STRING THEORY 1

Lecture 7

3 OLD COVARIANT QUANTIZATION Hibbert space (without constraints) Vira soro algebra
Imporing constraints and thpnys rlass-shell o leved matehing conditions Level 0 \& 1 states, dealing with ghosts spunius states, mill statios critical dimention
Today:-commmets on the no ghast thesom bor mbevitice stining,

- cbred ivin y spectrum

Open strings: by studying the bow level ipectium we band

- $a>1 D>26$: there are ghosts in Slings $\Rightarrow a \leq 1$
- $a=1 \quad 0=26 \quad$ critical string
boo of we found two infinite families of mull states
- $a \leq 1 \quad 0 \leq 25$ (subcritical case)
no inconnistmaies at tree.eled of the Free spectrum (no ghosts) but inconsistent at the level of string loops (need to look at om bop interactions)
[Recall that to construct the ohs, we have only imposed half the constraints ($\left.L_{m}|\phi\rangle=0 \quad m \geqslant 1 \quad\left(L_{0}-a\right)|\phi\rangle=0\right)$
The imaining charges $L-m(m>0)$ give icdundancis associated to imidual gang symmetries and we comintor

$$
|\psi\rangle \sim|\psi\rangle+|\varphi\rangle \text { null } \quad\left(4 l_{\text {dang }} / 4 h_{\text {name }}\right]
$$

Subcritical string states (no ghosts for $1 \leq D \leq 2 r, a \leq 1$) (starting with the critical sting $a=1 \quad 0=26$) Consider the states with

$$
\begin{aligned}
& K=\left(K_{1}^{0}, K^{1}, K^{2}, \ldots, K^{24}, \rho\right) \quad \text { fixed } \rho \in \mathbb{R} \\
& N_{2} \equiv \sum_{n>0} \alpha_{k}^{2 r} \alpha_{h}^{2 r} \text { so no } X^{2 r} \text { oscillators activated }
\end{aligned}
$$

The mass-hell condition for thess states is

$$
\begin{aligned}
\alpha^{\prime} K^{2}= & a-N \Rightarrow \alpha^{\prime}\left(k_{i} \cdot K^{i}+\rho^{2}\right]=1-N=1-N_{0-24} \\
& \Rightarrow \quad \alpha^{\prime} K_{i} K^{i}=\left(1,-\alpha^{\prime} g^{2}\right)-N_{0,64}
\end{aligned}
$$

which can be identified fo $D=25$ mass shell sonchition for $a=1-\alpha^{\prime} 5^{2} \leqslant 1$ \Rightarrow no ghat thrown for the critical string implies the no ghost thespian for the mburitical string.

Physical states of the closed string (at least low level $N=0,1$)
Recall $\quad H_{\text {cos ord }}=L^{2}\left(\mathbb{R}^{1, D^{-1}}\right) \otimes 4_{\text {rock }} \otimes \tilde{H}_{\text {pock }}$
left movers right movers
(states are of the form $\left.\prod_{i=1}^{k} \alpha_{-n_{i}}^{m_{i}} \prod_{j=1}^{k} \tilde{\alpha}_{-m_{j}}^{v_{j}}|0 ; K\rangle, n_{i}, m_{j} \geq 1\right)$
Physical state conditions:

$$
\begin{aligned}
& \left(L_{0}+\tilde{L}_{0}-2 a\right)|\phi\rangle=0 \quad \Leftrightarrow \quad \alpha^{\prime} K^{2}=4 a-2(N+\tilde{N})^{b^{n}=1}=2(2-N-\tilde{N}) \\
& \left.\left(L_{0}-\tilde{L}_{0}\right) \mid \phi\right)=0 \quad \Leftrightarrow \quad N=\tilde{N}
\end{aligned}
$$

$$
L_{m}|\phi\rangle=0 \text { \& } \quad \tau_{m}|\phi\rangle \forall m \geqslant 1
$$

sufficient to pave this

$$
\text { pr } \quad m=1,2
$$

(see pages elective 6)
$\begin{array}{ll}\text { level-0 } & N=\tilde{N}=0 \\ \text { ground stats } & 10 ; K>,\end{array} \alpha^{\prime} K^{2}=4 a=4$ tachyon
level $1 \quad N=\tilde{N}=1$

$$
\left|\Omega_{j} K\right\rangle \equiv \Omega_{\mu \nu} \quad N=N=1
$$

spacetime two tenor
marshes state for the critical string
Decompose this state into space-time lorentz irveps

$$
\begin{aligned}
\Omega_{\mu \nu} & =\underset{\substack{\text { traules } \\
\text { vomninic }}}{\gamma_{\mu \nu}}+\varphi \eta_{\mu \nu}+\underset{\mu \nu}{b_{\text {trace }}} \underset{\text { antisymmetric }}{b} \\
D^{2} & \frac{1}{D} D(D+1)-1+1+\frac{1}{2} D(D-1)
\end{aligned}
$$

Imposse Viraroro comstraints:

$$
L_{m}|\Omega, k\rangle=0 \quad \text { \& } \tilde{L}_{m}|\Omega, k\rangle=0 \quad m \geqslant 1
$$

It is sufficint to show this for $m=1$

$$
\begin{aligned}
L_{1}\left|\Omega_{j} K\right\rangle & \left.=\Omega_{\mu \nu} L_{1} \alpha_{-1}^{\mu} \tilde{\alpha}_{-1}^{\nu} 10 ; K\right\rangle \\
& =\Omega_{\mu \nu}\left(\alpha_{0}^{\mu} \tilde{\alpha}_{-1}^{\nu}\right)(0 ; K\rangle \\
& =\frac{1}{2} K^{\mu} \Omega_{\mu \nu} \tilde{\alpha}_{-1}^{\nu}(0 ; K\rangle
\end{aligned}
$$

similarly

$$
\tilde{L}_{1}|\Omega ; K\rangle=\frac{l}{2} K^{\nu} \Omega_{\mu \nu} \alpha_{-1}^{\mu}|0 ; K\rangle
$$

For γ

$$
\left.\begin{array}{l}
\frac{l}{2} K^{\mu} \gamma_{\mu \nu} \tilde{\alpha}_{-1}^{\nu}\left(0 ; K>=0 \text { if } K^{\mu} \gamma_{\mu \nu}=0\right. \\
\left.\frac{l}{2} K^{\nu} \gamma_{\mu \nu} \alpha_{-1}^{\mu} 10 ; K\right\rangle=0 \text { if } K^{\nu} \gamma_{\mu \nu}=0
\end{array}\right\} \begin{aligned}
& \gamma_{M \nu} \text { polarization } \\
& \text { is } \\
& \text { tranjuele tiacles }
\end{aligned}
$$

Forb

$$
\left(\frac{1}{2} 0[D+1)-1\right)-D=\frac{1}{2} D(0-1]-1
$$

$$
\left.\begin{array}{rl}
\frac{l}{2} K^{\mu} b_{\mu \nu} \tilde{\alpha}_{-1}^{\nu}|0 ; K\rangle=0 & \text { if } K^{\mu} b_{\mu \nu}=0 \\
\frac{l}{2} K^{\nu} b_{\mu \nu} \alpha_{-1}^{\mu}|0 ; K\rangle=0 & \text { if } K^{\nu} b_{\mu \nu}=0
\end{array}\right\} \begin{aligned}
& b_{\mu \nu}^{2} \text { rolavization } \\
& \text { is } \\
& \text { Nomsucs } \\
& \text { antionmmetric }
\end{aligned}
$$

For $\frac{l}{2} \varphi K \cdot \tilde{\alpha}_{-1}|0 ; K\rangle=0$ if $K=0$? unphyrical $\frac{l}{2} \varphi K \cdot \alpha_{-1}|0 j K\rangle=0$ if $K=0$? \leftrightarrows sen lateo

As for the ogee string, there are redundancies in tlepms associated to the fact that we only imposes $l_{m}|\psi\rangle=0 \quad m \geq 1$. That is, there is sore remaining gaur invariance associated to mull states.
In fact: $L_{-1}\left(\left(\xi \cdot \tilde{\alpha}_{-1}\right)|0 ; k\rangle\right)=\frac{\ell}{2} K_{m} \xi_{\nu} \alpha_{-1}^{n} \tilde{\alpha}_{-1}^{\nu}(0 ; k\rangle$ so states with $\Omega_{\mu \nu}=K_{\mu} \xi_{0}$ are spurious
They are also physical (sonnll) if $K^{4}\left(K_{M} \xi_{\nu}\right)=0$ \& $K^{\nu}\left(K_{M} \xi_{\nu}\right)$ that is, if $k^{2}=0$ \& $K \cdot \xi=0$

$$
\begin{aligned}
& {\left[L_{-1}\left(\xi \cdot \tilde{\alpha}_{-1}\right)|0 ; K\rangle=\left(\xi \cdot \tilde{\alpha}_{-1}\right) L_{-1}|0 ; K\rangle\right.} \\
& \quad L_{-1}(0 ; K\rangle=\frac{1}{2} \sum_{n \in ?}\left(\alpha_{-1-n} \cdot \alpha_{n}\right)|0 ; K\rangle \quad n-\text { Tum }_{n \geqslant 1} \text { or } \text { amishes for }_{n \leq-2} \\
& \left.\quad=\frac{1}{2}\left(\alpha_{-1} \cdot \alpha_{0}+\alpha_{0} \cdot \alpha_{-1}\right)|0 ; K\rangle=\frac{l}{2}\left(K \cdot \alpha_{-1}\right)(0 ; K\rangle \quad \alpha_{0}^{n}=\frac{\ell}{0} p^{n}\right]
\end{aligned}
$$

Then we have the inuaviancis

$$
\begin{aligned}
& \gamma_{\mu \nu} \rightarrow \gamma_{\mu \nu}+K_{\mu} K_{\nu}+\xi_{\nu} k_{\mu} \quad \xi \cdot K=0 \\
& b_{\mu \nu} \rightarrow b_{\mu \nu}+\zeta_{M} k_{\nu}-\zeta_{\nu} K_{\mu} \quad\left(\zeta_{M} \sim S_{M}+K_{\mu} \phi\right)
\end{aligned}
$$

Interpretation

- trauless rymmetric state no owaviton ie deswibes a massless transu. polowized spinz powticle

$$
g_{\mu \nu}(x)=\eta_{\mu \nu}+\gamma_{\mu \nu}(x) \quad r^{\varepsilon=\text { infinitenimed bord Homut }} x \rightarrow x+s
$$

where $\gamma_{\mu v}(x) \sim \gamma_{\mu v}(x)+\partial_{\mu} \Xi_{v}(x)+\partial_{\nu} \xi_{\mu}(x)$
whidh in momontam space $\gamma_{\mu v}(K) \sim \gamma_{\mu v}(K)+K_{\mu} \xi_{\nu}+K_{\nu} \xi_{\mu \nu}$ with $k \cdot \xi=0$

- onti-symmetric state $\rightarrow 2$ form gang field (Ralb-Ramond field)

$$
b^{(2)}=\frac{1}{2} b_{\mu \nu}(x) d x_{n}^{M} d x^{\nu} \sim b^{(2)}+d a^{(1)} \quad a^{(1)} \sim a^{(1)}+d \lambda
$$

in momentum space $b_{\mu \nu}(K) \sim b_{\mu \nu}(K)+K_{N} 5_{v}-K_{v} S_{M}$
with $S_{\mu} \sim S_{\mu}+K_{\mu} \phi$

$$
\frac{1}{2} D(D-1)-(D-1)-(D-2)=\frac{1}{2}(D-2)(D-3)
$$

Sol $0-2$) dig of freedom be montes) antigmonti: two-borm field

- How about the scalar? We have $\Omega_{\mu \nu}=\frac{1}{2} \varphi \eta_{\mu \nu}$ We have the state $\left.\frac{1}{2} \varphi \alpha_{-1} \cdot \tilde{\alpha}_{-1} 10 ; k\right\rangle$ However

$$
L_{1}\left(\alpha_{-1} \cdot \tilde{\alpha}_{-1}(0 ; k)\right)=\alpha_{0} \cdot \tilde{\alpha}_{-1}(0 ; k)=\frac{\ell}{2} k \cdot \tilde{\alpha}_{-1}(0 ; k) \neq 0
$$ conn rimilowly bo \tilde{L}_{1})

Then this is mot a physical state!
However we com comptruat a pingical lived one state which is a isau-fime scalar
Define the state

$$
\left|\varphi_{5,5} ; k\right\rangle=\varphi\left[\left(\rho \cdot \alpha_{-1}\right)\left(\frac{e k}{2} \cdot \tilde{\alpha}_{-1}\right)+\left(\frac{e k}{2} \cdot \alpha_{-1}\right)\left(\tilde{\xi} \cdot \tilde{\alpha}_{-1}\right)+\alpha_{-1} \cdot \tilde{\alpha}_{-1}\right](0 ; k\rangle
$$

Now imposes the Virass constraints

Vivassio comstraints:

$$
\begin{aligned}
L_{1}\left|\varphi_{5, \tilde{s}} ; k\right\rangle & =\varphi\left[\rho \cdot\left(\alpha_{0}+\alpha_{-1} L_{-1}\right)\left(\frac{l k}{2} \cdot \tilde{\alpha}_{-1}\right)\right. \\
& \left.+\frac{l k}{2}\left(\alpha_{0}+\alpha_{-1} L_{1}\right]\left(\tilde{\rho} \cdot \tilde{\alpha}_{-1}\right)+\left(\alpha_{0}+\alpha_{-1}\right) \cdot \tilde{\alpha}_{-1}\right]|0, k\rangle \\
= & \varphi \frac{l}{2}\left[(\rho \cdot k)\left(l \frac{k}{2} \cdot \tilde{\alpha}_{-1}\right)+\frac{l}{2} k^{2}\left(\tilde{\rho} \cdot \tilde{\alpha}_{-1}\right)+k \cdot \tilde{\alpha}_{-1}\right]|0, k\rangle \\
= & \varphi \frac{l}{2}\left(\frac{\left.\frac{l}{2}(\rho \cdot k)+1\right)\left(k \cdot \tilde{\alpha}_{-1}\right)|0, k\rangle}{i f t} \quad \rho \cdot k=-\frac{2}{l}\right. \\
=0 \quad \tilde{l}_{i-1}\left|\varphi_{5,5} ; k\right\rangle & =\varphi \frac{l}{2}\left(\frac{l}{2}(\tilde{s} \cdot k)+1\right)\left(k \cdot \alpha_{-1}\right)|0, k\rangle \\
& =0 \quad \text { ist } \quad \tilde{\rho} \cdot k=-\frac{2}{l}
\end{aligned}
$$

So $\left|\varphi_{s,}, \tilde{5} ; k\right\rangle$ is a physical itate when $5 \cdot k=-2 / e, \tilde{5} \cdot k=-\frac{2}{e}$

This state corresponds to a scalar despite the fact that it seems to dermal on $5 \& \tilde{5}$! To see this, consider how the state depends on the choice of ρ \& $\bar{\xi}$

$$
\begin{aligned}
& \left.\left|\varphi_{s,}, \tilde{s} ; K\right\rangle-\left|\varphi_{s^{\prime}}, \tilde{s} ; K\right\rangle \quad \text { and similarly } \operatorname{cor} \tilde{\tilde{s}} \& \tilde{S}^{\prime}\right) \\
& \left.\quad=\varphi\left(\left(\rho-s^{\prime}\right) \cdot \alpha_{-1}\right)\left(\frac{e k}{2} \cdot \tilde{\alpha}_{-1}\right) 10 ; K\right\rangle \\
& \quad=\varphi \tilde{L}_{-1}\left(\left(s-s^{\prime}\right) \cdot \alpha_{-1}\right)|0 ; K\rangle
\end{aligned}
$$

So setting $\lambda=5-5^{\prime}$

$$
\begin{array}{ccc}
\tilde{L}_{-1}\left(\lambda \cdot \alpha_{1}\right)|0 ; k\rangle=\left(\lambda \cdot \alpha_{-1}\right)\left(\tilde{\alpha}_{0} \cdot \tilde{\alpha}_{-1}\right)|0 ; k\rangle & \text { (and rimilarly } \\
& =\left(\lambda \cdot \alpha_{-1}\right)\left(\frac{e k}{2} \cdot \tilde{\alpha}_{-1}\right)|0 ; K\rangle & \text { for } \left.\tilde{\varsigma} G \tilde{\rho}^{\prime}\right)
\end{array}
$$

Then

$$
\begin{aligned}
& \left|\varphi_{5}, \tilde{5} ; K\right\rangle-\left|\varphi_{s^{\prime}}, \tilde{s} ; K\right\rangle \\
& \left|\varphi_{5}, \tilde{5} ; K\right\rangle-\left|\varphi_{5}, \tilde{s}^{\prime \prime} ; K\right\rangle \quad \text { are spanious }
\end{aligned}
$$

Moreover, they are mull

$$
\left(s-s^{\prime}\right) \cdot k=\underset{-\mu_{2}}{S} \cdot k-S_{-\mu / 2}^{(} \cdot k=0 ; \quad\left(\tilde{S}-\tilde{S}^{\prime}\right) \cdot k=0
$$

Hence we identity a stats with $S(\overline{5})$ an $5^{\prime}\left(5^{\prime}\right)$

$$
\begin{aligned}
& \left|\varphi_{s, \tilde{s} ;} ; k\right\rangle \sim\left|\varphi s^{\prime}, \tilde{s} ; k\right\rangle+\varphi \tilde{L}_{-1}\left(\left(s-s^{\prime} \mid \cdot \alpha_{-1}\right)|0 ; k\rangle\right. \\
& \left|\varphi_{s, \tilde{s}} ; k\right\rangle \sim\left|\varphi_{s, \tilde{s}^{\prime}} ; k\right\rangle+\varphi l_{-1}\left(\left(\tilde{s}-\tilde{s}^{\prime} \mid \cdot \tilde{\alpha}_{-1}\right)|0 ; k\rangle\right.
\end{aligned}
$$

This scatow φ is called the dilator: it plays a very important role in the context of itring interactions.

Appendix on (the light -core quantization (se GSW)

The fastest way to construct deams/uull of the quantized string is to fix the remaining gauge Weedom bo chooving the light-csme gauge.
one defines $X^{ \pm}(\tau, \sigma)=\frac{1}{2}\left(X^{0} \pm X^{0-1}\right)$
and uns the remaining gang Weedom to set

$$
X^{+}=x^{+}+p^{+} \tau \quad \text { no oscillators! }
$$

Then ore uses the Vivasoro constraints for X :

The result is that the space of physical states is constructed from

D-2 spacelike transuoure oscillators $\alpha_{n}^{i} \quad i=1, \ldots, D-2$ (and $\tilde{\alpha}_{n}^{i}$ hos the closed sting)

- $\alpha^{\prime} M^{2}=\left(N^{\perp}-1\right)$ (and $\alpha^{\prime} M^{2}=\left(N^{\perp}+\bar{N}^{\perp}-2\right) \quad a=1$ for the closed string)
where $N^{\perp}=\sum_{n=1}^{\infty} \delta_{i j} \alpha_{-n}^{i} \alpha_{n}^{i}$, transuewse numb dow operator
- There cue no negative norm states

Counting states is very fast: some examples osensthing at level $\left.1 \quad \alpha_{-1}^{i} 10 ; k\right\rangle \quad\{=1,-10-2$

D-2 states transforming as vector of SO (D-2) which only males sense if this is massless ((or which the little group is so(D-a))
[For a monive state need an extra state as these fall into reps of so (0-1)]
This implies $a=1$ for brents invariance $\underset{\substack{\text { more detailed } \\ \text { calculation }}}{\Rightarrow}$ Also one needs $D=26$ (see GSW)
opm itring levelz (see protlum iheet)
The states $\alpha_{-1}^{i} \alpha_{-1}^{j} 10 ; k>, \quad \alpha_{3}^{i}(0 ; k)$ give $\frac{1}{2}(D-1)(D-2)+D-2=\frac{1}{2}(D+1)(D-2)$ states

$$
=\frac{1}{2} D(D-1)-1
$$

this is interpreted as a masrive spin-z cwhich undw the full SO $(1,0-1)$ corruponds to a dransuest, tracelass of mmetric 2 Tanno)

Final rmawk:
We have sone over the quantization of the relativistic string
This is a first quantization meaning that the statics owe one particle states.
second quantization has to do with string field theory (not well understood!)

Too bad we have no time to go owe the modern (BRT) quant? Instead lew n about D-brane, T-duality etc,

Next: vertex grourtoss, interactions.

