STRING THEORY J

[4.] Generalities

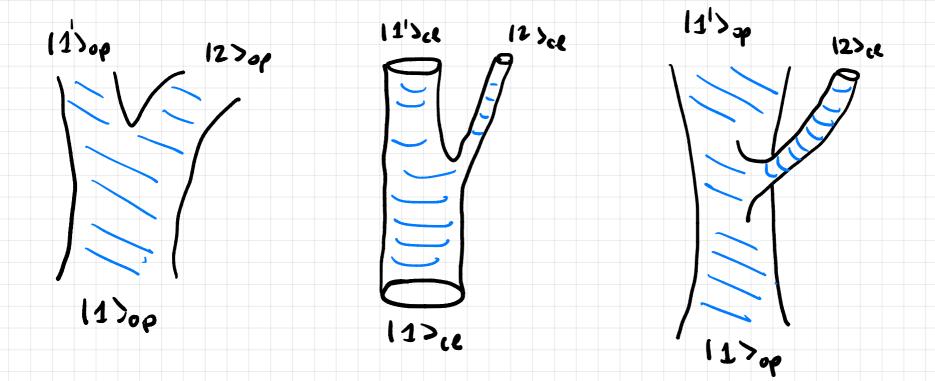
QFT: to understand interactions one adds ma-linear times to the action Lo do son't work br the string because anything up hug to add breaks gaing inversione. scattering amplitudio -> teynman diagrams eg X eti interactions encoded at vertices say >-Lo in string theory this is replaced to , construct or The such vertice !

In string theory: Want to compute by example the amplitude of a given contignention of quantized strings at an initial time to evolve into a new configuration at a later time

Problem: it is mt known how to do this

we need to work with the first quantited formalism

We start by considering processes in which a string preaks into two cor two roin to give a ringle string?

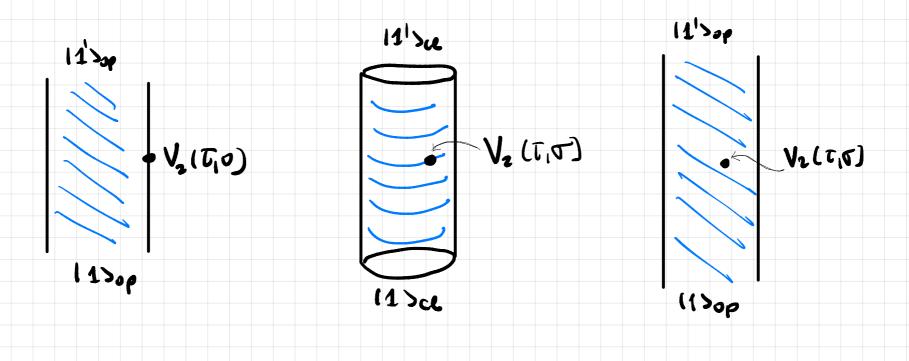


Support 12 > is a physical state which is emitted (abrouved.

We describe emission or absorption of a given

quantum state (say 12>) won a shing world sheet

by the action of a local opwator or Vertex opwator



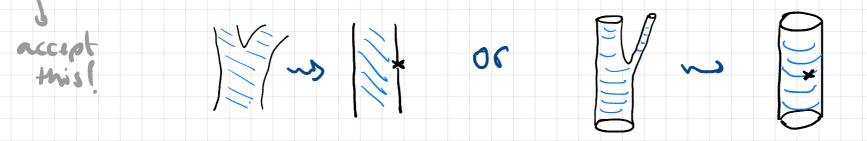
One explanations for this is that 12>, as a obyrical state emitted or absorved, is a <u>quantum</u> state with mass squared and width of order to? Argna bly in the dassical limit these states behave like point particles.

Instead: (Chapter 1 GSW)

· Wick rotation of the world sheet

(loventzion signature -> Enclidean signature)

Constraint i gnature-s
 constraint transportation

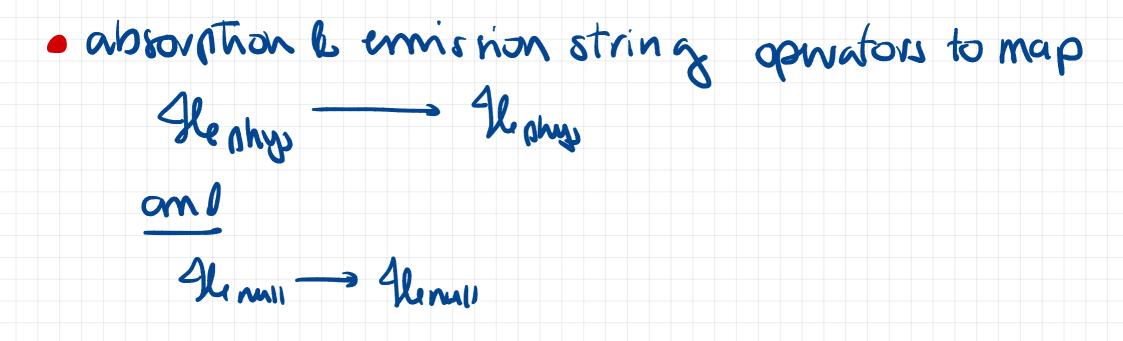


4.2 Vertex operators: Introduction

Require:

- time evolution on the worl sheet is a gange troms pomption => porition of the vertex opwator smuld mt be meaningul.
 - $\int dU V_2(t)$ opm string vertex opwrator
 - 2 2 2 institut on the boundary $\int d\bar{L} d\sigma \, V_{(\bar{L}, \sigma)}$
 - cbæl string verter prontor Vhilige

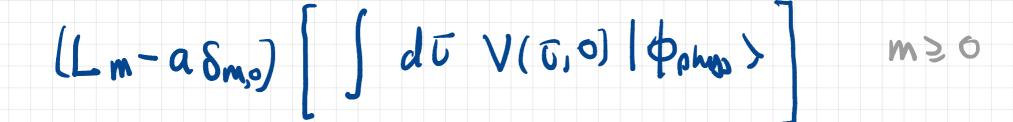
insuited on the interior

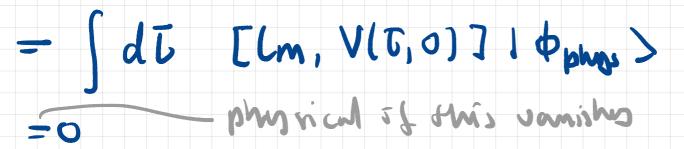


let's su have this works for the open strings first consider the action of the vertex operator on a state 100

[dt V(t,0) 1\$>

physical state comditions:





```
[L_m, V(t_1 \circ)] = \partial_t (local spanator)
it
```

null states:

$\int d\tau V(\tau, 0) \left[L - m \left[\phi \right] \right] \qquad m \ge 1$

$= \int d\bar{U} \{ [V(\bar{U}, 0), L_m] | \phi \rangle + L_m V(\bar{U}, 0) | \phi \rangle \}$

need this to veriable up to a total devivative CUPMESIL -n V(C, O) L& 3=0

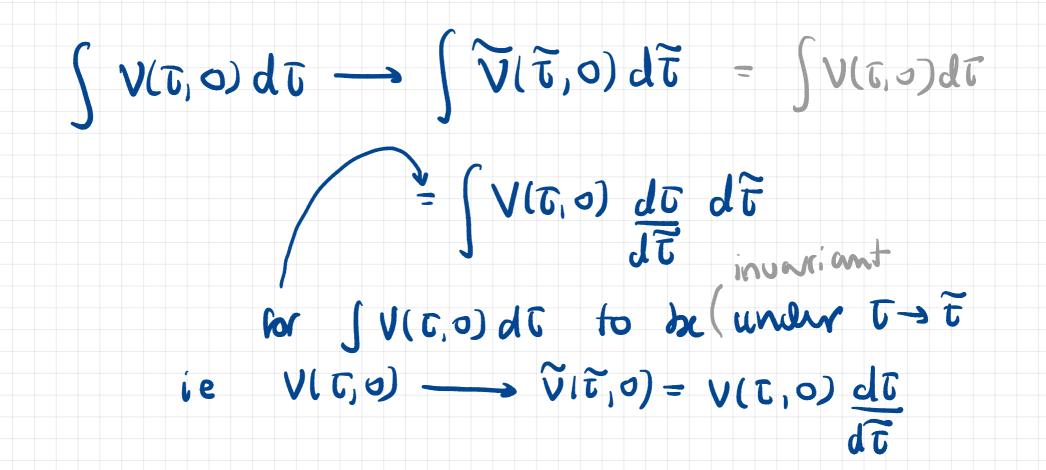
This is nul) if [V(T,O), L-m]~ 2; (local p)

Thun [Lm, V(0,0)]~ 2+(--)

Morvouer, comprimal transformations

of the open string of the hum T -> TIT).

We want



Définition: an opnator A(t) is a primary

opwators f weight h if under the homsess mation

 $T \rightarrow \tilde{t}(\tau)$ it transions as $A(\tau) \longrightarrow \tilde{A}(\tilde{\tau}) = A(\tau) \left(\frac{d\tau}{d\tilde{\tau}}\right)^{h}$

For an appropriation with h=1 $\int \widetilde{A}(\widetilde{t}) d\widetilde{t} = \int A(t) d\widetilde{t} d\widetilde{t} = \int A(t) d\widetilde{t} d\widetilde{t} d\widetilde{t} = \int A(t) d\widetilde{t} d\widetilde{t}$ ie the integrated operator is invaviant.

For infinitesimal transformations $T \rightarrow \tilde{T} = T + E(G)$ we have

 $A(t) \rightarrow \tilde{A}(\tilde{t}) = A(t) \left(1 + h \frac{dG}{dt}\right)$ OTOH

 $\widetilde{A}(\widetilde{\tau}) = \widetilde{A}(\tau + \varepsilon) = \widetilde{A}(\tau) + \varepsilon \partial_{\tau} A(\tau) + \mathcal{D}(\varepsilon^{1})$

Then we find the variation of A

 $\delta A(\tau) = A(\tau) - A(\tau) = - \epsilon \partial_{\tau} A - h(\partial_{\tau} \epsilon) A$

 $= - \partial_{\tau}(eA) - (h-1) \partial_{\tau}eA$

[which is a total dividive when h=1]

The Viravoro operators generate the transformations $T \rightarrow \overline{T} = \overline{T} + E(\overline{T})$ with $G = i e^{im\overline{T}}$ hm Thun $SA(T) = e^{imT}(-i\partial_T A + hm A)$ so the action of the Viranovo opwators is $\left[\left[L_{m}, A(\tau) \right] - e^{im\tau} \left(-i \partial_{\tau} + mh \right) A(\tau) \right]$ Equivalently, this is the condition for to to have comformal weight h. h = 1 [Lm, $b(\tau)$] = ∂_{τ} (-ie^{im T} $b(\tau)$) \sim

We need to identify primaries of weight 1 which correspond to the physical states in the string Hilbert space. We use this to compute string complitudes.

Closed strings:

A primanz opwator of <u>dimmin</u> (h, h) is an opwator Hansforming under compressional transformation as

 $A(\mathcal{G}_+, \mathcal{G}_-) \longrightarrow \widetilde{A}(\widetilde{\mathcal{G}}_+, \widetilde{\mathcal{G}}_-) = \left(\frac{d\mathcal{G}_+}{d\widetilde{\mathcal{G}}_+}\right)^h \left(\frac{d\mathcal{G}_-}{d\widetilde{\mathcal{G}}_-}\right)^h \left(\mathcal{G}_+, \widetilde{\mathcal{G}}_-\right)$

The corresponding infinite rimal transformations are $8 \neq (C, \sigma) = - \partial_+ (E \neq) - (\tilde{h} - 1)(\partial_+ \tilde{e}) \neq - \partial_- (E \neq) - (h - 1)(\partial_- E) \neq$ (This is a total derivative if $h = \tilde{h} = 1$)

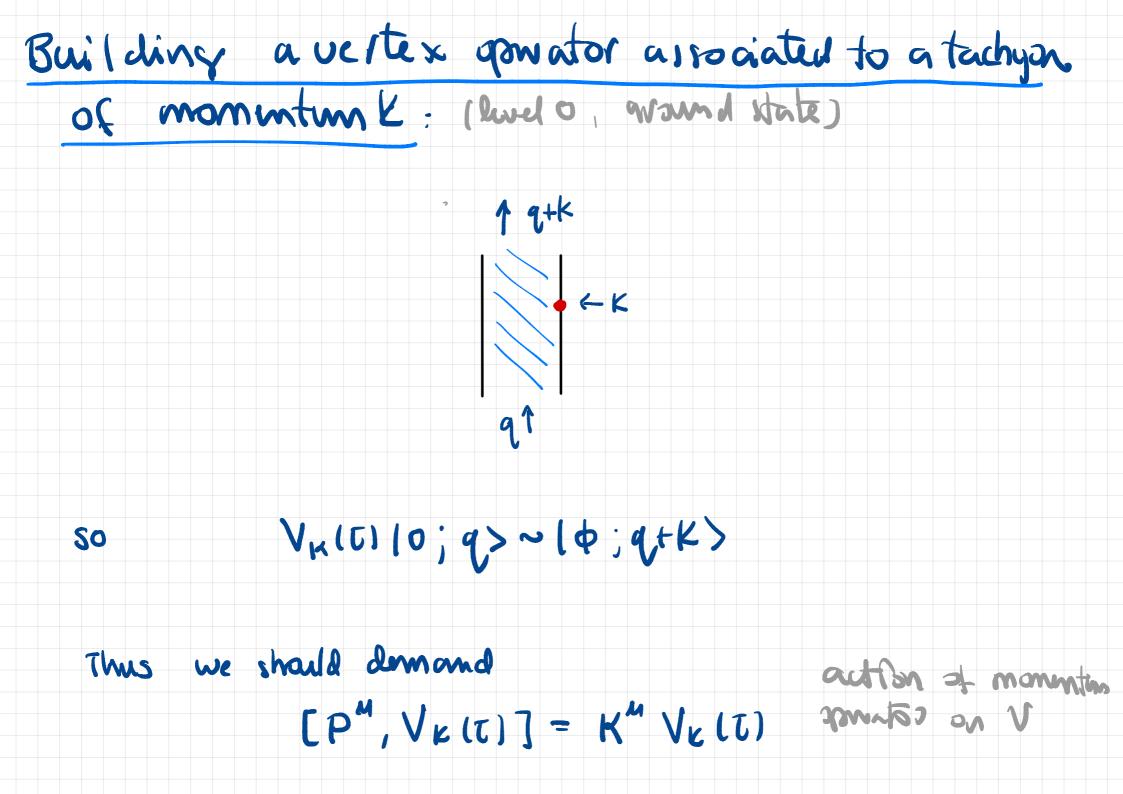
For $e = \frac{i}{a} e^{\lim \sigma_{i}}$ this gives the action of Lm:

 $[L_m, \bigstar(\nabla_{\pm})] = \frac{1}{2} e^{i m \sigma_{\pm}} (-i \partial_{\pm} + \partial_{m} h) \bigstar(\sigma_{\pm})$

 $\int \left[\tilde{L}_{m}, \Re(\sigma_{\pm}) \right]^{2} = \frac{1}{2} e^{\lim \sigma_{\pm}} \left(-i \partial_{\pm} + \partial_{m} \tilde{h} \right) \Re(\sigma_{\pm})$ $\int \frac{1}{6} e^{\lim \sigma_{\pm}}, \tilde{L}_{m}$

comiden the boundary scalar spreator X^(I), 0): $\begin{array}{c} (l-1) \\ (d'-l_{1}) \\ We can check \\ \end{array} \begin{array}{c} \chi^{m}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} e^{-in\overline{U}}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} + i \underbrace{\Sigma} d_{n}^{m}_{t} \\ \widehat{\chi}(\overline{U}, 0) = \chi^{m}_{t} \overline{U} p^{m}_{t} \\ \widehat{\chi$

- - $Lm = \frac{i}{a} \sum_{n}^{n} dm n \cdot \alpha n$
- By direct computation $\begin{bmatrix} L_m, X^m(\overline{U}, 0) \end{bmatrix} = -i \sum_{n=1}^{N} Q_n e^{-i(n-m)\overline{U}} = -i \left(\frac{d}{d\overline{U}} X^m(\overline{U}, 0) \right) e^{im\overline{U}}$
 - so h = 0



This means Ve(C) must depend on e "K-x(T)

A noive guess (SN Velc) is $V_{K}(t) = e^{iK \cdot X(t)}$

As it stands, it is not well defined: it still needs normal or dwing.

Convident the normal ordered or providen $K \cdot \tilde{Z} \stackrel{d_m}{=} e^{imT} iK \cdot x(T) - K \tilde{\Sigma} \stackrel{d_n}{=} e^{-inT}$ $: e^{iK \cdot x(T)} := e^{n=1} \stackrel{m}{=} e^{2iT} e^{-iT}$ Kuku [am, an] Remark:

 $i K \cdot dm = i K \cdot dn = e$ e = e = e = e

so residuring is free if K2=0

Next, we need to compute the computed dimension

This is a good unter aquator for $\ell k^2 = 2$ some as tachyon mass-shell undition $(d' k^2 = 1)$ s'= e²/2

Next: opm string ends 1 & 2 vertex protoco

· Vertex gonator (~ mynical states