PART A TOPOLOGY HT 2019 EXERCISE SHEET 3

For tutorials in week 7

Compactness

Exercise 1. Let d be one of the metrics d_1 , d_2 , d_{∞} on \mathbb{R}^n .

Let K be a non-empty compact subset of $\mathbb{R}^n,$ and let F be a non-empty closed subset of $\mathbb{R}^n.$ We define

 $\operatorname{dist}(K, F) = \inf\{\operatorname{d}(x, y) : x \in K, y \in F\}.$

Prove that there exists $a \in K$ and $b \in F$ such that d(a, b) = dist(K, F).

Exercise 2. Let (X, \mathcal{T}) be a topological space and let $C = X \cup \{\infty\}$ where ∞ denotes some extra point not in X. Let \mathcal{T}' denote the union of \mathcal{T} with all subsets of C of the form $V \cup \{\infty\}$ where $V \subseteq X$ and $X \setminus V$ is compact and closed in X.

Prove that (C, \mathcal{T}') is a compact topological space containing (X, \mathcal{T}) as a subspace.

This is called the *one-point* (or the Alexandrov) compactification of X.

Prove that the one-point compactification of \mathbb{R}^2 is homeomorphic to the 2-sphere.

Exercise 3. Let l^{∞} be the space of bounded sequences of real numbers, endowed with the norm $\|\mathbf{x}\|_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$, where $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$.

Prove that the closed unit ball of l^{∞} , $B'(\mathbf{0}, 1) = \{\mathbf{x} \in l^{\infty} ; \|\mathbf{x}\|_{\infty} \leq 1\}$, is not compact.

Thus, $B'(\mathbf{0}, 1)$ is a closed bounded subset in a complete normed vector space which is not compact.

[*Hint:* The equivalence between compactness and sequential compactness in the setting of metric spaces may be assumed.]

$Quotient\ spaces$

Exercise 4. Recall that the *integer part* (or *integral part*) of a real number x is the unique integer $n \in \mathbb{Z}$ such that $n \leq x < n + 1$. We denote it by I(x).

On \mathbb{R} we define the relation $x\mathcal{R}y \Leftrightarrow I(x) = I(y)$.

- (a) Prove that \mathcal{R} is an equivalence relation.
- (b) Let $p : \mathbb{R} \to \mathbb{R}/\mathcal{R}$ be the quotient map, let \mathbb{R}/\mathcal{R} be endowed with the quotient topology, and let U be an open set in \mathbb{R}/\mathcal{R} . Prove that if $n \in \mathbb{Z}$ is such that $p(n) \in U$ then $p(n-1) \in U$.
- (c) Deduce that the open sets in \mathbb{R}/\mathcal{R} are \emptyset , \mathbb{R}/\mathcal{R} and the image sets $p(-\infty, n]$, where $n \in \mathbb{Z}$.
- (d) Consider the map $I : \mathbb{R} \to \mathbb{Z}, x \mapsto I(x)$. Is the map I continuous (when \mathbb{Z} is endowed with the subspace topology) ?

Prove that I defines a bijection $\widetilde{I} : \mathbb{R}/\mathcal{R} \to \mathbb{Z}$. What is the topology on \mathbb{Z} making \widetilde{I} a homeomorphism ?

Exercise 5. (1) Let X be a topological space and A a subset of X. On $X \times \{0,1\}$ define the partition composed of the pairs $\{(a,0), (a,1)\}$ for $a \in A$, and of the singletons $\{(x,i)\}$ if $x \in X \setminus A$ and $i \in \{0,1\}$.

Let \mathcal{R} be the equivalence relation defined by this partition, let Y be the quotient space $[X \times \{0,1\}]/\mathcal{R}$ and let $p: X \times \{0,1\} \to Y$ be the quotient map.

- (a) Prove that there exists a continuous map $f: Y \to X$ such that $f \circ p(x, i) = x$ for every $x \in X$ and $i \in \{0, 1\}$.
- (b) Prove that Y is Hausdorff if and only if X is Hausdorff and A is a closed subset of X.
- (2) Consider the above construction for X = [0, 1] and A an arbitrary subset of [0, 1].

Prove that Y is compact. Prove that $K = p(X \times \{0\})$ and $L = p(X \times \{1\})$ are compact, and that $K \cap L$ is homeomorphic to A.

We have thus shown that the intersection of two compact subsets in a space that is not Hausdorff may be non-compact and not closed.

Exercise 6. The goal of this exercise is to show there exists an embedding of the real projective plane $\mathbb{R}P^2$ in \mathbb{R}^4 .

Let \mathbb{S}^2 denote the unit sphere in \mathbb{R}^3 given by $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$, and let $f : \mathbb{S}^2 \to \mathbb{R}^4$ be defined by $f(x, y, z) = (x^2 - y^2, xy, yz, zx)$. Prove that

(1) f determines a continuous map $\tilde{f}: \mathbb{R}P^2 \to \mathbb{R}^4$ where $\mathbb{R}P^2$ is the real projective plane

(2) \tilde{f} is a homeomorphism onto a topological subspace of \mathbb{R}^4 .

[*Hint: when proving that* \tilde{f} *is injective you need to show that*

 $(x_1^2 - y_1^2, x_1y_1, y_1z_1, z_1x_1) = (x_2^2 - y_2^2, x_2y_2, y_2z_2, z_2x_2) \Rightarrow (x_2, y_2, z_2) = \pm (x_1, y_1, z_1) \text{ for points } (x_1, y_1, z_1) \text{ and } (x_2, y_2, z_2) \text{ in } \mathbb{S}^2.$

You might try considering the cases $x_1 \neq 0$ and $x_1 = 0$.]