STRING THEORY T

Lecture 6

3 Old cuaviant quantization
(Hilburt space (withsut comstraits) Normal ordwing \& Virassio al gibva Impossines the consitraints and thephes Mas shell of evel-matching conclitions leved O L 1 statio de aling with ghosts
thi
eevinis $\left\{\begin{array}{l}\text { Hhys, spurius states, mill stato, ghosts } \\ \text { critical dimension }\end{array}\right.$

Summavite last ecture:
(1) Hilbert space (of states be bove imposing constraints)

Let $4 l^{\text {Fock }}=\operatorname{span}\left\{\prod_{i=1}^{K} \alpha_{-n_{i}}^{M}|0\rangle\right\}=\bigoplus_{N=1}^{\top} 4 l^{\text {Foik }}[\mathrm{N}]$ α_{n+k}^{n}

Fock spare
of pamitring
evalue of Mumborop N
Then Sleopen $=L^{2}\left(\mathbb{R}^{1, D-1}\right) \otimes$ tle Fock

$$
\text { Sledort }=L^{2}\left(\mathbb{R}^{1,0-1}\right) \otimes 4 l_{1}^{\text {Fouk }} \otimes \widetilde{H_{l}^{\text {rout }}}
$$ rinht "ust $\tilde{\alpha}$

(2) Virabio alybra

$$
\begin{array}{lll}
L_{m} & =\frac{1}{a} \sum_{k=-\infty}^{\infty} \alpha_{m-n} \cdot \alpha_{h} & m \neq 0 \\
\text { rompal } & L_{0}=\frac{1}{2} \alpha_{0} \cdot \alpha_{0}+N & N=\sum_{h=1}^{\infty} \alpha_{-k} \cdot \alpha_{k}
\end{array}
$$

numion ppwatos

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}
$$

Virabio al yibva with central charjo $C=D$ (vimilary br \tilde{L})
(3) Phyrical stats:
(This) pay is not in reworded lectures)
Demark:

$$
\left[N, L_{m}\right]=-L_{m} \Rightarrow L_{m}: 4 l_{\text {rock }}[N] \rightarrow 4 h_{\text {rock }}[N-m]
$$

$$
\text { (action of } L_{m} \text { is to shift } N \rightarrow N-m \text {) }
$$

Moreover: $\left[L_{m+1}, L_{m}\right]=L_{m+2}$
$\Rightarrow L_{1} \& L_{2}$ ginowate every $L_{m} m \geqslant 3$! sp only reed to impose $\quad L_{1}(\phi)=0$ \& $L_{2}|\phi\rangle=0$ So

$$
\text { thank }=\operatorname{Ker}\left(L_{1}\right) \cap \operatorname{Kev}\left(L_{2}\right) \cap \operatorname{Ker}\left(L_{0}-a\right)
$$

(4) Lever o level 1 physical states (open itrings)

Level zevo: 10 ; $K>$ grand state with $\alpha^{\prime} k^{2}=a$
giving tats which are massive fo v $a<0 \quad k^{2}=-M^{2}$ massless bo $a=0$ tachyons bi apo
level one: $\quad|\rho ; K\rangle=\left(\rho \cdot \alpha_{-1}\right)|0 ; K\rangle$
goral state \hat{L} polarization $g^{\mu \prime} \in \mathbb{R}^{1,0-1}$
These obey $\alpha^{\prime} k^{2}=a-1, G \cdot k=0$ \& norm $=\rho^{2}$ Need to require $a \leq 1$ to avoid ghosts

We studies the threshold case where $a=1$ so $k^{2}=0$:
There is a state with zero m / m

$$
|K j k\rangle=\left(k \cdot \alpha_{-1}\right)|0 ; k\rangle
$$

which is a plyyrical ($K^{2}=0$) "ennritudinally mowized" state anil, moreover, iramsuer x to all physical state. Hance, the esngitudinal solmization decouples and we we left with D-2 physical planitations

Note that the grand state fo $a=1$ is a tachyon

- $(K ; K)$ is created by the action of L_{-1}

$$
L_{-1}|0 ; K\rangle=e|K j K\rangle
$$

ie $|k ; K\rangle$ is "pure gan $x^{\prime \prime}$

Definition: a state is called spurious if it is orthogonal to all physical itates and obeys

$$
\left(L_{0}-a\right)|u\rangle=0
$$

A spurious state which is alto plyyncal is orthogonal to itself, ic it has zeNo worm. These ave called mull stats.

An example of a null stale is the state $|K ; k\rangle$ at lied $1 \& a=1$ as we deswibed.

$$
\begin{aligned}
& \text { (e) spuwiov) } \Rightarrow\langle\psi \mid \varphi\rangle=0 \\
& \text { If les is alp physical } \Rightarrow\langle\mid \psi\rangle \in \text { Hephis } \\
& \langle\varphi \mid \varphi\rangle=0\rangle
\end{aligned}
$$

Recall that in gauge theories, a consequence of residual symmetvis is that are expects to find states which owe pure gauges stats. These should be"quotiented out". That is we want to identify

$$
|\psi\rangle_{\text {phys }} \sim|\psi\rangle_{\text {amp }}+|\varphi\rangle_{\text {null }}
$$

So

$$
4 h=4 H_{\text {pores }} / H_{\text {mail }}
$$

In the example at lives 1 with $a=1$, mull stats are prated by the action of L_{-1} on the ground state, and can be quotiented.

Consider the state $L_{-}|0, K\rangle$
The state $L_{-1}(0 ; k)$ is manigsth sowendiculow to pharical stato.
$\langle\varphi \mid L-10 ; K\rangle=0$ (i) \in \& tephs

Now $\left(L_{0}-a\right) L_{-1}(0 ; k)=L_{-1}\left(L_{0}-a+1\right)(0 j k)$
Thun $L-10 j k\rangle$ is spuvious when

$$
\begin{gathered}
L_{0}|0 j K\rangle=(a-1)|0 j K\rangle \\
>L_{0} L_{-1}=\underbrace{\left[L_{0}, L_{-1}\right]}_{L_{-1}}+L_{-1} L_{0}=L_{-1}\left(L_{0}+1\right)
\end{gathered}
$$

Th state $L_{-1} \mid 0 j k s$ is also plozrical if $\left.a=1\right\rangle$ check:

The state $L_{-1}|0 ; k\rangle$ is physical if $L_{m} L_{-1}|0 ; k\rangle=0 \quad \forall m \geq 1$
,

$$
\begin{aligned}
L_{1} L_{-1}|0 ; K\rangle & =\left(2 L_{0}+L_{-1} L_{1}\right)(0 ; K) \\
& =2 L_{0}(0 ; K)=2(a-1)(0 ; K)=0 \quad \text { if } a=1
\end{aligned}
$$

mi 2

$$
L_{m} L_{-1}|0 ; k\rangle=\left((m+1) L_{m-1}^{m-1}+L_{-1} L_{m}\right)|0 ; k\rangle=0
$$

lout we knew this!]

In fact: all spurious states owe of the form

$$
|F\rangle=\sum_{m=1}^{c} L_{-m}\left|\tilde{V}_{m}\right\rangle \text { with } l_{0}\left|\tilde{V}_{m}\right\rangle=(a-m)\left|\tilde{V}_{m}\right\rangle
$$

This shies cam be equivalently written as

$$
|\xi\rangle=L_{-1}\left|v_{1}\right\rangle+L_{-2}\left|V_{2}\right\rangle \text { with } L_{0}\left|V_{m}\right\rangle=(a-m)\left|V_{m}\right\rangle
$$

This is because so $m \geqslant 3$: con replace L_{-m} by commutators

$$
\begin{aligned}
& {\left[L_{-p}, L_{-q}\right]=(-p+q) L_{-p-q}, \quad 1<p_{1} q<m} \\
& \text { eg } \begin{aligned}
& {\left[L_{-1}, L_{-2}\right]=L_{-3} } \\
&\left.L_{-3} \mid \tilde{K}_{3}\right)=\left[L_{-1}, L_{-2}\right]\left(\tilde{K}_{3}\right\rangle\left.=L_{-1}\left(L_{-L}\left(\tilde{K}_{3}\right)\right]-L_{-2}\left(L_{1} \tilde{K}_{3}\right)\right\rangle \\
&\left.=L_{-1} \mid \mathcal{K}_{1}\right)+L_{-2}\left|\mathcal{K}_{0}^{\prime}\right\rangle
\end{aligned}
\end{aligned}
$$

etc. (exevinx)
check: millyy an exevcise

$$
|\xi\rangle=L_{-1}\left|v_{1}\right\rangle+L_{-a}\left|v_{2}\right\rangle \quad L_{0}\left|v_{m}\right\rangle-(a-m)\left|v_{m}\right\rangle
$$

- deantr $\langle\varphi \mid \xi\rangle=0 \quad \forall|\varphi\rangle \in 4$ hepnes
- $\left(L_{0}-a\right)|\xi\rangle=0$
so $|\xi\rangle$ is spurius. To see that all sponius states have this form sce GSW p 83

Comotructing mull states
comider $|\xi\rangle=L_{-1}|\chi\rangle$ sit $\quad L_{m}|x\rangle=0 \quad \forall_{m}>0$
Than: cher $L_{m}|\xi\rangle=0 \quad \forall m \geqslant 1 \quad L_{0}|k\rangle=(a-1)|k\rangle$

$$
\begin{aligned}
L_{+1}(\xi) & =\left(\left[L_{+1}, L_{-1}\right]+L_{-1} L_{+1}\right]|(v)\rangle \\
& =2 L_{0}|\psi\rangle=2(a-1)(x)=0 \text { iff } a=1
\end{aligned}
$$

$L_{m}(\xi)=0 \quad \nabla_{m} \geqslant 2$
ex $L_{+Q}|\xi\rangle=\left(\left[L_{+2,} L_{1}\right]+L_{-1} L_{+2}\right)|\kappa\rangle=3 L_{+1}|k\rangle=0$
So for $a=1$ we get an infinite set of null states. The example we had earlier $|K ; K>\sim L-10 j K\rangle$ is the simplest case in this family.

Comnidw mw, the spurius state
$|\xi\rangle=\left(L_{-2}+\gamma L_{-1}^{2}\right)\langle\chi\rangle$ with $L_{m}|v\rangle=0, m>0$

$$
L_{0}|x\rangle=(a-2)|x\rangle
$$

Thim $\operatorname{Lm}|\xi\rangle=0 \quad \forall m \geq 3$

$$
\begin{aligned}
& L_{1}|\xi\rangle=\left(\left[L_{1}, L_{-2}\right]+L_{-2} L_{+1}+\gamma\left(\left[L_{1,} L_{-1}\right]+L_{-1} L_{1}\right) L_{-1}\right) M ⿴ \\
&=\left(3 L_{-1}+2 \gamma L_{0} L_{-1}+\gamma L_{-1}\left(\left[L_{1}, L_{-1}\right]+L_{-1} L_{-1}\right)\right)|\mathcal{L}\rangle \\
&=(3 L_{-1}+2 \gamma(\underbrace{L_{0} L_{-1}}_{+L_{-1}}]+L_{-1} L_{0})+2 \gamma L_{-1} L_{0})|\gamma\rangle \\
&=\left((3+2 \gamma) L_{-1}+4 \gamma(a-\gamma) L_{-1}|\mathcal{}\rangle\right. \\
&=(3+2 \gamma(2 a-3]) L_{-1}|\chi\rangle \\
& L_{1}|\xi\rangle=0 \quad \text { iff } \quad \gamma=\frac{3}{2(3-2 a)} \quad\left(\gamma=\frac{3}{2}, a=1\right)
\end{aligned}
$$

$$
\begin{aligned}
& L_{+2}|\xi\rangle=L_{+2}\left(L_{-2}+\gamma L_{-1}^{2}\right)(x) \\
&=\left\{\left[L_{+2,} L_{-2}\right]+L_{-2} L_{+2}+\gamma\left(\left[L_{+2,} L_{-1}\right]+L_{-1} L_{+2}\right) L_{-1}\{(x)\right. \\
&=\left\{4 L_{0}+\frac{D}{12} \cdot 6+3 \gamma L_{+1} L_{-1}+\gamma L_{-1} 3 L_{+1}\right\}(x) \\
&=\left\{4 L_{0}+\frac{1}{2} D+3 \gamma \cdot 2 L_{0}\right\}(x) \\
&=\left(2(2+3 \gamma)(a-2]+\frac{1}{2} 0\right\}(x) \\
&\left.L_{+2} \mid \xi\right)=0 \quad \text { iff } D=4(2-a)(2+3 \gamma)
\end{aligned}
$$

For $a=1: \frac{D=26}{\text { a aritical dim critical boromic string }}$ there ave hombre null states of the form

$$
\left(L_{-2}+\frac{3}{2} L_{-1}^{2}\right)|x\rangle, \quad L_{m}(x)=0 \quad m>0,\left(L_{0}+1\right) \mid(x)=0
$$

Let $a=1$:
This is the thieshold value as bo $a>1$ there arle ghats in thepmys.
Comsider the leves-2 state $|\phi\rangle$ with momentunn K

$$
|\phi, k\rangle=\left[c_{1} \alpha_{-1} \cdot \alpha_{-1}+c_{2} \alpha_{-2} \cdot \alpha_{0}+c_{3}\left(\alpha_{-1} \cdot \alpha_{0}\right)\left(\alpha_{-1} \cdot \alpha_{0}\right)\right](0 ; k)
$$

onshell mass concition $-\alpha^{\prime} K^{2}=1 \quad\left(\alpha^{\prime} M^{2}=N-a\right)$
$L_{1}|\phi, k\rangle=0 \quad$ iff $\quad c_{1}+c_{2}-2 c_{0}=0 \quad\left[L_{m}, \alpha_{n}^{\prime \prime}\right]=-n \alpha_{m+n}^{m}$
$L_{2}|\phi, k\rangle=0$ iff $0 c_{1}-4 c_{2}-2 c_{3}=0$
so $\left(\phi_{1}, k\right\rangle=\left[\alpha_{1} \cdot \alpha_{1}+\frac{1}{r}(D-1) \alpha_{-2} \cdot \alpha_{0}+\frac{1}{10}(D+4)\left(\alpha_{-1} \cdot \alpha_{0}\right)\left(\alpha_{-1} \cdot \alpha_{0}\right)\right](0, k)$
is a phyrical state for any D

Norm $\left\langle\phi_{j} k\left(\phi_{i} k^{\prime}\right\rangle=\frac{2}{25}(D-1)(0-26) \quad 8\left(k-k^{\prime}\right)\right.$

- no frosts: $1 \leqslant 0 \leqslant 26$
- mull state when $D=1$ or $D-26$

Therefore when $a=1$ \& $D-26$ there are wore mull states
1972 Brawer ; Goddard, Thorn No ghost theorem
\rightarrow For $a=1$ and $D=26$ thingy has no ghosts
Note: there owe no ghosts for $a \leqslant 1$ \& $1 \leqslant D \leqslant 25$ but the thesis are inconsistent at the level of sting lops (reed to look at ore top interactions)

OCQ: $\quad a=1 \quad D=26$ neels 1 -bopinteractions to prove
(no ghosots, manny mull states)
LCQ: $a=1 \quad D=26$ follows by requiring borentz cpacetine invariance - manifistly ghoot free

B2ST quantization: $\quad a=1, D=26$ required or quantum gauge (comformal) invaviamle.

