equation.45

If we take thewavefunctions ψ±(x) to be the stationary state wave functions youmet for theHydrogen atompreviously,
we end up with stationary states that we write as

|n, ",m!;ms〉 = fn!(r)Ym!
! (θ, φ)⊗ |ms〉 , (7.28)

where on the right we have separated out the explicit wave function part in front and left only the intrinsic spin state in
the ket. Here, as elsewhere, the Ym!

! (θ, φ) are the spherical harmonics with eigenvalues !2"("+ 1) for L2 and !m! for
L3, and fn!(r) is a (particular) polynomial in r of degree n− 1 multiplied by exp(−Zr/na0). These states simultaneously
diagonalise L2, S2, L3, S3, and H, with energy

En =
E0
n2 , E0 = −

Z2q2e
2a0

. (7.29)

The energy eigenstates depend only on the principal quantum number, n, and for a given n there are states with " =
0, . . . , n− 1, and for each " there are 2"+ 1 different values of m!. Each such wave function also occurs twice, once for
each of the two values of ms. Adding everything up, there is a degeneracy of 2n2 for the energy level En.

Now for various purposes (we will see more on this in future chapters) it can prove useful to adopt a basis of states
that diagonalises the total angular momentum operator J2 (where J = L + S). Following our previous discussion of
addition of angular momentum, we can find a basis of states that does this with eigenvalue j(j+ 1)!2, where j = "± 1

2
(or j = 1

2 if " = 0). These are given by the linear combinations,
∣∣n, ", j,mj

〉
=

∑

m!,ms
m!+ms=mj

C!, 12
(j,mj;m!,ms) |n, ",m!;ms〉 . (7.30)

45In a relativistic setting, the usual Schrödinger equation is replaced by the Dirac equation, which does mix up the different spin states. This
is beyond the scope of our course.
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where C!, 12
(j,mj;m!,ms) are of course the Clebsch–Gordan coefficients. This gives us a basis of stationary states that

are eigenvectors for H, L2, J2, and J3, the latter with eigenvalue mj, but not for L3 and S3.

There is a standard nomenclature for the electron stationary states in this basis. The set of states with given values of n,
", and j are known as n"j orbitals. For historical reasons, instead of writing the numerical value for " = 0, 1, 2, 3, 4, . . .,
one normally substitutes the letters s, p, d, f, g, . . . respectively (continuing alphabetically). Each such orbital contains
2j + 1 states with mj = −j,−j + 1, . . . , j− 1, j. So, for example:

• For all n, we have the " = 0 states (s orbitals) which appear only in the orbital ns 1
2
with the two states corre-

sponding to mj = ms = ± 1
2 .

• For n ! 2 we can have " = 1 states (p orbitals) which arise in the configuration np 1
2
with two states or np 3

2
with

four states, giving a total of 6 states for the np orbitals.

• In general, we have orbits n"!± 1
2
with n ! " + 1, and a similar counting for the n" type of energy level gives a

total of 2("− 1
2 ) + 1 + 2("+ 1

2 ) + 1 = 4"+ 2 states.

Remark 7.2.4. While we have reorganised the Hydrogen stationary states so as to diagonalise the total angular mo-
mentum operator, it may not yet be clear that this is a superior basis to choose. We will see in some examples in the
next chapter that when we start considering corrections to the Hydrogen atom Hamiltonian arising from more subtle
physical effects, these will often lead to a preference for one basis over another.

7.3 Irreducible tensor operators and the Wigner–Eckart theorem

Just as the Hilbert space of a rotational system can be organised in terms of the action of the angular momentum
operators, so too can many operators in such systems. It then turns out that the matrix elements of operators with
definite angular momentum properties (the so-called irreducible tensor operators, see below) are controlled by the
same rules of addition of angular momentum that we have just developed.

We define an action of the rotation group on operators by conjugation by the corresponding unitaries,

A R−→ A′ = U(R)AU(R)∗ . (7.31)

This definition is arranged so that under a combined action of rotations on states and operators, matrix elements remain
fixed. (The idea is that if we simultaneously rotate the state of our system and the measuring apparatus (the operators),
then the corresponding measurements/matrix elements should be invariant.)

〈ψ|A|φ〉 R−→ 〈U(R)ψ|A′|U(R)φ〉 = 〈ψ|U(R)∗U(R)AU(R)∗U(R)|φ〉 = 〈ψ|A|φ〉 . (7.32)

From this we can infer the transformation of an operator under an infinitesimal rotation, which is formulated in terms
of the angular momentum operators,

U(R)AU(R)∗ ≈ (1− iε
! ω · J)A(1 + iε

! ω · J) ≈ A− iε
! [ω · J,A] . (7.33)

Thus we identify the infinitesimal transformation δωA of an operator A with the commutator with the angular mo-
mentum operators,

δωA = − i
! [ω · J,A] . (7.34)

7.3.1 Vector operators

A number of operators that appear frequently in rotational systems have good reason to transform nicely under rota-
tions. In particular, the position operators X or the momentum operators P should, in principle, transform as vectors
under rotations. More precisely, they will transform according to,46

U(R)VU(R)∗ = R−1V , U(R)(n · V)U(R)∗ = (Rn) · V , (7.35)
46The R−1 rather than R here is coming from the same place as the R−1 appearing in the action of rotations on wavefunctions.
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Notice that with this definition, if we act with rotations on the states of a system while leaving the (vector) operators
fixed,47 then we have

〈ψ|V|φ〉 R−→ 〈ψ|U(R)∗VU(R)|φ〉 =
〈
ψ
∣∣U(R−1)VU(R−1)∗

∣∣φ
〉
= R 〈ψ|V|φ〉 , (7.36)

so our measured expectation values/matrix elements transform by the rotation matrix R. Working infinitesimally, we
have

δω(n · V) = (ω ∧ n) · V , (7.37)

so in terms of angular momentum operators, we have

[ω · J,n · V] = i!(ω ∧ n) · V . (7.38)

we recognise this as the component-free expression for the commutation relations for the angular momentum opera-
tors, with some J’s replaced by V’s. Indeed working in components, we arrive at the following definition.

Definition 7.3.1. A vector operator is any triple of operators V in a rotational system that obey the commutation rela-
tions

[Ji,Vi] = i
∑

k

εijkVk . (7.39)

As an examples, we have (by direct computation) that the position, momentum, and angular momentum operators are
all vector operators in this sense. More generally, operators can transform as irreducible representations (of arbitrary
spin) of the rotation group/angular momentum operators. We make the following definition.

Definition 7.3.2. An irreducible tensor operator operator of spin k is a (2k+ 1)-tuple of operators T (k)
q for q = −k,−k+

1, . . . , k− 1, k in a rotational system that obey the commutation relations

[J3,T (k)
q ] = ! qT (k)

q ,

[J±,T (k)
q ] = !

√
k(k + 1)− q(q ± 1)T (k)

q±1 .
(7.40)

Note that for the case k = 1, the basis T(1)
q is related to the Cartesian basis according to

T (1)
0 = V3 , T (1)

±1 = ∓
V1 ± iV2√

2
, (7.41)

and with this change of basis the commutation relations in (7.39) and (7.40) coincide. The key result that motivates
our definition of general tensor operators is the following theorem, which allows for a drastic simplification in the
computation of matrix elements of tensor operators.

Theorem 7.3.3 (Wigner–Eckart). The matrix elements of an irreducible tensor operator of spin k with respect to an-
gular momentum eigenstates are given by

〈
α; J,M

∣∣∣T (k)
q

∣∣∣β; j,m
〉
= Cj,k(J,M;m, q)

〈
α; J
∣∣∣
∣∣∣T (k)

∣∣∣
∣∣∣β; j

〉
. (7.42)

Here α and β represent additional labels on the states that are not affected by the action of angular momentum oper-
ators. The double-bracketed object

〈
α; J
∣∣∣∣T (k)

∣∣∣∣β; j
〉
on the right hand side is called the reduced matrix element, and is

some number that doesn’t depend on the labels m, M, and q.

The punchline here is that by symmetry, the matrix elements of tensor operators between definite angular momentum
states are determined entirely up to a single constant for each choice of the three angular momentum multiplets being
coupled (two irreps as states and the choice of tensor operator), with the dependence on the particular states/elements
of the angular momentum multiplets being entirely encoded in Clebsch–Gordan coefficients. In practice, the overall
constant can then usually be evaulated by making a convenient choice of M, m, and q.

47We think of this as rotating the state of our system while leaving the measuring apparatus/laboratory equipment fixed
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Proof. We consider the following matrix elements:
〈
α; J,M

∣∣∣[J±,T (k)
q ]
∣∣∣β; j,m

〉
= !

√
k(k + 1)− q(q ± 1)

〈
α; J,M

∣∣∣T (k)
q±1

∣∣∣β; j,m
〉

, (7.43)

which we can also rewrite by acting with the J± operators in the commutators to the left and to the right on the states,
which yields

!
√

J(J + 1)−M(M∓ 1)
〈
α; J,M∓ 1

∣∣∣T (k)
q

∣∣∣β; j,m
〉
− !
√

j(j + 1)−m(m ± 1)
〈
α; J,M

∣∣∣T (k)
q

∣∣∣β; j,m ± 1
〉

. (7.44)

Now observe that for the Clebsch–Gordan coefficients, we have

〈J,M|J±|j1,m1; j2,m2〉 = !
√

j1(j1 + 1)−m1(m1 ± 1) 〈J,M|j1,m1 ± 1; j2,m2〉

+ !
√

j2(j2 + 1)−m2(m2 ± 1) 〈J,M|j1,m1; j2,m2 ± 1〉

= !
√

J(J + 1)−M(M∓ 1) 〈J,M∓ 1|j1,m1; j2,m2〉 .

(7.45)

Comparing the two sets of relations, we find that we have identical recursion relations with the relation

(J,M, j,m, k, q)↔ (J,M, j1,m1, j2,m2) .

These recursion relations allow to determine both the Clebsch–Gordan coefficients (with fixed J, j1, j2) and our matrix
elements (with fixed α, β, J, k, j) by homogeneous linear relations in terms of a single coefficient/matrix element. The
two sets of numbers thus must agree up to an overall rescaling. #

The Wigner–Eckart theorem tells us that the rules for addition of angular momentum also constrain the possible ma-
trix elements of tensor operators in rotational systems. For example, for a vector operator like X, P, or even J itself,
matrix elements can only be non-zero between states whose total angular momentum differs by at most one! This is
an important selection rule in many applications, for example in atomic physics.


