MMSC Further Mathematical Methods HT2022 - Sheet 1 Answers

1. Suppose A is a square matrix, $n \times n$. State (without proof) the Fredholm Alternative that gives necessary and sufficient conditions under which the system $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}.
Now consider the system $(A-\mu I) \mathbf{x}=\mathbf{b}$, where I is the $n \times n$ identity matrix, and μ is a constant. For what values of μ is there a unique solution? When μ is such that there is not a unique solution, what condition(s) must \mathbf{b} satisfy in order for a solution to exist? When those conditions do hold, what is the most general solution \mathbf{x} ?

Answer. Either
(i) $A^{T} \mathbf{y}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$, in which case $A \mathbf{x}=\mathbf{b}$ has a unique solution;
or
(ii) $A^{T} \mathbf{y}=\mathbf{0}$ has a maximal set of linearly independent nontrivial solutions $\mathbf{y}_{1}, \ldots, \mathbf{y}_{r}$ say. Then $A \mathbf{x}=\mathbf{b}$ has a solution if and only if $\mathbf{y}_{i} \cdot \mathbf{b}=0$ for each $i=1, \ldots, r$. In this case the general solution is $\mathbf{x}=\mathbf{x}_{p}+\sum_{i=1}^{r} c_{i} \mathbf{x}_{i}$ where \mathbf{x}_{p} is any particular solution, c_{1}, \ldots, c_{r} are arbitrary constants, and the $\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}$ are a maximal set of linearly independent solutions to $A \mathbf{x}=\mathbf{0}$.

For $(A-\mu I) \mathbf{x}=\mathbf{b}$ there is a unique solution if $A-\mu I$ is nonsingular, i.e. if μ is not an eigenvalue of A. If μ is an eigenvalue, then \mathbf{b} must be orthogonal to all the corresponding left eigenvectors, i.e. $\mathbf{u} \cdot \mathbf{b}=0$ for all \mathbf{u} such that $(A-\mu I)^{T} \mathbf{u}=\mathbf{0}$ (equivalently $\mathbf{u}^{T}(A-\mu I)=\mathbf{0}^{T}$). If this holds then the general solution is

$$
\mathbf{x}=\mathbf{x}_{p}+\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}
$$

where \mathbf{x}_{p} is any particular solution, r is the dimension of the eigenspace, c_{i} are arbitrary constants, and \mathbf{v}_{i} are linearly independent eigenvectors of A with eigenvalue μ.
2. Suppose A is a square symmetric matrix and λ is a simple eigenvalue of A with corresponding normalised eigenvector \boldsymbol{v}. We wish to solve

$$
(A-(\lambda+\epsilon) I) \boldsymbol{x}=\boldsymbol{b}
$$

where I is the identity matrix and the vector \boldsymbol{b} is such that $\boldsymbol{v} \cdot \boldsymbol{b} \neq 0$. Show that

$$
\boldsymbol{x} \sim{ }_{\epsilon}^{c} \boldsymbol{v}+\boldsymbol{x}_{1}+\cdots,
$$

for some constant c which you should determine.

Answer. If we were to try $\boldsymbol{x} \sim \boldsymbol{x}_{0}+\epsilon \boldsymbol{x}_{1}+\cdots$ we find
At ϵ^{0} :

$$
A \boldsymbol{x}_{0}-\lambda \boldsymbol{x}_{0}=\boldsymbol{b}
$$

which has no solution by the Fredholm alternative since $(A-\lambda I)^{T} \boldsymbol{v}=\mathbf{0}$ and $\boldsymbol{v} \cdot \boldsymbol{b} \neq 0$.
Trying instead

$$
\boldsymbol{x} \sim \frac{1}{\epsilon} \boldsymbol{x}_{0}+\boldsymbol{x}_{1}+\cdots
$$

we find

$$
\text { At } \epsilon^{0}: \quad A \boldsymbol{x}_{0}-\lambda \boldsymbol{x}_{0}=\mathbf{0}
$$

so that $\boldsymbol{x}_{0}=c \mathbf{v}$ for some constant c.

$$
\text { At } \epsilon^{1}: \quad \quad A \boldsymbol{x}_{1}-\lambda \boldsymbol{x}_{1}=c \boldsymbol{v}+\boldsymbol{b}
$$

By the Fredholm alternative there is a solution for \boldsymbol{x}_{1} if and only if the right-hand side is orthogonal to \boldsymbol{v}, i.e. $c|\boldsymbol{v}|^{2}+\boldsymbol{v} \cdot \boldsymbol{b}=0$. Thus $c=-\boldsymbol{v} \cdot \boldsymbol{b}$ (since \boldsymbol{v} is normalised).
3. Find the eigenvalues and eigenfunctions of the integral equation

$$
y(x)=\lambda \int_{0}^{1}(g(x) h(t)+g(t) h(x)) y(t) \mathrm{d} t, \quad x \in[0,1]
$$

where g and h are continuous functions satisfying

$$
\int_{1}^{1} g(x)^{2} \mathrm{~d} x=\int_{0}^{1} h(x)^{2} \mathrm{~d} x=1, \quad \int_{0}^{1} g(x) h(x) \mathrm{d} x=0
$$

Answer. The equation is

$$
y(x)=\lambda X_{1} g(x)+\lambda X_{2} h(x)
$$

where

$$
X_{1}=\int_{0}^{1} h(t) y(t) \mathrm{d} t, \quad X_{2}=\int_{0}^{1} g(t) y(t) \mathrm{d} t
$$

Multiplying by $g(x)$ and $h(x)$ in turn and integrating over x gives

$$
\begin{aligned}
& X_{2}=\lambda X_{1} \\
& X_{1}=\lambda X_{2}
\end{aligned}
$$

where we have used the integrals of g^{2}, h^{2} and $g h$ given in the question. Thus

$$
\left(\begin{array}{cc}
\lambda & -1 \\
-1 & \lambda
\end{array}\right)\binom{X_{1}}{X_{2}}=\binom{0}{0}
$$

A nonzero solution requires

$$
\left|\begin{array}{cc}
\lambda & -1 \\
-1 & \lambda
\end{array}\right|=\lambda^{2}-1=0
$$

i.e. $\lambda= \pm 1$. The corresponding eigenvectors satisfy $X_{1}=X_{2}$ when $\lambda=1$ and $X_{1}=-X_{2}$ when $\lambda=-1$. Thus the eigenvalues and eigenvectors are

$$
\begin{array}{ll}
\lambda=1, & y(x)=c(g(x)+h(x)), \\
\lambda=-1, & y(x)=d(g(x)-h(x)),
\end{array}
$$

where c and d are arbitrary constants.
4. Solve the equation

$$
y(x)=1-x^{2}+\lambda \int_{0}^{1}\left(1-5 x^{2} t^{2}\right) y(t) \mathrm{d} t
$$

Answer. The equation is

$$
y(x)=1-x^{2}+\lambda X_{1}-5 \lambda X_{2} x^{2}=1+\lambda X_{1}-\left(1+5 \lambda X_{2}\right) x^{2}
$$

where

$$
X_{1}=\int_{0}^{1} y(t) \mathrm{d} t, \quad X_{2}=\int_{0}^{1} t^{2} y(t) \mathrm{d} t
$$

Multiplying by 1 and x^{2} respectively and integrating gives

$$
\begin{aligned}
& X_{1}=1+\lambda X_{1}-\frac{1}{3}\left(1+5 \lambda X_{2}\right) \\
& X_{2}=\frac{1}{3}\left(1+\lambda X_{1}\right)-\frac{1}{5}\left(1+5 \lambda X_{2}\right)
\end{aligned}
$$

Rearranging

$$
\left(\begin{array}{cc}
1-\lambda & \frac{5 \lambda}{3} \\
-\frac{\lambda}{3} & 1+\lambda
\end{array}\right)\binom{X_{1}}{X_{2}}=\binom{\frac{2}{3}}{\frac{2}{15}} .
$$

The matrix is invertible if

$$
\left|\begin{array}{cc}
1-\lambda & \frac{5 \lambda}{3} \\
-\frac{\lambda}{3} & 1+\lambda
\end{array}\right|=1-\frac{4 \lambda^{2}}{9} \neq 0
$$

i.e. if $\lambda \neq \pm 3 / 2$. In this case

$$
\binom{X_{1}}{X_{2}}=\frac{1}{1-4 \lambda^{2} / 9}\left(\begin{array}{cc}
1+\lambda & -\frac{5 \lambda}{3} \\
\frac{\lambda}{3} & 1-\lambda
\end{array}\right)\binom{\frac{2}{3}}{\frac{2}{15}}=\frac{1}{9-4 \lambda^{2}}\binom{6+4 \lambda}{\frac{2}{5}(3+2 \lambda)}=\binom{\frac{2}{3-2 \lambda}}{\frac{2}{5(3-2 \lambda)}}
$$

Thus

$$
y(x)=1+\frac{2 \lambda}{3-2 \lambda}-\left(1+\frac{2 \lambda}{3-2 \lambda}\right) x^{2}=\frac{3\left(1-x^{2}\right)}{3-2 \lambda}
$$

If $\lambda=3 / 2$ the adjoint eigenvector satisfies

$$
\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{2} \\
\frac{5}{2} & \frac{5}{2}
\end{array}\right)\binom{Y_{1}}{Y_{2}}=\binom{0}{0}
$$

so that $Y_{1}=-Y_{2}$. Since

$$
\left(\begin{array}{ll}
1 & -1
\end{array}\right)\binom{\frac{2}{3}}{\frac{2}{15}}=\frac{8}{15} \neq 0
$$

there is no solution when $\lambda=3 / 2$. If $\lambda=-3 / 2$ the adjoint eigenvector satisfies

$$
\left(\begin{array}{cc}
\frac{5}{2} & \frac{1}{2} \\
-\frac{5}{2} & -\frac{1}{2}
\end{array}\right)\binom{Y_{1}}{Y_{2}}=\binom{0}{0}
$$

so that $Y_{2}=-5 Y_{1}$. Since

$$
\left(\begin{array}{ll}
1 & -5
\end{array}\right)\binom{\frac{2}{3}}{\frac{2}{15}}=0
$$

there is a solution when $\lambda=-3 / 2$. Since the general solution of

$$
\left(\begin{array}{cc}
\frac{5}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\binom{X_{1}}{X_{2}}=\binom{\frac{2}{3}}{\frac{2}{15}}
$$

is $X_{1}=\frac{4}{15}+a, X_{2}=a$, for a constant, the general solution when $\lambda=-3 / 2$ is

$$
y(x)=\frac{3}{5}-x^{2}+c\left(1-5 x^{2}\right)
$$

