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In the last lecture

The projection theorem

Pythagoras’ theorem

Bessel’s inequality
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In this lecture

The closed linear span of an orthonormal sequence.

The Riesz representation theorem.

Adjoint operators.
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The closed linear span of an orthonormal sequence

Theorem

Let S = {x1, x2, . . .} be an infinite orthonormal sequence in an
infinite-dimensional Hilbert space X . Then

Span(S) =
{
x =

∞∑
n=1

an xn

∣∣∣(an) ∈ `2
}

where the sum
∑∞

n=1 an xn converges in the sense of the Hilbert space
norm. Furthermore an = 〈x , xn〉 and

‖x‖2 =
∞∑
n=1

|an|2 =
∞∑
n=1

|〈x , xn〉|2. (Parserval’s identity)
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The closed linear span of an orthonormal sequence

Proof

Let Y = Span(S) and

Z =
{
x =

∞∑
n=1

an xn

∣∣∣(an) ∈ `2
}
.

Note that if (an) ∈ `2, then, by Pythagoras’ theorem,

∥∥∥ N2∑
n=N1

an xn

∥∥∥2

=
N2∑

n=N1

|an|2
N1,N2→∞−→ 0.

Hence, the sequence
(∑N

n=1 an xn
)
N

is Cauchy and so the sum∑∞
n=1 an xn is well defined. In particular Z ⊂ Y .
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The closed linear span of an orthonormal sequence

Proof

Conversely, assume that x ∈ Y and we’ll show that x ∈ Z .

Let an = 〈x , xn〉. By Bessel’s inequality, (an) ∈ `2 and so the
vector x̃ :=

∑∞
n=1 an xn ∈ Z ⊂ Y ⊂ X .

Now 〈x̃ , xm〉 = lim
N→∞
〈

N∑
n=1

an xn, xm〉 = am = 〈x , xm〉.

Thus x − x̃ is perpendicular to all xn. This means that

x − x̃ ∈ Span(S)⊥ = Span(S)
⊥

= Y ⊥.

It follows that x − x̃ ∈ Y ∩ Y ⊥ = {0} and so x = x̃ ∈ Z .

Finally, by Pythagoras’ theorem,

‖x‖2 =
N∑

n=1

|〈x , xn〉|2 +
∥∥∥x − N∑

n=1

〈x , xn〉xn
∥∥∥2 N→∞−→

∞∑
n=1

|〈x , xn〉|2,

which proves Parseval’s identity.
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The Riesz representation theorem

Motivation:

Let X = Rn and consider ` ∈ X ∗.

If ` 6= 0, then the kernel of ` has
codimension one: X = Ker `⊕ R.

It is easy to see that the ` restricted
to the R-summand is simply a
multiplication of the scalar
component along this summand by a
nontrivial scalar constant.

0

Ker `

R

`(e) = a 6= 0

`(λe) = aλ

If we equip Rn with its standard inner product and arrange so
that the splitting X = Ker `⊕ R is orthogonal and e has unit
length on the R-summand, then the above implies that

`(y) = 〈y , ae〉.
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The Riesz representation theorem

Theorem (Riesz representation theorem)

Let X be a (real or complex) Hilbert space and ` be a bounded linear
functional on X . Then ` is of the form

`(y) = 〈y , x〉 for all y ∈ X

for some x ∈ X . Furthermore, the point x is uniquely determined and
‖x‖ = ‖`‖∗.

Remark
It follows that X and X ∗ are isometrically isomorphic in the real case
and isometrically anti-isomorphic in the complex case via the map

x ∈ X 7→ `x ∈ X ∗, `x(y) = 〈y , x〉.
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The Riesz representation theorem

Proof

The proof is very much the same as the proof we saw in the
finite dimensional case.

If ` = 0, then x = 0. Assume henceforth that ` 6= 0.

Let Y be the kernel of `. Then Y is a closed subspace of X .

By the projection theorem, X = Y ⊕ Y ⊥.

Since Y ⊥⊥ = Y is a strict subspace of X (as ` 6≡ 0), Y ⊥

contains a non-zero element, say e, which we may assume to
have unit length.

Note that a := `(e) 6= 0.

Then for any y ∈ X , we have y − 1
a
`(y)e ∈ Ker ` = Y .

Taking inner product with e yields 〈y , e〉 − 1
a
`(y) = 0. This

gives the representation with x = āe.
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The Riesz representation theorem

Proof

The uniqueness is clear: If `(y) = 〈y , x〉 = 〈y , x̃〉 for all y , then
〈y , x − x̃〉 = 0 for all y and so x − x̃ = 0.

Finally, we show that ‖`‖∗ = ‖x‖. On one hand, we have by
Cauchy-Schwarz’ inequality that

`(y) = 〈y , x〉 ≤ ‖y‖‖x‖

and so ‖`‖∗ ≤ ‖x‖.
On the other hand, we have

‖x‖2 = 〈x , x〉 = `(x) ≤ ‖`‖∗‖x‖

and so ‖x‖ ≤ ‖`‖∗.
We deduce that ‖`‖∗ = ‖x‖.
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Adjoint operators

Definition
Let X and Y be Hilbert spaces and A ∈ B(X ,Y ). An adjoint
operator of A, denoted A∗, is an operator belonging to B(Y ,X ) such
that

〈Ax , y〉Y = 〈x ,A∗y〉X .

Proposition

Every operator A ∈ B(X ,Y ) has a unique adjoint operator
A∗ ∈ B(Y ,X ).

Definition
An operator A ∈ B(X ) is said to be self-adjoint if A∗ = A.
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Adjoint operators

Proof of the proposition:

For every fixed y ∈ Y , the map x 7→ 〈Ax , y〉Y =: Ty (x) belongs
to X ∗ with norm ‖Ty‖X∗ ≤ ‖A‖‖y‖Y .

By the Riesz representation theorem, there is a unique A∗y ∈ X
such that 〈Ax , y〉Y = Ty (x) = 〈x ,A∗y〉X with
‖A∗y‖X = ‖Ty‖X∗ ≤ ‖A‖‖y‖Y .

The linearity of A∗ is clear. We thus have A∗ ∈ B(Y ,X ).
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Adjoint operators

Remark
The Riesz representation theorem gives two isometric
(anti-)isomorphism ψX : X ∗ → X and ψY : Y ∗ → Y . The adjoint
operator A∗ is related to the dual operator A′ by the following
commutative diagram:

Y A∗ // X

Y ∗ A′ //

ψY

OO

X ∗

ψX

OO

(Recall that A′ : Y ∗ → X ∗ is defined by (A′`)(x) = `(Ax) for all
x ∈ X and ` ∈ Y ∗.)
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Properties of adjoint operators

Proposition

We list some properties of the adjoint operators:
(i) ‖A‖B(X ,Y ) = ‖A∗‖B(Y ,X ).
(ii) A∗∗ = A.
(iii) If A,B ∈ B(X ,Y ) and a, b ∈ C, then

(aA + bB)∗ = ā A∗ + b̄ B∗.
(iv) If T ∈ B(X ,Y ) and S ∈ B(Y ,Z ), then (ST )∗ = T ∗S∗.
(v) I ∗X = IX .

(vi) If A ∈ B(X ,Y ), then KerA = (ImA∗)⊥ and Im (A) = KerA∗.
(vii) A ∈ B(X ) is invertible with a bounded inverse if and only if A∗

is invertible with a bounded inverse.
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Properties of adjoint operators

Proof of (vii)

Suppose that A∗ ∈ B(X ) is invertible with a bounded inverse.
We would like to show that A is invertible.

Once this is done, we can apply this same statement to A∗ to
obtain the converse.

Let B = ((A∗)−1)∗. We have

〈ABx , y〉 = 〈Bx ,A∗y〉 = 〈x ,B∗A∗y〉= 〈x , (A∗)−1A∗y〉 = 〈x , y〉.

Since this is true for all y , we have that ABx = x for all x and
so A is invertible with inverse A−1 = B .
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Examples of adjoint operators

Example: Consider a linear operator A : Cn → Cm given in the
standard bases {e1, . . . , en} and {f1, . . . , fm} by a matrix M ∈ Cm×n,
i.e. Ax = Mx for x ∈ Cn.

The adjoint operator: We have

〈Ax , y〉 = (Mx)t ȳ = x tM t ȳ = x tM̄ ty = 〈x ,A∗y〉.

This means A∗y = M̄ ty , and so the matrix corresponding to A∗

is the conjugate transpose of the matrix corresponding to A.

The dual operator: If (Cn)∗ and (Cm)∗ has dual bases e∗1 , . . . , e
∗
n

and f ∗1 , . . . , f
∗
m, then(

A′(
∑

y`f
∗
` )
)

(
∑

xkek) =
∑

y`f
∗
` (
∑

Mikxk fi) =
∑

yiMikxk .

This means A′y ∗ = M ty ∗ and so the the matrix corresponding
to A′ is the transpose of the matrix corresponding to A.
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Example of adjoint operators

Example: Let X = Y = L2(0, 1) and A be the integral operator

(Af )(x) =

∫ 1

0

k(x , y)f (y) dy

where k : (0, 1)2 → C is a given bounded measurable function.

Then A is a linear operator of L2(0, 1) into itself. In fact, for
every f ∈ L2(0, 1), one has Af ∈ L∞(0, 1) as

|Af (x)| ≤ ‖k‖L∞
∫ 1

0

|f (y)| dy ≤ ‖k‖L∞‖f ‖X .

This implies that

‖Af ‖X ≤ ‖Af ‖L∞ ≤ ‖k‖L∞‖f ‖X

and so A ∈ B(X ).
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Example of adjoint operators

Let us compute the adjoint of A. We write

〈Af , g〉 =

∫ 1

0

{∫ 1

0

k(x , y) f (y) dy
}
ḡ(x) dx .

We woud like to apply Fubini’s theorem. To do so, we need to
check that k(x , y) f (y) ḡ(x) ∈ L1((0, 1)2). As k is bounded, we
only need to check that |f (y)| |g(x)| has finite integral over
(0, 1)2. This is a consequence of Tonelli’s theorem:∫

(0,1)2

|f (y)| |g(x)| dx dy =

∫ 1

0

{∫ 1

0

|f (y)| |g(x)| dy
}
dx

=

∫ 1

0

{
|g(x)|

∫ 1

0

|f (y)| dy
}
dx

≤
∫ 1

0

{
|g(x)|‖f ‖X

}
dx≤ ‖f ‖X‖g‖X .
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Example of adjoint operators

We can now continue our computation using Fubini’s theorem:

〈Af , g〉 =

∫ 1

0

{∫ 1

0

k(x , y) f (y) dy
}
ḡ(x) dx

=

∫ 1

0

f (y)
{∫ 1

0

k(x , y)ḡ(x) dx
}
dy

=

∫ 1

0

f (y)

∫ 1

0

k(x , y) g(x) dx dy = 〈f ,A∗g〉.

We conclude that

(A∗g)(x) =

∫ 1

0

k(y , x)g(y) dy .

In particular, A is self-adjoint if and only if k(x , y) = k(y , x).
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Example of adjoint operators

Example: Let X = `2 and L and R be the left-shift and right-shift
operators. Then L = R∗ and R = L∗.

Example: Let X = L2(R;C) and h : R→ C be a bounded
measurable function. Let Mh denote the multiplication operator:

Mhf (x) = h(x)f (x).

Then Mh ∈ B(X ) and
M∗h = Mh̄.
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