STRING THEORY I

Lecture 5

Chaster 3 Old covowiant quantization

Classical thesis: field theory on the zeim wored-shat

$$
S_{p}=-\frac{T}{2} \int_{\Sigma} d \sigma d \sigma\left(-\partial_{\sigma} x \cdot \partial_{\sigma} x+\partial_{\sigma} x \cdot \partial_{\sigma} x\right)
$$

in the sonsimal unit gauge $\gamma_{a b}=\eta_{a b}$.

This is supplemented by the constraints

$$
T_{++}=0 \quad \& \quad T_{--}=0 .
$$

The OCQ approach consists on promoting the cansrrical fields $X^{\mu} \quad \&$ this ssnjugato momenta $\pi_{\tau}^{\mu}=\tau \partial_{\tau} X^{\mu}$ to operatives and the Poisson bracluts $\{\cdot, \cdot\}_{\text {PB }}$ to commutation of oprators

$$
\alpha \because \cdot\}_{P B} \leadsto i[\cdot, \cdot]
$$

We get the comromical equal tine commutation relations

$$
\left[\Pi^{\mu}(\sigma, \sigma), x^{\nu}(\tau, \sigma)\right]=-i \delta\left(\sigma-\sigma^{\prime}\right) \eta^{\mu \nu}
$$

(with $\left[X^{\mu}(\sigma), X^{\nu}(\sigma)\right]=0,\left[P^{\mu}(\sigma), P^{\nu}(\sigma)\right]=0$) The operators X^{M} \& π^{μ} owe Newnition

$$
x^{\mu}=\left(x^{M}\right)^{t}, \pi^{M}=\left(\pi^{\mu}\right)^{t}
$$

The commumation relations for the oscillator modes follow immeliateh worm this:

$$
\begin{aligned}
& {\left[\hat{p}^{\mu}, \hat{x}^{\nu}\right]=-i \eta^{\mu \nu} \quad \text { (Heisentwo } \gamma \text { algebra) }} \\
& {\left[\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right]=m \delta_{m+n, 0} \eta^{\mu \nu}} \\
& {\left[\tilde{\alpha}_{m}^{\mu}, \tilde{\alpha}_{n}^{\nu}\right]=m \delta_{m+n, 0} \eta^{\mu \nu}}
\end{aligned}
$$

The hevmiticity of the govalow X^{μ} of π^{N} imply that the two mode operators $\hat{p}^{\mu}, \hat{x}^{v}$ ave hermitian s while

$$
\begin{aligned}
& \alpha_{-m}^{M}=\left(\alpha_{m}^{M}\right)^{+} \\
& \tilde{\alpha}_{-m}^{m}=\left(\tilde{\alpha}_{m}^{M}\right)^{+}
\end{aligned}
$$

The set $\left\{\alpha_{m}^{M}, \tilde{\alpha}_{m}^{\mu}\right\}$ is an infinite set of now monic oscillators raising t towering operator. We think of
$\alpha_{m}^{M} \quad\left(\tilde{\alpha}_{m}^{\mu}\right) \quad m>0$ as annihilation ops
$\alpha_{-m}^{\mu}\left(\tilde{\alpha}_{-m}^{\mu}\right) \quad m>0$ as creation ops
Now we can somstruct the Hilbert space

Hilburt space:
(1) Dedine the oscillator vacuum state $|0\rangle_{\text {vac }}$

$$
\alpha_{m}^{M}|0\rangle_{\text {vat }}=\tilde{\alpha}_{m}^{M}(0)_{\text {vac }}=0 \quad \forall m \geqslant 1
$$

(2) Next, we build the osuillator Fock spaces:

$$
\begin{aligned}
& 4_{\text {loopm }}^{\text {Fock }}=\operatorname{span}\{\prod_{i=1}^{K} \alpha_{-n_{i}}^{n_{i}} 10 \overbrace{w}\}_{n_{i=1}}
\end{aligned}
$$

Introduce oscillatos numbur opratos

$$
N=\sum_{k>0} \alpha_{-h} \cdot \alpha_{h} \quad \tilde{N}=\sum_{h>0} \tilde{\alpha}_{-h} \cdot \tilde{\alpha}_{h}
$$

which count oscillatow

$$
\begin{aligned}
& N\left(\prod_{i=1}^{n} \alpha_{-n_{i}}^{m_{i}}|0\rangle_{\text {Oac }}\right)=\left(\sum_{i=1}^{k} n_{i}\right)\left(\prod_{i=1}^{h} \alpha_{n_{i}}^{k}|0\rangle_{\text {vac }}\right) \\
& N\left(\prod_{i=1}^{h} \tilde{\alpha}_{-n_{i}}^{\mu_{i}} \mid 0 د_{0<c}\right)=\left(\sum_{i=1}^{n} n_{i}\right)\left(\prod_{i=1}^{h} \tilde{\alpha}_{-n_{i}}^{h}\left(0 د_{0 a_{c}}\right)\right. \\
& \left.N \alpha_{-n}^{N}|0\rangle=\sum_{m \geq 1}\left(\alpha_{-n} \alpha_{m}\right) \alpha_{-n}^{M} \mid 0\right)= \\
& =\sum_{m \geq 1} \alpha_{-m} \cdot\left(\left[\begin{array}{l}
\alpha_{n}, \alpha_{-n}^{\mu} \\
n \delta_{m-n, 0}
\end{array}\right]+\alpha_{-n}^{m} \alpha_{m}\right)|0\rangle=n \alpha_{-n}^{\mu}|0\rangle
\end{aligned}
$$

One can organize the oscillator states into levels, ie states with a grim $N(\hat{N})$ eigmuakne.
For spmitrings (or R-moversicused inNing)

$$
\left.\begin{array}{ll}
& N=0
\end{array} \quad \right\rvert\, 0 D_{\text {val }} .
$$

Hame $4 h_{l}^{\text {Fork }}=\operatorname{span}\left\{\prod_{i=1}^{\prod_{1}} \alpha_{-n_{i}}^{\mu_{i}} 100_{w}\right\}_{n_{i=1}}=\bigoplus_{N=0}^{\infty} 4 h_{l}^{\text {Folk }}[N]$ (similar br oscillators $\tilde{\alpha}$)
(3) tew-mods

But we have mot get completers rperified the states as we sill have the two-modes.
The ground state is in fact $\sum_{\text {is a patios wave sumbiox }}$
In momentum space we can chrox stats to be cigmstates of the center of mass manmitun operator \hat{p}^{μ}

$$
\hat{p}^{\mu}|K\rangle=K^{\mu}|K\rangle, \quad K^{\mu} \in \mathbb{R}^{1,0-1}
$$

obeying

$$
\left\langle K^{\prime} \mid K\right\rangle=\delta^{(0)}\left(K-K^{\prime}\right)
$$

$$
\therefore \quad t l_{\text {turo-mode }} \simeq L^{2}\left(\mathbb{R}^{1,0-1}\right)
$$

The tsilbwt space is then

$$
\begin{aligned}
& \text { Hlopon }=L^{2}\left(\mathbb{R}^{1, D-1}\right) \otimes H^{\text {Fock }} \\
& \text { Hledaxi }=L^{2}\left(\mathbb{R}^{1, D-1}\right) \otimes H_{l}^{\text {Fock }} \otimes H_{l}^{\text {Fock }} \\
& \Delta \text { statio } \sum_{i=1}^{n} d_{-n_{i}}^{\mu}|O, P\rangle \quad N=\sum_{i=1}^{n} n_{i}
\end{aligned}
$$

momantum coxd string $\pi \alpha \cdot \pi \tilde{\alpha}(0, p)$ evalue p^{m}

Problem (or mt?): Consider the itato

$$
|\varphi\rangle=\alpha_{-1}^{0}|0 j K\rangle
$$

Then

$$
\begin{aligned}
\langle\varphi \mid \varphi\rangle=\langle 0 j K| \alpha_{+1}^{0} \alpha_{-1}^{0}\left|0 j K^{\prime}\right\rangle & =\eta^{00} \delta\left(K-K^{\prime}\right) \\
{\left[\alpha_{+1}^{0}, \alpha_{-1}^{0}\right] } & =-\delta\left(K-K^{\prime}\right)
\end{aligned}
$$

Wrong sigh! There are negative mom states ghosts!
However: we have not imposed the comitraints

Normal ordeving:
Necall the Witt-gunevatiors

$$
\begin{array}{ll}
L_{m}=\frac{1}{2} \sum_{n=-\infty}^{\infty} \alpha_{m-k} \cdot \alpha_{k}, & L_{m}^{+}=L_{-m}(m \neq 0) \\
\tilde{L}_{m}=\frac{1}{2} \sum_{n=-\infty}^{\infty} \tilde{\alpha}_{m+k} \cdot \bar{\alpha}_{n}, & \tilde{L}_{m}^{+}=\tilde{L}_{-m}(m \neq 0)
\end{array}
$$

ave quactuatic in the oscillators.
The opliatols α_{m-h} \& α_{h} commmite $\forall h$ unless $m=0$ is the on $y_{\text {" problematic" protor }}$ is L_{0} (rimilar bo \tilde{L}_{0}).

Suppose we choor naivolo

$$
L_{0}=\frac{1}{2} \sum_{b=1}^{\infty} \alpha_{-h} \cdot \alpha_{k}=\frac{1}{2} \alpha_{0} \cdot \alpha_{0}+\frac{1}{2} \sum_{k \geq 1} \alpha_{-h} \cdot \alpha_{h}+\sum_{k \geq 1}^{1} \alpha_{k} \cdot \alpha_{h}
$$

Then (opm itring)

$$
\begin{aligned}
& L_{0}|0 ; p\rangle=\left(\frac{e^{2} p^{2}}{2}+\frac{1}{i} \sum_{h \geq 1} \alpha_{b} \cdot\left(\alpha_{k-k}^{\prime \prime}, \alpha_{-b}^{0}\right] \eta_{m v}|0, p\rangle\right) \\
& =\left(\frac{e^{2} p^{2}}{2}+\frac{1}{i} \sum_{h=1} k D\right)(0, p) \\
& =\left(\frac{e^{2} p^{2}}{2}+\frac{1}{2} D \quad \sum_{h=1} k\right)(0, p) \quad \text { etan function } \\
& \text { resulauitaros } \\
& \hookrightarrow \sum_{n=1} k=\xi(-1)=-\frac{1}{12} \\
& =\left(\frac{l^{2} p^{2}}{2}-\frac{1}{24} D\right)|0, p\rangle \\
& \text { so maybe } \\
& \text { mb! }
\end{aligned}
$$

To a ccount propuly bo the mounal ordering orecantiry to deline the quanturn opratso os

$$
L_{0}=\frac{1}{2} \sum_{n \in \mathbb{Z}}: \alpha_{-n} \cdot \alpha_{n}:
$$

by
normal ordived product (lewering ops to the right)
$\underset{\text { dosel }}{\text { dVing }}\left\{\begin{array}{l}L_{0} \equiv \frac{1}{2} \alpha_{0} \cdot \alpha_{0}+\sum_{h \geq 1} \alpha_{-h} \cdot \alpha_{h}=\frac{l_{p}^{2}}{8}+N \Rightarrow L_{0}\left(0 ; p>=\frac{l_{p}^{2}}{8}(0 ; p\rangle\right. \\ \tilde{L}_{0} \equiv \frac{1}{8} \tilde{\alpha}_{0} \cdot \widetilde{\alpha}_{0}+\sum_{h=1} \tilde{\alpha}_{h} \cdot \tilde{\alpha}_{h}=\frac{e^{2} p^{2}}{8}+\tilde{N}\end{array}\right.$ $\underset{\substack{\text { ippen } \\ \text { isfings }}}{ } L_{0}=\frac{l^{2} p^{2}}{2}+N$

Virasoro algebva We need to check the commutator alyebva of the opwators $L_{m}\left[\Sigma_{m}\right]$
PS 2: a dired comptutafion gives

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{D}{12}\left(m^{3}-m\right) \delta_{m+n, 0}
$$

(rimilow for $\left[\hat{I}_{m}, \tilde{l}_{n}\right]$ for used itrings) This is the Viraspro al gefora with centrual charge D.

The Viraroro alcobra is a central extention of the Witt-algebra

The contral exctantion is relatics to an anomaly of the Wery invariance (mole (ates).

The global s(ll) dyebra generated bo $\left\{L_{0}, L_{1}, L,\right\}$ (or $\left.\left\{\tilde{\tau}_{0}, \tilde{i}_{1}, \tau_{4}\right\}\right]$ is ant anomabus.

Demark: An alternative way to deal with the normal ordwing is to replace the naive operator l_{0} above with

$$
L_{0}-a
$$

where $a=$ sosstant. This also gives the antral chaw e term, see GSW.
constraints
Impose the constraints in the quantum theory to idmsifyo the ohyrical states
Another problem arises due to appearance of the central chow re if we define deleomys as the states $|\Psi\rangle$ which satisfy

$$
L_{m}|\psi\rangle=0 \quad \forall m
$$

In fact, there is a contradiction.

Convidw $\quad\left[L_{m}, L_{n}\right]|\Psi\rangle$ alysical stato $L_{m}|\psi\rangle=0 \forall m$
(a) $\left[l_{m}, l_{n}\right]|\psi\rangle=\left(l_{m} l_{n}-l_{n} l_{m}\right)(\psi\rangle=0 \quad \forall m, n$
(b) $\left[L_{m}, L_{n}\right]|\psi\rangle=[\underbrace{(m-n) L_{m+n}+\frac{D}{12}\left(m^{3}-m\right) \delta_{m+n, 0}}]|\psi\rangle$ But iof $n=-m$

$$
\left[L_{m}, L-m\right]|\psi\rangle=\frac{D}{12}\left(m^{2}-m\right)|\psi\rangle
$$

Imposting all comstraints leads to a Frivial Hilbeut space when $D \neq 0$!

Intead we define plugrical states $\phi, \psi \in$ thonns bo the comstraints $\langle\psi| L_{m}|\phi\rangle=0 \quad \forall m \neq 0$

Delinition: a stato (ϕ) is phogrical if

Remavk: $v\langle\psi| L m|\phi\rangle=0 \quad \forall m \geqslant 1$

$$
\begin{aligned}
& \langle\psi| L_{m}|\phi\rangle=\langle\phi| L_{-m}|\psi\rangle^{*}=0 \quad \forall m \leqslant-1 \\
& \langle\phi|\left(L_{0}-a\right)|\psi\rangle=0
\end{aligned}
$$

Impitant ramaric: the gruvatss of D-dim space time Poincavi gmmerris have no memal ordeving ambiguities as canbe seen froms

$$
\begin{aligned}
& p^{M}=p^{\mu} \\
& M^{\mu \nu}=x^{\mu} p^{\nu}-x^{\nu} p^{\mu}-i \sum_{n=1}^{\infty} \frac{1}{n}\left(\alpha_{-n}^{M} \alpha_{n}^{\nu}-\alpha_{-n}^{v} \alpha_{n}^{\mu}\right) \quad \text { opm Shinv }
\end{aligned}
$$

Moreouen: $\quad\left[P^{M}, L_{m}\right]=\left[M^{\mu \nu}, L_{m}\right]=0 \quad \forall m$
$\left[L_{m}, \alpha_{n}^{m}\right]=-n \alpha_{m i n}^{\prime \prime}$
$\left\{\begin{array}{l}P^{M} \text { \& } M^{M \nu} \text { presulve the phystical state comdidions. } \\ \text { Thi means that theng, decsmposs into represmt ations } \\ \text { of ISO(I,D-1) (csuaviant quantion }\end{array}\right.$ of ISO(1,D-1) (suaviant quantization).

Mass shell \& level-matching conditions: the Lo $\left(k \tilde{L}_{0}\right)$ condition
Coed string
mass shell condition

$$
\begin{aligned}
\left(L_{0}+\tilde{L}_{0}-2 a\right)(\varphi, K\rangle & =0 \Leftrightarrow\left(\frac{l^{2} K^{2}}{4}+N+\tilde{N}-2 a\right)(\varphi, K\rangle=0 \\
\text { so } & \frac{l^{2} M^{2}}{4}=N+\tilde{N}-2 a \Rightarrow \frac{\alpha^{\prime} M^{2}=2(N+\tilde{N}-2 a)}{a \alpha^{\prime}=l / 2}
\end{aligned}
$$

level matching condition

$$
\left(L_{0}-\tilde{L}_{0}\right)|\varphi, K\rangle=0 \Longleftrightarrow(N-\tilde{N})\left|\varphi_{1} K\right\rangle=0 \text { so } \quad N=\tilde{N}
$$

Ope sting mass shell condition

$$
\left(L_{0}-a\right)|\varphi, K\rangle=0 \Leftrightarrow\left(\frac{l^{2} p^{2}}{2}+N-a\right]|\varphi, K\rangle=0 \text { so } \alpha^{\prime} M^{2}=N-a
$$

luel O grand $10, \mathrm{~K}\rangle$
As an exevcix, you can show that

$$
\left[N, L_{m}\right]=-m L_{m}
$$

10 I_{m} shifts N-level by $-m$ (vimilou bo Ñbl E) \Rightarrow at luve tevo we onty need to check the Lo canditions.
The L_{0}-comditions at level $N=0$ are
opus Jtwing

$$
\begin{aligned}
& \alpha^{\prime} M^{2}=-a \\
& \alpha^{\prime} M^{2}=-4 a
\end{aligned}
$$ doad stringo

masrive ground stats
$a=0 \quad$ massers ground stato
a>0 tachyonic ground stato (!)
level ore states I dealing with ghosts
Recall: earlier we ensuntered a problem with negative mum states (ghosts) at level one of the armstrong (ea: $\alpha_{-1}^{\circ}(0 ; K)$). We want to see if this issue remains after applying the constraints
consider a gmeral level one ops icing state

$$
S \cdot \alpha_{-1} 10 ; k S=(S ; k\rangle \quad S \in \mathbb{R}^{1,-10}
$$

polarization vector
and impose the physical state conditions for L_{0} \& L_{+1}.
The In conditions bo $n \geq 2$ awe satisfied automaticaly once the $l_{0} 9 l_{+1}$ are imposed.

- Mass-shell: $-\alpha^{\prime} K^{2}=\alpha^{\prime} M^{2}=1-a$
- L_{+1} condition: $L_{+1}\left(S \cdot \alpha_{-1}\right)|0 ; K\rangle=\eta_{\mu \nu} 5^{\mu}\left[L_{+1}, \alpha_{-1}^{\nu}\right]|0 ; K\rangle$

$$
\left.=\eta_{\mu \nu} 5^{\mu} \alpha_{0}^{\nu}|0 ; K\rangle=l(5 \cdot k) 10 ; K\right\rangle
$$

$\left.L_{+1} \mid \zeta: K\right)=0 \Leftrightarrow S \cdot K=0$
OTOH
The norm of a general level 1 state $|\zeta, K\rangle$ is

$$
\begin{array}{r}
\left\langle S ; K \mid \zeta_{j}^{\prime} K^{\prime}\right\rangle=\langle 0 ; k|\left(\zeta \cdot \alpha_{+1}\right)\left(g^{\prime} \cdot \alpha_{-}\right)\left|0 ; K^{\prime}\right\rangle \\
=\left(\rho \cdot \rho^{\prime}\right)\left\langle 0 ; k \mid 0 ; K^{\prime}\right\rangle=\left(\rho \cdot \rho^{\prime}\right) \delta\left(K-K^{\prime}\right)
\end{array}
$$

For $\rho-g^{\prime}$: require $\rho^{2} \geq 0$ to avoid ghosts

In summary we require:
$\rho^{2} \geq 0$
$5 \cdot k=0$
$\alpha^{\prime} k^{2}=a-1$
polavitation is lightlike or space like
transuerse plawi bation
K is spacelike if $a>1$
lishtilu if $a=1$
timelila if $a<1\}$
If $a<1 \quad k$ is timelike, $g \cdot k=0 \Rightarrow$ Sipacelike
$a=1 \quad K$ is mull, $\rho \cdot K=0 \Rightarrow 5$ spacelitc or null
$a>1 \quad K$ is ipacelike, $5 \cdot k=0 \Rightarrow 5$ timilike \Rightarrow ghosts!
Thin we reject $a>1$ be requive $a \leq 1$ However the aromel state is a tachyon for $0<a \leq 1$

Critical theory: $a=1: K^{2}=0 \quad\left(5^{2} \geq 0\right)$
$5 \cdot \alpha-10, k\rangle=15, k\rangle$ is a massless state
Comidew now the state $|K ; K\rangle=k \cdot \alpha-10, k\rangle$ clearly, this state has zero morm (so it is Dhyrical) and has "longitudinal" polarization

Moreour, this state is orthogonal to all phonicul states

$$
\langle K ;| c\left|S ; K^{\prime}\right\rangle=(K \cdot 5) \delta\left(K-K^{\prime}\right)=0
$$

So the eon zitudinal polarization decouples leaving only D-2 physical polarizations (like a photon))
Howerw: is $a=1$ ground state is a tachyon

Note that for the consitudinal degree of Weedon the decoupling is due to the fact that $|K ; K\rangle$ is a "pure gauge" state in the flowing sense. Connidw

$$
\left.L_{-1} 10 ; K\right\rangle=e K \cdot \alpha_{-1}|0 ; K\rangle=e|K ; K\rangle
$$

ie $|K ; k\rangle$ created by the action of L_{-1}.
Recalling that L_{-1} is a gmerator of a conformal transformation, we say that (k; k) is a pure gauge" state.

3 Old csuaviant quantization this $\left\{\begin{array}{l}\text { Hilbut space (without comitraits) } \\ \text { Normal ordwing } \\ \text { Virasso al gelbua } \\ \text { Imposing the constraints and the chess } \\ \text { Mass shill \& evel-matching conditions } \\ \text { level } 0<11 \text {; dealing with ghosts }\end{array}\right.$

Next: mure on physical states

