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In the last lecture

The ABCs of spectral theory for bounded linear operators.

Spectra of normal operators.
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In this lecture

Spectra of self-adjoint operators.

Spectra of unitary operators.
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Self-adjoint operators

Theorem

Let X be a complex Hilbert space and T ∈ B(X ) be self-adjoint.
Then

(i) σr (T ) = ∅ and σ(T ) = σap(T ) = σp(T ) ∪ σc(T ),
(ii) If x and y are eigenvectors of T corresponding to different

eigenvalues, then 〈x , y〉 = 0.
(iii) rad(σ(T )) = ‖T‖,
(iv) σ(T ) ⊂ [a, b] ⊂ R where

a = inf
‖x‖=1

〈Tx , x〉 and b = sup
‖x‖=1

〈Tx , x〉.

Furthermore, the endpoints a and b belong to the spectrum of T .
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Spectral radius of self-adjoint operators

Points (i) and (ii) are consequence of the fact that T is normal. We
will discuss (iii) and (iv) separately.

Lemma
Let X be a complex Hilbert space and T ∈ B(X ) be self-adjoint.
Then

rad(σ(T )) = ‖T‖.

Proof

By Gelfand’s formula

rad(σ(T )) = lim
n→∞
‖T n‖1/n.

As T is self-adjoint, ‖T 2‖ = ‖T‖2 (Lecture 4). A simple
induction thus gives ‖T n‖ = ‖T‖n when n = 2k , k ∈ N. The
conclusion follows.
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Spectral radius of normal operators

It turns out that the result holds for normal operators with a little bit
more work (Sheet 4).

Lemma
Let X be a complex Hilbert space and T ∈ B(X ) be normal. Then

rad(σ(T )) = ‖T‖.

Idea: Use ‖(T ∗)nT n‖ = ‖T n‖2 (Lecture 4) and revisit the proof of
the self-adjoint case with the self-adjoint operator T ∗T .
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Spectra of self-adjoint operators are real

Lemma

Let X be a complex Hilbert space and T ∈ B(X ) be self-adjoint.
Then σ(T ) ⊂ R.

Proof

Since T is self-adjoint, we have

〈Tx , x〉 = 〈x ,T ∗x〉 = 〈x ,Tx〉 = 〈Tx , x〉 for all x .

This means that 〈Tx , x〉 is real for all x ∈ X .
The result thus follows from the statement obtained in an
example in Lecture 14: σ(T ) is a subset of the closure of
{〈Tx , x〉 : ‖x‖ = 1}.
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Spectra of self-adjoint operators are real

Proof

Let us have a more direct argument. We know that
σ(T ) = σap(T ).

Consider σp(T ): If λ is an eigenvalue of T with a unit
eigenvector x , then λ = 〈λx , x〉 = 〈Tx , x〉 ∈ R.
(Note that, though we knew σp(T ) = σ′p(T ∗) = σ′p(T ), this is
insufficient to say that σp(T ) ⊂ R.)

The case of approximate eigenvalue requires only a little bit
more effort:

? Suppose λ ∈ σap(T ) = σ(T ) and select (xn) ⊂ X such that
‖xn‖ = 1 and λxn − Txn → 0.

? By Cauchy-Schwarz’ inequality, 〈λxn − Txn, xn〉 → 0.
? Hence 〈Txn, xn〉 → λ.

Since the left hand side is real, we must have that λ is real too.
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On the location of spectra of self-adjoint operators

Theorem
Let X be a complex Hilbert space and T ∈ B(X ). If T is
self-adjoint, then the spectrum of T lies in the closed interval [a, b]
on the real axis, where

a = inf
‖x‖=1

〈Tx , x〉 and b = sup
‖x‖=1

〈Tx , x〉.

Furthermore, the endpoints a and b belong to the spectrum of T .

Proof

We knew that for every λ ∈ σ(T ) there exists (xn) ⊂ X ,
‖xn‖ = 1 such that 〈Txn, xn〉 → λ. This implies that
σ(T ) ⊂ [a, b].
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On the location of spectra of self-adjoint operators

Proof

It remains to show that a, b ∈ σ(T ).

By considering −T in place of T , we may assume without loss
of generality that |a| ≤ |b|.
We know that rad(σ(T )) = ‖T‖, and so by the definition of b,
rad(σ(T )) = ‖T‖ ≥ |b| ≥ |a|.
Since σ(T ) is closed and is contained in [a, b], this implies that
‖T‖ = |b| and
? If |a| < |b|, then b belongs to σ(T ),
? If |a| = |b|, then at least a or b belongs to σ(T ).

Now applying the statement we just proved to T̃ = cI + T
? with c � 1 such that c + b > c + a > 0, we get c + b ∈ σ(T̃ )

and so b ∈ σ(T ),
? and with c � −1 such that c + a < c + b < 0, we get

c + a ∈ σ(T̃ ) and so a ∈ σ(T ).
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Unitary operators

Proposition

Let X be a complex Hilbert space and U ∈ B(X ) be unitary. Then
σ(U) ⊂ {|λ| = 1}.

Proof

Since U is unitary, ‖U‖ = 1. It follows that
rad(σ(U)) ≤ ‖U‖ = 1, i.e. σ(U) ⊂ {|λ| ≤ 1}.
Applying the above to U∗ = U−1, we have σ(U−1) ⊂ {|λ| ≤ 1}.
As σ(U−1) = σ(U)−1, we deduce that
σ(U) ⊂ {|λ| ≤ 1} ∩ {|λ| ≥ 1} = {|λ| = 1}.
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Example 1

Example

Let X = `2 and T ((a1, a2, a3, . . .)) = (m1a1,m2a2,m3a3, . . .) where
(m1,m2,m3, . . .) is a given bounded sequence. Compute the different
spectra of T .

Note that T ∗((a1, a2, a3, . . .)) = (m̄1a1, m̄2a2, m̄3a3, . . .). It
follows that T ∗ and T commute, i.e. T is normal. Hence
σr (T ) = ∅ and σ(T ) = σap(T ) = σp(T ) ∪ σc(T ).
It is easy to see that if {e1, e2, . . .} is the standard basis of `2,
then Tek = mkek . Hence mk ∈ σp(T ).
Conversely, if λ is an eigenvalue of T with eigenvector
(a1, a2, . . .), then

(λ−mk)ak = 0 for all k .

Since there is at least one non-zero ak ’s, we have that λ = mk

for some k . So σp(T ) = {m1,m2, . . .} =: S .
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Example 1

Since σ(T ) is closed, we have σ(T ) ⊃ S̄ = {m1,m2, . . .}.
We claim that σ(T ) = S̄ . Indeed, if dist(λ, S) > c > 0, then
λI − T is invertible

(λI − T )−1(b1, b2, . . .) =
( 1

λ−m1
b1,

1

λ−m2
b2, . . .

)
∈ `2

since
∞∑
k=0

1

|λ−mk |2
|bk |2 ≤

1

c2

∞∑
k=0

|bk |2 <∞.

We conclude that σ(T ) = σap(T ) = S̄ , σp(T ) = S ,
σc(T ) = S̄ \ S and σr (T ) = ∅.
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Example 2

Example

Let X = L2(R) and consider the multiplication operator Mh where
h ∈ L∞(R), i.e. Mhf = hf . Compute the different spectra of Mh.

This is similar to the previous example, but more involved.

Again, we have that M∗h = Mh̄ and so Mh is normal. Hence
σr (T ) = ∅ and σ(T ) = σap(T ) = σp(T ) ∪ σc(T ).

In the same fashion one can show that

σp(Mh) = {λ ∈ R : {h = λ} has positive measure}

where for each λ ∈ σp(Mh), the corresponding eigenfunctions
are those supported on the set {h = λ}.
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Example 2

A difference in the treatment occur in the identification of the
discussion of the full spectrum. It turns out that

σ(Mh) = Ess Im(h) := the essential range of h

=
{
λ ∈ R : h−1((λ− ε, λ + ε)) has positive

measure for all small ε > 0
}

The proof that if λ /∈ Ess Im(h) then λI −Mh is invertible
remains similar.
However Ess Im(h) needs not be the same as the closure of
σp(T ), so we need to conclude differently.
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Example 2

We pick λ ∈ Ess Im(h) and show that λ is an approximate
eigenvalue.

? Select a measurable subset Zn of h−1((λ− 1/n, λ+ 1/n)) with
positive measure and let

fn =
1

|Zn|1/2
χZn

so that ‖fn‖L2 = 1.
? Then |(λI −Mh)fn| ≤ 1

n |fn| → 0 in X .

We conclude that

σ(Mh) = σap(Mh) = Ess Im(h),

σp(Mh) = {λ ∈ R : {h = λ} has positive measure},
σr (Mh) = ∅,
σc(Mh) = σap(Mh) \ σp(Mh).
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Example 3

Example

Let T denote the shift operator Tf (x) = f (x + 1) for
f ∈ X = L2(R). Compute the different spectra of T .

T is a unitary operator. So σr (T ) = ∅ and
σ(T ) = σap(T ) ⊂ {|λ| = 1}.
Suppose |λ| = 1 and Tf = λf . Then f (x + n) = λnf (x) and∫

R
|f |2 dx =

∞∑
n=−∞

∫ 1

0

|f (x + n)|2 dx =
∞∑

n=−∞

∫ 1

0

|f (x)|2 dx .

Since f ∈ L2, this is possibly only if f = 0. Therefore σp(T ) = ∅
and σ(T ) = σc(T ).
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Example 3

Finally, we show that if |λ| = 1, then λ ∈ σap(T ).

? For n = 1, 2, . . ., we take

fn(x) =

{
1√
2n
λk if x ∈ [k , k + 1),−n ≤ k ≤ n − 1,

0 otherwise.

? Then fn ∈ X , ‖fn‖ = 1 ,

Tfn = λfn in R \ ([−n − 1,−n] ∪ [n − 1, n]),

and

‖λfn − Tfn‖2 =
1

n
→ 0.

We conclude that σ(T ) = σap(T ) = σc(T ) = {|λ| = 1} and
σp(T ) = σr (T ) = ∅.
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