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In the last lecture

Definition and examples of Hilbert spaces.

Cauchy-Schwarz’ inequality.

Orthogonality in Hilbert spaces.

Projection to closed convex sets in Hilbert spaces.
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In this lecture

The projection theorem

Orthonormal sets

Pythagoras’ theorem

Bessel’s inequality
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The projection theorem

In the last lecture, we exhibited an example of of a direct sum
decomposition X = Y ⊕ Y ⊥ where X = L2(0, 1), Y is the space
of constant functions and Y ⊥ is the subspace of L2 functions
with zero average.

We will now see that this is true in general, provided that Y is
closed.
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The projection theorem

Theorem (Projection theorem)

If Y is a closed subspace of a Hilbert space X , then Y and Y ⊥ are
complementary subspaces: X = Y ⊕ Y ⊥, i.e. every x ∈ X can be
decomposed uniquely as a sum of a vector in Y and in Y ⊥.

Proof

First observe that if x ∈ Y ∩ Y ⊥ then x is perpendicular to
itself, i.e. 〈x , x〉 = 0 and so x = 0. Hence Y ∩ Y ⊥ = {0}.
It remains to show that X = Y + Y ⊥.

? Take an arbitrary x ∈ X . We need to write x as the sum of an
element in Y and an element of Y⊥.

? Note that Y is a non-empty closed convex subset of X . Hence
there is a point y0 ∈ Y which is closer to x than any other
points in Y .
We will be done if we can show that x − y0 ∈ Y⊥.
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The projection theorem

Proof

Y ∩ Y ⊥ = {0}.
It remains to show that X = Y + Y ⊥.

? ...we will be done if we can show that x − y0 ∈ Y⊥.
? Take y ∈ Y and t ∈ R, we have

‖x − y0‖2 ≤ ‖x − (y0 − ty)︸ ︷︷ ︸
∈Y

‖2= ‖x − y0‖2 + 2t Re 〈x − y0, y〉+ t2 ‖y‖2.

? This is the case only if Re 〈x − y0, y〉 = 0. This concludes the
proof if the scalar field is real.

? If the scalar field is complex, we apply the above to iy to get
Re 〈x − y0, iy〉 = 0, which gives Im 〈x − y0, y〉 = 0. We thus
have x − y0 ⊥ y , and so x − y0 ∈ Y⊥ as wanted.
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The projection theorem

Remark
The theorem is wrong if Y is not closed. For example, if Y is a
proper dense subspace of X (e.g. X = L2(0, 1) and
Y = C [0, 1]), then Y ⊥ = 0 and clearly X 6= Y ⊕ Y ⊥.

Applying the theorem to Y and to Y ⊥, we have Y = Y ⊥⊥ if Y
is closed.

The theorem implies that every closed subspace Y of a Hilbert
space X has a closed complement Z such that X = Y ⊕ Z.
This is not true for all Banach spaces.

Theorem (Lindenstrauss-Tzafriri)

Let (X , ‖ · ‖) be a Banach space. If every closed subspace of X
admits a closed complement in X , then (X , ‖ · ‖) is isomorphic to a
Hilbert space.
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Projection vs. Complement space

Theorem
Let X be a Banach space and Y a closed subspace. Then Y admits
a complement space in X if and only if there exists a projection
P : X → Y , i.e. a bounded linear map with the property Py = y for
all y ∈ Y .

Proof (modulo a result proven later)

(⇒) Suppose Y has a complement space Z in X so that
X = Y ⊕ Z . Then the map P is given by Px = y whenever
x = y + z with y ∈ Y and z ∈ Z . P is well-defined in view of
the direct sume.

It is clear that P is linear and Py = y for all y ∈ Y .

The boundedness of P follows from the closed graph theorem
which we will learn later in the course.
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Projection vs. Complement space

Sketch of proof

(⇐) Conversely, let P : X → Y be bounded linear such that
Py = y for all y ∈ Y .

Let Z = Ker P , which is a closed subspace of X . We claim that
X = Y ⊕ Z .

Note that for every x ∈ X , Px ∈ Y so P2x = P(Px) = Px , i.e.
(I − P)x ∈ Z . Therefore every x ∈ X can be written as
x = Px + (I − P)x ∈ Y + Z .

Next, if x ∈ Y ∩ Z , then x = Px because x ∈ Y and Px = 0
because x ∈ Z = Ker P . So x = 0.

We conclude that X = Y ⊕ Z as claimed.
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H1(−π, π) in L1(−π, π)

Theorem
The Hardy space H1(−π, π) of complex-valued integrable functions
whose Fourier series have the form

∑
n≥0 ane

inx is a closed subspace
of L1(−π, π) which has no complement space.

Elements of proof

Suppose by contradiction that Y = H1(−π, π) has a
complement space in X = L1(−π, π). Then there exists a
projection P : X → Y .

(Hard) It can be show that such map must satisfies

P
( ∞∑

n=−∞

ane
inx
)

=
∑
n≥0

ane
inx .
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H1(−π, π) in L1(−π, π)
Elements of proof

...there exists a projection P : X → Y and

P
( ∞∑

n=−∞

ane
inx
)

=
∑
n≥0

ane
inx .

Consider

fr (θ) =
∞∑

n=−∞

r |n|e inx for 0 < r < 1.

Explicit summation gives fr ≥ 0 and ‖fr‖ = 1.

We also have P(fr ) = 1
1−re iθ →

1
1−e iθ a.e. as r → 1. Therefore,

by Fatou’s lemma,

lim inf
r→1

‖P(fr )‖ ≥
∫ π

−π

1

|1− e iθ|
dθ =∞.

This contradicts the assumption that P was bounded.
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The span and the closed linear span of a set

Definition
Let S be a subset in a Hilbert space X .

The span of S , denoted by Span(S), is the set of all finite linear
combinations of elements in S .

The closed linear span of a set S , denote by Span(S), is the
smallest closed linear subspace of X containing S , i.e. the
intersection of all such subspaces.

Facts:

The closed linear span of S = The closure of Span(S) = S⊥⊥.
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Orthonormal sets and bases

Definition
Let S be a subset of a Hilbert space X .

S is called an orthonormal set if ‖x‖ = 1 for all x ∈ S and
〈x , y〉 = 0 for all x 6= y ∈ S .

S is called an orthonormal basis (or a complete orthonormal set)
for X if S is an orthonormal set and its closed linear span is X .

Theorem
Every Hilbert space contains an orthonormal basis.

We will give the proof for the case of separable Hilbert spaces.
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Existence of orthonormal bases

Proof for separable Hilbert spaces

Let X be a separable Hilbert space with an at most countable
dense subset S = {y1, y2, . . .}.
We construct an orthonormal sequence {x1, x2, . . .} inductively
using a Gram-Schmidt type process as follows.

? If y1 6= 0, let x1 = 1
‖y1‖y1 and let i1 = 1. If y1 = 0, then y2 6= 0

and we let x1 = 1
‖y2‖y2 and i1 = 2. Note that E1 := Span({x1})

is equal to Span({y1}) in the former case and to Span({y1, y2})
in the latter case.

? Suppose we have constructed the orthogonal sequence
{x1, . . . , xn} and the index in such that
En := Span({x1, . . . , xn}) = Span({y1, . . . , yin}).

? If S ⊂ En, we deduce that X = En and we are done.
? Otherwise, we let in+1 be the smallest index such that

yin+1 /∈ En and correct {x1, . . . , xn, yin+1} to an orthonormal
sequence {x1, . . . , xn, xn+1}.

Applying the Gram-Schmidt process1 we obtain an orthonormal
set B = {x1, x2, . . .} such that, for every n, the span of
{x1, . . . , xn} contains y1, . . . , yn. As S̄ = X , this implies that
X = spanB , and so X is the closed linear span of B .

1The Gram-Schmidt process is usually applied to a set of finitely many linearly
independent vectors yielding an orthogonal basis of the same cardinality. In our
setting, we will lose the latter property as the vectors yi ’s are not necessarily
linearly independent.
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Existence of orthonormal bases

Proof for separable Hilbert spaces

We have thus constructed an orthonormal sequence
S̃ = {x1, x2, . . .} of X and the indices i1 < i2 < . . . such that

En = Span({x1, . . . , xn}) = Span({y1, . . . , yin}).

This implies that Span(S̃) = Span(S). Taking closure we have

Span(S̃) = Span(S) = X .
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Example of orthonormal bases

Let X = `2. The standard basis S = {e1, e2, . . .} with
en = (δmn)∞m=1 is an orthonormal basis for X .
Let X = L2(−π, π). We will show later in the course that the
trigonometric system
S = { 1√

2π
, 1√

π
cos x , 1√

π
sin x , 1√

π
cos 2x , 1√

π
sin 2x , . . .} is an

orthonormal basis for X .
Let X = L2(−1, 1). The set of polynomials is dense in X .
Applying the Gram-Schmidt process to the set of monomials
{1, x , x2, . . .} yields an orthogonal basis {P1,P2, . . .} for X such
that degPn = n. Traditionally, one normalises ‖Pn‖2 = 2

2n+1
.

This family is called the Legendre polynomials, which you may
have run into if you took DE2. It satisfies the so-called
Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.
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Pythagoras’ theorem

Theorem (Pythagorean theorem)

Let X be a Hilbert space and S = {x1, x2, . . . , xm} be a finite
orthonormal set in X . For every x ∈ X, there holds

‖x‖2 =
m∑

n=1

|〈x , xn〉|2 +
∥∥∥x − m∑

n=1

〈x , xn〉xn
∥∥∥2.

Proof

Let y =
∑m

n=1〈x , xn〉xn. Using ‖y‖2 = 〈y , y〉 and the
orthonormality of S , we have ‖y‖2 =

∑m
n=1 |〈x , xn〉|2.

We also have 〈x , y〉 =
∑m

n=1 |〈x , xn〉|2.

The conclusion follows from the identity

‖x‖2 = ‖y‖2 + 2Re〈x − y , y〉+ ‖x − y‖2.
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Bessel’s inequality

Lemma (Bessel’s inequality)

Let X be a Hilbert space and S = {x1, x2, . . .} be an orthonormal
sequence in X . Then, for every x ∈ X, there holds

∞∑
n=1

|〈x , xn〉|2 ≤ ‖x‖2.

Proof

Apply Pythagoras’ theorem, we have for each m that

‖x‖2 =
m∑

n=1

|〈x , xn〉|2 +
∥∥∥x − m∑

n=1

〈x , xn〉xn
∥∥∥2.
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Bessel’s inequality

Proof

‖x‖2 =
m∑

n=1

|〈x , xn〉|2 +
∥∥∥x − m∑

n=1

〈x , xn〉xn
∥∥∥2.

Dropping the last term, we then have

m∑
n=1

|〈x , xn〉|2 ≤ ‖x‖2.

Since this is true for all m, the conclusion follows.
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Further on Bessel’s inequality

Bessel’s inequality begs a number of questions:

Is the inequality sharp? – This is easy to answer: with x = x1,
we have ‖x‖2 = 1 =

∑∞
n=1 |〈x , xn〉|2.

Is it an inequality? (You may be reminded of Parserval’s identity
from Prelims Introduction to PDEs and Fourier Series.)
If so, for which x is the inequality attained? – These will be
answered in the next lecture.
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