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In the last 4 lectures

Hilbert spaces and operators on Hilbert spaces.
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In this lecture

The Baire category theorem.

The principle of uniform boundedness.
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The Baire category theorem

Definition
Let S be a subset of a metric space M .

(i) We say that S is dense in M if S̄ = M .
(ii) We say that S is nowhere dense in M if S̄ has empty interior.

Theorem (The Baire category theorem)

A non-empty complete metric space is never the union of a countable
number of nowhere dense sets.

Proof

Suppose that M is a complete metric space and A1,A2, . . . is a
sequence of nowhere dense subsets of M .
We need to show that the complement of ∪∞n=1An is non-empty.
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The Baire category theorem

To that end, we construct a Cauchy sequence (xn) such that for
every m, the tail (xn)n>m lies outside of Ām in such a way that
the limit of this sequence does not lie in any Am.

We start with A1. Since Ā1 has
empty interior, Ā1 6= M .
So M \ Ā1 is a non-empty open set.
Pick a closed ball B(x1, r1) ⊂ M \ Ā1

with 0 < r1 < 1.

We move on with A2. Since Ā2 has
empty interior, Ā2 6⊃ B(x1, r1).
So B(x1, r1) \ Ā2 is a non-empty
open set.
Pick a closed ball
B(x2, r2) ⊂ B(x1, r1) \ Ā2 with
0 < r2 < 1/2.

Ā1

B(x1, r1)

Ā2

B(x2, r2)
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The Baire category theorem

Proceeding in this way, we obtain a sequence of balls B(x1, r1),
B(x2, r2), . . . such that rn <

1
2n−1 and

B(xn, rn) ⊂ B(xn−1, rn−1) \ Ān.

The sequence (xn) is Cauchy: If n,m ≥ N , then
xn, xm ∈ B(xN , rN) and so d(xm, xn) ≤ 2 rN → 0.

Since M is complete, (xn) converges to some x ∈ M .

Since xn ∈ B(xN , rN) for n ≥ N , we have
x ∈ B(xN , rN) ⊂ B(xN−1, rN−1) \ ĀN .

In particular, x /∈ AN for any N .

We conclude that M is not the union of the An’s.
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The Baire category theorem – other forms

Here’re some equivalent forms of the Baire category theorem:

Theorem
In a non-empty complete metric space, the following statements hold:

(i) The intersection of countably many dense open sets is
non-empty.

(ii) The union of countably many nowhere dense sets has empty
interior.

(iii) The intersection of countably many dense open sets is dense.

Proof

Statement (i) is equivalent to the form stated earlier by De
Morgan’s law. (Check this!)

Likewise (ii) ⇔ (iii).
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The Baire category theorem – other forms

Proof

On the surface, (ii) looks stronger than the original statement.
It is in fact equivalent.

Indeed, suppose that A1,A2, . . . are nowhere dense, and suppose
that their union contains a ball B(x , r).

Now take a closed ball B(x , s) ⊂ B(x , r) and let
M̃ = B(x , s) = M ∩ B(x , s), and Ãn = An ∩ B(x , s).

Then M̃ = ∪Ãn and Ãn’s are nowhere dense in M̃ , which is a
contradiction.
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The principle of uniform boundedness

Theorem (Principle of uniform boundedness;
Banach-Steinhaus theorem)

Let X be a Banach space and Y be a normed vector space. Let
F ⊂ B(X ,Y ). If

sup{‖Tx‖Y : T ∈ F} <∞ for every individual x ∈ X ,

then F is bounded in B(X ,Y ), i.e.

sup{‖T‖ : T ∈ F} <∞.

Loosely speaking, it says that a family of bounded linear operators
(from a Banach space into a normed vector space) is bounded if it is
pointwise bounded. It should be clear that linearity of maps is of
crucial importance in the theorem.
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The principle of uniform boundedness

Proof

The proof is an application of the Baire category theorem.

Let An = {x ∈ X : ‖Tx‖Y ≤ n for all T ∈ F}.
By hypothesis, each x ∈ X belongs to some An and so
X = ∪∞n=1An.

By the Baire category theorem, there is some n0 such that
An0 = Ān0 (since the An’s are closed) has non-empty interior.
We can thus pick a ball B(x0, r0) ⊂ An0 .

Now suppose that ‖z‖X < 1, we proceed to bound ‖Tz‖Y for
T ∈ F .
By triangle inequality, we have x0 + r0z ∈ B(x0, r0) and so, by
the definition of An0 ,

‖T (x0 + r0z)‖Y ≤ n0 for all T ∈ F .
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The principle of uniform boundedness

Proof

‖T (x0 + r0z)‖Y ≤ n0 for all T ∈ F and ‖z‖ < 1.

Letting z = 0 gives ‖T (x0)‖Y ≤ n0 for all T ∈ F .

By triangle inequality again, we thus have for T ∈ F and
‖z‖ < 1 that

‖Tz‖Y =
1

r0
‖T (x0 + r0z)− Tx0‖Y

≤ 1

r0
(‖T (x0 + r0z)‖Y + ‖Tx0‖Y ) ≤ 2n0

r0
.

‖T‖B(X ,Y ) ≤ 2n0 r
−1
0 for all T ∈ F .
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Application 1

Theorem
Let X be a Hilbert space and F be a subset of B(X ) such that
supT∈F |〈Tx , y〉| <∞ for each x , y ∈ X . Then {‖T‖ : T ∈ F} is
bounded.

Remark: Compare the fact that ‖T‖ = sup
‖x‖=‖y‖=1

|〈Tx , y〉|.

Proof
By the principle of uniform boundedness, it suffices to show
that, for each fixed x ∈ X , {‖Tx‖ : T ∈ F} is bounded.
Fix an x ∈ X . Define KT ,x ∈ X ∗ by KT ,x(y) = 〈y ,Tx〉 so that
‖Tx‖ = ‖KT ,x‖∗.
We thus need to show that {‖KT ,x‖∗ : T ∈ F} is bounded.
By the principle of uniform boundedness again, we need to show
that, for each y ∈ X , {|KT ,x(y)| : T ∈ F} is bounded. But this
is true by hypothesis.
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Application 2

Example

Let X be a Hilbert space. A sequence (xn) in X is bounded if and
only if (〈xn, y〉) is bounded for every y ∈ X .

This appeared in the 2019 exam.

We view xn as an element of X ∗ by identifying with
Tn(y) = 〈y , xn〉.
We know that ‖xn‖ = ‖Tn‖∗. So (xn) is bounded in X if and
only if (Tn) is bounded in X ∗. By the principle of uniform
boundedness, this holds if and only if Tn is pointwise bounded.
The conclusion follows.
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Application 3: approximate quadrature formulae

An approximate quadrature formula is an approximation of the
integral of a continuous function on a closed interval, say
[−1, 1], by a weighted average of the values of the functions at
some specified points of the form∫ 1

−1

f (t) dt ≈
n∑

j=1

wj f (tj). (*)

The points tj are called the nodes. The numbers wj are called
the weights. These are independent of f .
The weights and the nodes are designed such that the formula
(*) is exact for a certain class of functions. For example, in the
so-called Gaussian quadrature rule, it is required that the
formula (*) is exact for all polynomials of degree ≤ 2n − 1.

The principle of uniform boundedness can be used to study the
convergence of such approximation.
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Application 3: approximate quadrature formulae

Example

Suppose that (qn)n≥1 is a sequence of quadrature formulae of the

form (*), i.e. qn(f ) =
∑n

j=1 w
(n)
j f (t

(n)
j ). Then

lim
n→∞

qn(f ) =

∫ 1

−1

f (t) dt for all f ∈ C [−1, 1]

if and only if
(i) the convergence holds for monomials:

lim
n→∞

qn(tk) =

∫ 1

−1

tk dt for all k ≥ 0,

(ii) and there exists K ≥ 0 such that
n∑

j=1

|w (n)
j | ≤ K for all n ≥ 1.
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Application 3: approximate quadrature formulae

(⇒) This appeared in the 2018 exam.

(i) is clear.

For (ii), we regard qn as a linear functional on X = C [−1, 1],
equipped with the supremum norm. It is routine to check that
qn ∈ X ∗ and ‖qn‖∗ ≤

∑n
j=1 |w

(n)
j |.

Testing the norm against a continuous function f with |f | ≤ 1

such that f (t
(n)
j ) = sign(w

(n)
j ), we have

‖qn‖∗ =
n∑

j=1

|w (n)
j |.

So (ii) means that (qn) is bounded in X ∗. But this is a
consequence of the principle of uniform boundedness, as qn(f ) is
bounded for every f .
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Application 3: approximate quadrature formulae

(⇐) From the discussion made earlier, (ii) means that the
sequence (qn) is bounded in X ∗.

By (i), qn(P) converges for every polynomial P to the

I (P) :=
∫ 1

−1
P(t) dt. To conclude, we fix f ∈ C [−1, 1] arbitrarity

and show that qn(f )→ I (f ).

We use the fact that the space of polynomials is a dense
subspace of C [−1, 1].

? For given ε > 0, select a polynomial P such that ‖P − f ‖ ≤ ε.
This gives |qn(f )− qn(P)| ≤ Kε and |I (f )− I (P)| ≤ ‖I‖ε.

? We next pick N large such that |qn(P)− I (P)| ≤ ε for all
n ≥ N.

? Then

|qn(f )− I (f )| ≤ (1 + K + ‖I‖)ε for all n ≥ N.

This means qn(f )→ I (f ).
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Strong convergence of operators

Theorem
Let X and Y be Banach spaces and consider a sequence
Tn ∈ B(X ,Y ). The following statements are equivalent.

(i) There exists T ∈ B(X ,Y ) such that, for every x ∈ X ,
Tnx → Tx as n→∞.

(ii) For each x ∈ X , the sequence (Tnx) is convergent.
(iii) There is a constant M and a dense subset Z of X such that
‖Tn‖ ≤ M and the sequence (Tnz) is convergent for each z ∈ Z .

Sketch of proof

It is clear that (i) ⇒ (ii) ⇒ (iii). Much of the proof of (iii) ⇒ (i)
is very similar to what we did in the example about approximate
quadrature. I’ll leave it to you to read the details for in the
lecture notes, and discuss the easier statement that (ii) ⇒ (i).
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Strong convergence of operators

Sketch of proof

Let Tx = limn→∞ Tnx . It is clear that T is linear. So the issue is
to show that T is bounded.

By (ii), the principle of uniform boundedness implies that (Tn) is
bounded, say ‖Tn‖ ≤ K for all n.

In particular ‖Tnx‖ ≤ K‖x‖. It follows that

‖Tx‖ = lim
n→∞
‖Tnx‖ ≤ K‖x‖

and so T is bounded.
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Strong convergence of operators

Example

Let (gn) be a bounded sequence in L∞(R) and define
T : L1(R)→ `∞ by letting Tf = (xn) where xn =

∫
R gn(t) f (t) dt.

Show that ImT ⊂ c0 if and only if
∫ b

a
gn → 0 for every finite interval

(a, b). Give an example in which this holds but it is not the case that
(gn(t)) converges a.e.

This was an exam question in some distant past.
Let X = L1(R) and xn(f ) =

∫
R gn(t) f (t) dt. We have xn ∈ X ∗

and ‖xn‖∗ = ‖gn‖L∞ , which is bounded.
Tf ∈ c0 is equivalent to xn(f )→ 0.
The first part follows from the theorem and the fact that the
span of the set of characteristic functions of open finite interval
is dense in X = L1(R).
For the last part, consider gn(t) = sin nt.
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