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In the last lecture

Divergence of (some) Fourier series in Cper(R).

Completeness of the trigonometric system in Cper(R).

Completeness of the trigonometric system in Lp(−π, π) for
1 ≤ p <∞.

Convergence of Fourier series in Lp(−π, π) for 1 < p <∞.
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In this lecture

Condition for convergence of Fourier series at a point for
functions in L1(−π, π).

Cesaro convergence of partial Fourier sums in Cper(R).
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Hölder continuity

Suppose f is defined in an open interval I containing a point x0.
For a given α ∈ (0, 1], we say that f is α-Hölder continuous at
x0 if there exist A > 0 and δ0 > 0 such that

|f (x0 + h)− f (x0)| ≤ A|h|α for |h| ≤ δ0.

When α = 1, we say f is Lipschitz continuous at x0.

When f is only defined almost everywhere, we amend the above
definition to: f is α-Hölder continuous at x0 if there exist A > 0,
δ0 > 0 and f0 such that

|f (x0 + h)− f0| ≤ A|h|α for a.e. |h| ≤ δ0.

In such case, it’s convenient to redefined f (x0) to f0. Note that

f0 = lim
h→0+

1

2h

∫ x0+h

x0−h
f (x) dx .
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Hölder continuity and convergence of Fourier series

Theorem (Dirichlet)

Assume that f ∈ L1(−π, π), f is 2π-periodic and f is α-Hölder
continuous at a point x0 for some α ∈ (0, 1]. Then

lim
N→∞

SN f (x0) = f (x0).

Remark
With a little bit more effort (check this!), one can adapt the theorem
to a situation where f is “left and right” α-Hölder continuous at a
point x0, where one has

lim
N→∞

SN f (x0) =
f (x+0 ) + f (x−0 )

2
.
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Hölder continuity and convergence of Fourier series

Proof

We may take x0 = 0. Since the assertion is linear in f and
clearly holds for constant functions, we may also assume that
f (0) = 0. We thus have to show that SN f (0)→ 0.
Recall that

SN f (x) =

∫ π

−π
f (t) kN(x − t) dt where kN(x) =

1

2π

sin(N + 1
2
)x

sin x
2

.

In particular, since kN is even,

SN f (0) =

∫ π

−π
f (t) kN(−t) dt

=

∫ 0

−π
f (t) kN(t) dt +

∫ π

0

f (t) kN(t) dt

=

∫ π

0

(f (t) + f (−t)) kN(t) dt.
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Hölder continuity and convergence of Fourier series

Proof

SN f (0) =

∫ π

0

(f (t) + f (−t)) kN(t) dt.

Heuristic: Observe the singular behavior of kN(t) near t = 0:

kN(t) =
1

2π

sin(N + 1
2
)t

sin t
2

∼ oscillatory in [−1, 1] for large N

t
.

? If f is merely continuous, the integral above is morally∫ π
0

o(1)
t dt which is difficult to bound, and in fact resulting in

the divergence result we knew.
? If f is α-Hölder continuous, we are lead to

∫ π
0

O(1)
t1−α dt which is

bounded uniformly in N.

The proof proceeds by refining the above idea using ‘divide and
conquer’ technique.
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Hölder continuity and convergence of Fourier series

Proof

SN f (0) =

∫ π

0

(f (t) + f (−t)) kN(t) dt.

Fix some small δ for the moment. For t ∈ (0, δ), we use the
inequality sin t

2
≥ t

π
to estimate

|kN(t)| ≤ 1

2π

1

sin t
2

≤ 1

2t
.

The α-Hölder continuity of f at 0 gives |f (t) + f (−t)| ≤ 2Atα

in (0, δ) provided δ < δ0 which we will assume.
Therefore∣∣∣ ∫ δ

0

(f (t) + f (−t)) kN(t) dt
∣∣∣ ≤ ∫ δ

0

Atα−1 = Aα−1δα.
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Hölder continuity and convergence of Fourier series

Proof

SN f (0) =

∫ π

0

(f (t) + f (−t)) kN(t) dt.∣∣∣ ∫ δ

0

(f (t) + f (−t)) kN(t) dt
∣∣∣ ≤ Aα−1δα.

It remains to consider JN,δ :=

∫ π

δ

(f (t) + f (−t)) kN(t) dt.

We write

kN(t) =
1

sin t
2

sin(Nt +
t

2
) = cosNt + cot

t

2
sinNt.

Hence,

JN,δ =

∫ π

−π
[gδ(t) cosNt + hδ(t) sinNt] dt

where gδ(t) = χ(δ,π)(t)(f (t) + f (−t)),

hδ(t) = χ(δ,π)(t)(f (t) + f (−t)) cot
t

2
.
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Hölder continuity and convergence of Fourier series

Proof

SN f (0) =

∫ π

0

(f (t) + f (−t)) kN(t) dt.∣∣∣ ∫ δ

0

(f (t) + f (−t)) kN(t) dt
∣∣∣ ≤ Aα−1δα.

JN,δ =

∫ π

−π
[gδ(t) cosNt + hδ(t) sinNt] dt

where gδ(t) = χ(δ,π)(t)(f (t) + f (−t)),

hδ(t) = χ(δ,π)(t)(f (t) + f (−t)) cot
t

2
.

For fixed δ > 0, gδ, hδ ∈ L1(−π, π).
By Riemann-Lebesgue’s lemma, we therefore have JN,δ → 0 as
N →∞.
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Hölder continuity and convergence of Fourier series

Proof

SN f (0) =

∫ π

0

(f (t) + f (−t)) kN(t) dt.∣∣∣ ∫ δ

0

(f (t) + f (−t)) kN(t) dt
∣∣∣ ≤ Aα−1δα.

For fixed δ > 0,

∫ π

δ

(f (t) + f (−t)) kN(t) dt → 0 as N →∞.

We thus have that, for every δ > 0,

lim sup
N→∞

|SN f (0)| ≤ Aα−1δα.

Sending δ → 0, we conclude that SN f (0)→ 0 as desired.
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Cesaro convergence of partial Fourier sums

Although the partial Fourier sums of a continuous function does not
necessarily converge uniformly, we have the following result:

Theorem (Féjer)

For every f ∈ Cper(R) it holds that

σN f :=
S0f + . . . + SN f

N + 1
→ f in Cper(R) as N →∞.

Ideas of proof

We write the partial Fourier sums as a convolution
SN f = kN ∗ f . It follows that σN f = FN ∗ f where

FN(x) =
1

N + 1
(k0(x)+. . .+kN(x)) =

1

2π(N + 1)

1− cos(N + 1)x

1− cos x
.
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Cesaro convergence of partial Fourier sums

Ideas of proof

The FN ’s are called Féjer kernels. They behave better than
Dirichlet kernels in a number of way:

? FN ≥ 0.
? ‖FN‖L1(−π,π) = 1.

? For δ < x < π, 0 ≤ FN(x) ≤ 1
π(N+1)(1−cos δ) .

Using the above properties, one can follow the same proof as in
the last to reach the conclusion. Details are left as an exercise.
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Examples

Example

Let f ∈ L∞(−π, π) and (cn) its Fourier coefficients. For p < q ∈ Z,
define a bilinear form A : `2(Z)× `2(Z)→ C by

A(x , y) =

q∑
m,n=p

cn+mxnym

Show that |A(x , y)| ≤ ‖f ‖L∞‖x‖‖y‖. Deduce Hilbert’s inequality

∣∣∣ N∑
m,n=0

xnym
m + n + 1

∣∣∣ ≤ π‖x‖‖y‖ for all N ≥ 0.
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Examples

By polarisation, it suffices to bound |A(x , x)|. The trick is to
recognise A(x , x) as

∫ π
−π f (t)(P(t))2 dt where

P(t) =
∑q

n=p xne
−inx .

Then |A(x , x)| ≤ ‖f ‖L∞‖P‖2L2 ≤ ‖f ‖L∞‖x‖2 where we have use
Pythagoras’ theorem for the last inequality.
To obtain Hilbert’s inequality, we need to select f ∈ L∞ such
that cn = 1

n+1
for n ≥ 0.

? If we attempt to sum
∑

n≥0
1

n+1e
inx , we have an issue with

boundedness at x = 0:
∞∑
n=0

1

n + 1
e inx = e−ix

∞∑
m=1

1

m
e imx = ie−ix

∫ ∞∑
m=1

e imxdx

= ie−ix
∫

e ix

1− e ix
dx = −e−ix“ ln(1− e ix)”,

where the integration constant should be chosen appropriately.
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Examples

... we need to select f ∈ L∞ such that cn = 1
n+1

for n ≥ 0.

? We fix the issue by adding in cn = 1
n+1 for n ≤ −2 too:

f (x) =
∞∑

n 6=−1

1

n + 1
e inx = e−ix

∞∑
m=1

1

m
(e imx − e−imx)

= 2ie−ixIm
∞∑

m=1

1

m
e imx = 2ie−ix“Im ln(1− e ix)”

= ie−ix“(π − x + 2πZ)”.

? The branch cut (i.e. integration constant) is chosen so that the
zeroth Fourier coefficients of f (x)e ix is zero. This leads to

f (x) =

{
ie−ix(π − x) if 0 < x < π,
ie−ix(−π − x) if − π < x < 0.
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Examples

Example

There exists a function f ∈ L1(−π, π) whose Fourier series is

f ∼
∞∑
j=0

(
e i
√
j+1 − e i

√
j
)

cos(j !t).

Prove that for every t ∈ πQ, the sequence (SN(t)) diverges, but the
sequence (σN f (t)) converges. Is f bounded and continuous? Does f
lie in L2(−π, π)?
[You may assume that 1

N+1

∑N
n=0 e

i
√
n+1 → 0 as N →∞.]

This was an exam question in some distant past.

If t
π

is rational, then there is some large N0 such that j ! t
π

is an
even integer for all j ≥ N0.
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Examples

f ∼
∞∑
j=0

(
e i
√
j+1 − e i

√
j
)

cos(j !t).

If t
π

is rational, then ... j !t is an even integer for all j ≥ N0.
It follows that

SN f (t)− SN0−1f (t) =
N∑

j=N0

(
e i
√
j+1 − e i

√
j
)

= e i
√
N+1 − e i

√
N0 .

It follows that (SN f (t)) diverges, since e.g. e i
√
N+1 can be close

to 1 and −1 infinitely frequently (check this!).
The convergence of (σN f (t)) also follows:

σN f (t) =
N0

N + 1
σN0−1f (t) +

N − N0 + 1

N + 1
(SN0−1f (t)− e i

√
N0)

+
1

N + 1

N∑
j=N0

e i
√
N+1 → SN0−1f (t)− e i

√
N0 .
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Examples

f ∼
∞∑
j=0

(
e i
√
j+1 − e i

√
j
)

cos(j !t).

For the last bit, we show that f /∈ L2(−π, π) (and hence is not
bounded nor continuous).

Indeed, if f ∈ L2(−π, π), we would have by Parseval’s identity
that

A :=
∞∑
j=0

|bj!|2 <∞ where bj! = e i
√
j+1 − e i

√
j .

Now

bj! = e i
√
j(e i(

√
j+1−

√
j) − 1) = e i

√
j(e

i√
j+1+

√
j − 1).

It follows that |bj!| ∼ j−1/2 for large j , and so A is in fact
infinite. We conclude that f /∈ L2(−π, π).

Luc Nguyen (University of Oxford) B4.2 FA II – Lecture 13 HT 2021 19 / 19


