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In the last 2 lectures

The ABCs of spectral theory for bounded linear operators.

Spectra of normal operators.

Spectra of self-adjoint operators.

Spectra of unitary operators.
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In this lecture

More on spectra of normal operators.

A big example: spectra of integral operators.
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Normal operators: Recap

Let X be a complex Hilbert space and T ∈ B(X ) be normal.
We knew

σr (T ) = ∅ and σ(T ) = σap(T ) = σp(T ) ∪ σc(T ),

If x and y are eigenvectors of T corresponding to different
eigenvalues, then 〈x , y〉 = 0.

rad(σ(T )) = ‖T‖.
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Isolated spectral points of normal operators

Proposition

Let X be a complex Hilbert space and T ∈ B(X ) be normal. If
λ ∈ σ(T ) is an isolated point of the spectrum of T , then λ ∈ σp(T ).

Ideas of proof

Without loss of generality, we suppose that λ = 0.

We will use the following fact: When T is normal and
λ /∈ σ(T ), ‖Rλ(T )‖ = 1

dist(λ,σ(T ))
. (See Sheet 4.)

Hence, if we define Sλ := λRλ(T ) for λ ∈ ρ(T ), then ‖Sλ‖ = 1
for all small λ and Sλ is analytic in λ ∈ ρ(T ).

FACT: It can be proved from the above that, as λ→ 0, Sλ → S
in B(X ) in norm.
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Isolated spectral points of normal operators

Ideas of proof

... Sλ := λRλ(T ) ...

FACT: as λ→ 0, Sλ → S in B(X ).

Now, observe that, for x ∈ X ,

λx − λSx + TSx = λ(λI − T )Rλ(T )x − (λI − T )Sx

= (λI − T )(Sλx − Sx).

Sending λ→ 0, we get TSx = 0 for all x .

This implies that KerT ⊃ Im S 6= 0 (since ‖S‖ = lim ‖Sλ‖ = 1).
We conclude that λ = 0 is an eigenvalue of T .
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Other results for normal operators

Let X be a complex Hilbert space and T ∈ B(X ) be normal.

If σ(T ) = {λ1, λ2, . . .} is countable, then every x ∈ H has a
unique expansion of the form

x =
∞∑
i=1

xi

where Txi = λixi and 〈xi , xj〉 if i 6= j .

(Nieminen) T is self-adjoint if and only if σ(T ) ⊂ R.

(Donaghue) T is unitary if and only if σ(T ) ⊂ {|λ| = 1}.
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Other results for normal operators

Theorem (Fuglede)

Suppose X is a Hilbert space and S ,T ∈ B(X ) are normal. If S and
T commute, then S + T and ST are normal.

Idea of proof

It boils down to prove that S and T ∗ commute.

Let us consider the simplest case where σ(T ) is finite. In this
case, we know that each λ ∈ σ(T ) is an eigenvalue of T and
hence X decomposes into an orthogonal direct sum of
eigenspaces X = X1 ⊕ . . .⊕ XN . The proof proceeds then as in
finite dimensional setting.

The key is to observe that that S preserves Xi : If Xi is the
eigenspace corresponding to an eigenvalue λ and x ∈ Xi , then
λSx = STx = TSx and so Sx ∈ Xi . The commutativity of S
and T ∗ follows.
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Other results for normal operators

Idea of proof
In the general case, the proof along the above line is possible but
difficult.
It is in fact more convenient to find a new route. (It is
instructive to think of S and T still as square matrices of finite
size in the argument to follow.)
We start with the observation that ST n = T nS for all n ≥ 0.
This leads to

S exp(i λ̄T ) = exp(i λ̄T )S for all λ ∈ C.
where the exponential function is defined using power series.
(The reason why we choose to put λ̄ instead of λ will be clear in
a moment.)
Supposing that we know exp(i λ̄T )−1 = exp(−i λ̄T ), this gives

S = exp(−i λ̄T )S exp(i λ̄T ).
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Other results for normal operators

Idea of proof

S = exp(−i λ̄T )S exp(i λ̄T ).
This then gives

exp(−iλT ∗)S exp(iλT ∗)

= exp(−iλT ∗) exp(−i λ̄T )S exp(i λ̄T ) exp(iλT ∗).

As T is normal, exp(−iλT ∗) exp(−i λ̄T ) = exp(−i(λT ∗ + λ̄T ))
and so the above becomes

exp(−iλT ∗)S exp(iλT ∗)

= exp(−i(λT ∗ + λ̄T ))S exp(i(λT ∗ + λ̄T )).
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Other results for normal operators

Idea of proof

... exp(−iλT ∗)S exp(iλT ∗)

= exp(−i(λT ∗ + λ̄T ))S exp(i(λT ∗ + λ̄T )).

Now note that λT ∗ + λ̄T is self-adjoint. It is fairly easy to
check from this that exp(±i(λT ∗ + λ̄T )) is unitary.
Hence the right hand side of the equation above is bounded.

We thus have that F (λ) := exp(−iλT ∗)S exp(iλT ∗) is bounded
for all λ ∈ C. Since F is analytic, a suitable Liouville theorem
then tells us that F is constant, i.e. F (λ) = S for all λ.

The assertion that ST ∗ = T ∗S follows by taking derivative in λ
and setting λ = 0.
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Example

Example

Let X = L2(0, 1) and suppose k is a uniformly continuous function on
[0, 1]2. Let T ∈ B(X ) be given by

Tf (x) =

∫ 1

0

k(x , y)f (y) dy .

Discuss condition for T to be normal or self-adjoint, and discuss the
spectral properties of T .

The adjoint operator is

T ∗f (x) =

∫ 1

0

k(z , x)f (z) dz .

Thus T is self-adjoint if k(z , x) = k(x , z) for all x , z .
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Example

We have

T ∗Tf (x) =

∫ 1

0

∫ 1

0

k(z , x)k(z , y)f (y) dz dy ,

TT ∗f (x) =

∫ 1

0

∫ 1

0

k(y , z)k(x , z)f (y) dz dy .

Thus T is normal if
∫ 1

0
k(z , x)k(z , y) dz =

∫ 1

0
k(y , z)k(x , z) dz

for all x , y .

T has the following important property:

Every bounded sequence (fn) ⊂ X has a subsequence
(fnk ) such that (Tfnk ) converges in X .

(*)
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Example

We need

Theorem (Kolmogorov-Riesz-Fréchet)

A bounded sequence (gn) ∈ L2(R) has a convergent subsequence if
for every ε > 0, there exists δ such that ‖gn(·+ h)− gn‖L2(R) ≤ ε for
every n and every h with |h| ≤ δ.

If suffices to consider h > 0.
When x ∈ (0, 1− h), we have

|Tfn(x + h)− Tfn(x)| ≤
∫ 1

0

|k(x + h, y)− k(x , y)||fn(y)| dy

By uniform continuity, this can be made smaller than o(1)‖fn‖
by squeezing h.
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Example

When x ∈ (0, 1− h), |Tfn(x + h)− Tfn(x)| ≤ o(1)‖fn‖.
When x ∈ (−h, 0),

|Tfn(x + h)−Tfn(x)| ≤
∫ 1

0

|k(x + h, y)||fn(y)| dy ≤ ‖k‖L∞ ‖fn‖.

Likewise, when x ∈ (1− h, 1),

|Tfn(x + h)− Tfn(x)| ≤
∫ 1

0

|k(x , y)||fn(y)| dy ≤ ‖k‖L∞ ‖fn‖.

Altogether, we have

‖Tfn(·+ h)− Tfn‖L2(R) ≤ o(1)‖fn‖+ O(h)‖k‖L∞ ‖fn‖ ≤ ε

when |h| < δ is sufficiently small.
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Example

We have thus verified the needed condition to apply
Kolmogorov-Riesz-Fréchet theorem to conclude that

Every bounded sequence (fn) ⊂ X has a subsequence
(fnk ) such that (Tfnk ) converges in X .

(*)

With (*) at hand, we can discuss σap(T ):

? If λ ∈ σap(T ), then there exists ‖fn‖ = 1 such that
λfn − Tfn → 0.

? From (*), we may assume Tfn → g . Then λfn → g . If we have
that λ 6= 0, then fn → λ−1 g =: f and so λf = Tf , i.e.
λ ∈ σp(T ).

? So σap(T ) is made up of eigenvalues except possibly 0. In
particular, σc(T ) ⊂ {0}.
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Example

... we can discuss σap(T ):

? If (λn) ⊂ σp(T ) and λn → λ, then we can apply the above
argument to a sequence of unimodular eigenvectors (fn) of T
corresponding to λn (since λfn − Tfn = (λ− λn)fn → 0). We
have the dichotomy: either fn converges or λ = 0.

? If T is normal,1 eigenvectors corresponding to different
eigenvalues are orthogonal, (fn) is not Cauchy. Hence λ = 0.

? In the general case, we don’t know if the eigenvectors are
orthogonal. We amend using Riesz’s lemma (from FA1): We
select fn+1 such that dist(fn+1,Span({f1, . . . , fn})) ≥ 1

2 . We
again obtain λ = 0.

? We conclude that σp(T ) is at most countable with 0 being the
only possible accumulation point.

? The above argument also shows that if λ ∈ σp(T ) \ {0}, then
Ker (λI − T ) is finite dimensional.

1In the lecture, there is an oversight error here. See the next point.
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Example

Next, we consider σr (T ):
? If T is normal, σr (T ) is empty.
? In the general case, we have σr (T ) ⊂ σ′p(T ∗). Since T ∗ is also

an integral operator of the same form, we have that σr (T ) is
also at most countable with 0 being the only possible
accumulation point, and, for each λ ∈ σr (T ) \ {0}, the space
Im(λI − T ) has finite co-dimension.

In summary:
? The spectrum of T is either finite, or is of the form

(λn)∞n=1 ∪ {0} where λn is a sequence converging to zero.
? If 0 6= λ ∈ σp(T ), then dim Ker (λI − T ) is finite.
? If 0 6= λ ∈ σr (T ), then codim Im (λI − T ) is finite.
? σc(T ) ⊂ {0}.
? If T is normal, σr (T ) = ∅.
? Note that, by a remark in Lecture 14, the above implies that

Im (λI − T ) 6= X for all λ ∈ σ(T ).
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