
B6.2 Optimisation for Data Science
Lecture Notes, Lectures 9–16 (Part I)

Oxford Mathematical Institute, HT 2022

Prof. Coralia Cartis

February 15, 2022

1

B6.2 Opt Data Sci

7 Stochastic gradient methods

7.1 Introduction

Many optimization problems arising in data science applications can be writ-
ten as an (unconstrained) sum of functions, namely,

min
x2Rn

f(x) =
1

m

mX

j=1

fj(x), (43)

where each fj : Rn
! R is continuously differentiable for j 2 {1, . . . ,m}.

In particular, recall the general formulation of the Data fitting problem in
Section 1.4 (Lectures 1–8), where each fj measures the error/misfit/loss at a
given data point; for example, the (squared) error between predicted model
output at a data point and its observed value. Many of the examples given at
the start of these lectures fall in this framework, provided the component func-
tions are smooth5: Example 2 (Lectures 1–8) of regression problems (apart from
Example 2 iv)-Lasso); smooth formulations of the matrix completion problem;
Example 7 (Lectures 1–8) of multi-class classification and training deep learn-
ing models.

It is typical in these applications that both n - the number of variables or
unknowns and m - the number of data points are very large. This implies
that calculating even one entire gradient rf of f is extremely computationally
expensive or even impossible. The issue then arises on how to scale up first-
order/gradient descent methods to the huge scale and requirements of these
modern applications, in a robust and rigorous way?

We will investigate this question in the remaining lectures. We will first
address the large number m of data points or observations and how to ‘reduce’
this algorithmically – this will lead to stochastic first-order algorithms. Then
we will look at reducing the size n of the variables – this will lead to coordinate
(or more generally, subspace) variants of gradient descent. Both these classes
of algorithms can be viewed as approximate/inexact gradient descent variants,
and so we build on the knowledge you gained in Section 4.

7.2 Stochastic gradient methods

The celebrated Stochastic Gradient Descent (SGD) method, proposed by Rob-
bins and Monro in 1951 for problem (43), avoids the calculation of the full gra-
dient of f in (43) by calculating only the gradient(s) of one or a a small(er) number of
component functions fj , chosen uniformly at random from the terms (f1, . . . , fm).
It replaces the negative gradient direction in the method of steepest descent
with the negative (averaged) gradient of this subset of functions.

5A nonsmooth regularization term may be allowed, but we avoid it for now for simplicity.

34

7.2 Stochastic gradient methods B6.2 Opt Data Sci

At iteration k � 0, given the (current) iterate x
k, the SGD algorithm con-

structs an update x
k+1 to x

k as follows,

x
k+1

= x
k
+ ↵kg

k
, (44)

where ↵k > 0 is as in earlier lectures, the step-length (can be constant, or vary-
ing, and typically pre-defined at the start of the algorithm); and g

k is

g
k
= rfSk(x

k
) =

1

mk

X

j2Sk

rfj(x
k
), (45)

where Sk ⇢ {1, 2, . . . ,m} chosen uniformly at random, and where the cardi-
nality of Sk is mk (so |Sk| = mk), which we also refer to as batch size.

Remark: We can see that if mk = m then (44) coincides with the steepest
descent iteration (with general stepsize) when applied to (43). If mk = 1, then
only one term fj (only one data point) from the sum of functions in (43) is cho-
sen uniformly at random and its gradient is used to construct the next iterate. 2

A summary of (a realization) of SGD is given next.

Stochastic gradient descent (SGD)

Algorithm 2 (SGD). Given x
0
2 Rn (deterministic), for k = 0, 1, 2, . . . repeat:

sample Sk i.i.d. ⇠ U({1, . . . ,m}) ! (induces randomness)

calculate gk = rfSk(x
k
) according to (45)

form x
k+1

= x
k
� ↵kg

k
! (random vector)

We denote random/stochastic variables by capital letters, and their realisa-
tions by usual letters: xk

! X
k, gk ! G

k. Thus SGD algorithm is a stochastic
algorithm/process.

While for gradient descent (steepest descent) method we have guaranteed
sufficient descent at each iteration, here we have expected descent only. In-
deed, (a realization of) �G

k may not be a descent direction: rf(X
k
)
T
(�G

k
) <

0 cannot be guaranteed, but is guaranteed in expectation. Therefore, to en-
sure convergence, we must analyse the expected descent of the random iterates
(X

k
).

A numerical illustration. Binary classification tasks are similar/part of the
‘Multiclass classification’ (Example 7), namely, we would like to classify/label
data points into two classes, by means of finding a separating hyperplane that
‘best’ separates two given classes of already labelled data points; the notion
of ‘best’ is quantified by means of minimizing the error between the predicted
classification and the true one in a regression sense (either logistic regression or
mean squared regression). We then use the ‘optimal’ model/hyperplane that

35

7.2 Stochastic gradient methods B6.2 Opt Data Sci

Figure 11: Training data of handwritten digits 4 and 9 from the MNIST data
set.

we found to decide/predict which side of it (or which class) unseen/new data
points must lie.

Optimization formulation and methods are used in the training phase of
finding the optimal model/hyperplane. We aim to find x 2 Rn such that on the
training data, (ai, yi), i 2 {1, . . . ,m}, where ai 2 Rn and yi 2 {�1, 1} denotes
the class to which the data ai belongs to, we classify correctly on average using
squared error loss6, namely,

min
x2Rn

mX

i=1

(a
T
i x� yi)

2
. (46)

We may solve this problem using the SGD algorithm. Here, we focus on con-
structing a dataset (from the MNIST data set) for the task of distinguishing
between images of handwritten digits: 4 and 9, see figure below. Solving the
ensuing (46) using the SGD algorithm with ↵

k
= 0.001 for all k and |Sk| = 1, we

obtain the following results given in Figure ??. Note the stochastic nature of the
objective decrease and its (large) variance and seeming oscillatory stagnation
asymptotically.

A more general set up The SGD algorithm can be extended to a more general
stochastic framework, namely, when f(x) := E⇠(F (x, ⇠))). Then the single
sampled gradient rjf(X

k
) is replaced by a stochastic estimate g(X

k
, ⇠k) ⇡

rf(X
k
); see for example, [5] and Problem Sheet 3 for an illustration. In fact,

this makes it easy to run SGD on stochastic objectives and compare it with
gradient descent methods in order to understand their respective behaviours;
we illustrate this here.

Numerical Illustration. We consider the scaled quadratic function on Prob-
lem Sheet 2 (Problem 3): f(x) =

1
2 (x

2
1 + x

2
2), where  = 20 here. We can

transform this into a stochastic objective by adding Gaussian perturbations (
’noise’) of magnitude 0.02. We then apply SGD (in the more general setting)
with |Sk| = 1 when noise is present (which becomes) gradient descent when no
noise is present (and then GD is applied to f as is.) The linesearch is adaptive

6Logistic loss is also possible/allowed.

36

7.3 Global convergence of the SGD algorithm B6.2 Opt Data Sci

Figure 12: Regression loss across the iterations of SGD method (left) and the
test accuracy over evaluations (right) [@Ilan Price, Oxford].

(not fixed or dependent on the Lipschitz constant) but following conditions
similar to Wolfe linesearch. The following results are obtained. The numerical
illustrations here can be found on Google Colab (Please feel free to copy this
and run it and modify it yourself):

https://colab.research.google.com/drive/1wcLFWkiiUABzWU9hhZRgTbPRjoBsx9Gf?usp=sharing.

7.3 Global convergence of the SGD algorithm

Conditions and assumptions needed to show convergence of SGD applied
to (43): If |Sk| = 1 (one data element), the expected value of the gradient with
respect to the selected data point is an unbiased estimator of the true gradient :

ESk [G
k
] = E[Gk

|Sk] =

mX

j=1

E[Gk
|Sk = j]·P[Sk = j] =

mX

j=1

rfj(X
k
)·
1

m
= rf(X

k
).

(47)

• Similarly for larger sets Sk drawn uniformly from
� m
|Sk|
�

possible config-
urations; referred to as mini-batches. See Problem Sheet 3.

• Above, we used E[Gk
|Sk = j] = rfj(X

k
) (true due to iid choice of Sk

and G
k). More generally, we require an unbiased estimator of the true

gradient: ESk [G
k
] = rf(X

k
).

In addition to the above underlying assumption of our analysis that G
k

conditioned on current batch is an unbiased estimator of the true gradient7, we
7Namely, (47) holds. This property is true here (and when |Sk| > 1), but it would have to be

assumed/enforced in a more general stochastic framework.

37

7.3 Global convergence of the SGD algorithm B6.2 Opt Data Sci

Figure 13: SGD applied to the scaled quadratic objective perturbed by additive
noise [@Ilan Price, Oxford].

38

7.3 Global convergence of the SGD algorithm B6.2 Opt Data Sci

Figure 14: GD applied to the scaled quadratic objective (no noise) [@Ilan Price,
Oxford].

39

7.3 Global convergence of the SGD algorithm B6.2 Opt Data Sci

require the following (|Sk| = 1):

(1) for all j 2 {1, . . . ,m}, rfj is L-smooth (i.e, rfj is Lipschitz continuous
is constant L). Note that this implies that f in (43) is L-smooth (i.e, rf is
Lipschitz continuous is constant L).8

(2) there exists M > 0 such that

VAR(G
k
|Sk) := E[(Gk

�rf(X
k
))

T
(G

k
�rf(X

k
))|Sk]  M

for all k 9.

A useful property - in expectation

Lemma 5. [An overestimation property - in expectation] Assume Assumption (1)
holds. When applying SGD to f with |Sk| = 1, we have

ESk

⇥
f(X

k+1
)
⇤
 f(X

k
)� ↵rf(X

k
)
T ESk

⇥
G

k
⇤
+

L↵
2

2
ESk

⇥
kG

k
k
2
⇤
. (48)

If Assumption (2) also holds, then

ESk

⇥
f(X

k+1
)
⇤
 f(X

k
)� ↵

k

✓
L↵

k

2
� 1

◆
krf(X

k
)k

2
+

ML(↵
k
)
2

2
. (49)

Proof. Since Assumption (1) implies that f is L-smooth, Proposition 2(iv) (Lec-
tures 1–8)10 applies to give the following (deterministic) ‘overestimation’ prop-
erty,

f(x+ ↵d)  f(x) + ↵rf(x)
T
d+

1

2
↵
2
Lkdk

2
, (50)

for all x, d 2 Rn and ↵ 2 R. Letting x = X
k, d = G

k and ↵ = ↵
k in (50) and

using X
k+1

= X
k
+ ↵

k
G

k, we deduce

f(X
k+1

)  f(X
k
)� ↵

k
rf(X

k
)
T
G

k
+

L

2
(↵

k
)
2
kG

k
k
2
.

Applying expectation on both sides with respect to Sk,

ESk [f(X
k+1

]  f(X
k
)� ↵

k
rf(X

k
)
T ESk [G

k
] +

L

2
(↵

k
)
2 ESk [kG

k
k
2
],

where we used that f(Xk
) and rf(X

k
) do not depend on Sk. Thus (48) fol-

lows.
8The latter assumption is common to GD methods when f is deterministic.
9Bounded total variance can usually be guaranteed in a neighbourhood of x⇤ but not globally

for strongly convex f .
10Or equation (11) (Lectures 1–8)

40

7.3 Global convergence of the SGD algorithm B6.2 Opt Data Sci

We already showed11 that ESk [G
k
] = rf(X

k
). Thus

VAR(G
k
|Sk) = ESk

⇥
kG

k
k
2
⇤
� 2rf(X

k
)
T ESk [G

k
] + krf(X

k
)k

2

= ESk

⇥
kG

k
k
2
⇤
� krf(X

k
)k

2
.

which together with Assumption (2), gives ESk

⇥
kG

k
k
2
⇤
 M + krf(X

k
)k

2.
This and (48) gives (49).

Global convergence of SGD: the general case

Theorem 9. [SGD with fixed stepsize: general case] Let f in (43) be bounded below
by flow, satisfying Assumptions (1) and (2). Apply the SGD method with |S|k = 1

and fixed stepsize ↵ = ⌘/L, where ⌘ 2 (0, 1] to (43). Then, for k � 1,

min
0ik�1

E[krf(X
i
)k

2
]  ↵LM +

2(f(x
0
)� flow)

k↵
= ⌘M +

2L(f(x
0
)� flow)

k⌘
.

and so the SGD method takes at most k 
2L(f(x0)�flow)

⌘✏ iterations/evaluations to
generate E[krf(X

k�1
)k

2
]  ✏+ ⌘M .

• Theorem 9 implies that min0ik E[krf(X
i
)k

2
] � ⌘M  O

�
1
k

�
and so

lim infk!1 E[krf(X
k
)k

2
]  ⌘M . With more work, and an additional

smoothness assumption on krfk
2, one can show that limk!1 E[krf(X

k
)k

2
] 

⌘M , not just liminf. Thus (some form of) global convergence of SGD is
obtained up to level ⌘M - ’noise level’ or ‘noise floor’! This limits the
accuracy to which convergence can be achieved.

• Compare this result to the gradient descent method and its general con-
vergence rate; see Theorem 1 (Lectures 1–8) (both have sublinear rate of
convergence).

Proof. (Theorem 9) Lemma 5 and L↵
2 � 1 =

⌘
2 � 1 < �

1
2 give

ESk

⇥
f(X

k+1
)
⇤
 f(X

k
)�

↵

2
krf(X

k
)k

2
+

ML↵
2

2
.

Taking expectation E with respect to the past, namely, S0, . . . ,Sk�1 on both
sides of the above, we note that we have a memoryless property so current
iterate only depends on previous sample size,

E = Ek := E(·|S0, . . . ,Sk) = ESk ,

and so,

Ek

⇥
f(X

k+1
)
⇤
 Ek�1

⇥
f(X

k
)
⇤
�

↵

2
Ek�1

⇥
krf(X

k
)k

2
⇤
+

ML↵
2

2
.

11Or may need to assume in general stochastic cases

41

7.3 Global convergence of the SGD algorithm B6.2 Opt Data Sci

(Recall the techniques in the proof of convergence for GD method, we need to
connect the per iteration decrease with the gradient.) We have for all k � 0,
that the expected decrease satisfies

Ek�1

⇥
f(X

k
)
⇤
� Ek

⇥
f(X

k+1
)
⇤
�

↵

2
Ek�1

⇥
krf(X

k
)k

2
⇤
�

ML↵
2

2
. (51)

Summing up (51) from i = 0 to k, and using f(X
k+1

) � flow we deduce

f(x
0
)� flow � f(x

0
)� Ek

⇥
f(X

k+1
)
⇤

�
↵
2

Pk
i=0 Ek�1

⇥
krf(X

i
)k

2
⇤
� (k + 1)

ML↵2

2 .

�
↵
2 (k + 1)

⇥
min0ik E[krf(X

i
)k

2
]�ML↵

⇤

We are able to modify the SGD algorithm to ensure improved convergence,
beyond the ‘noise floor’. More on this in a moment. Until then, we show that
the behaviour of the SGD algorithm improves compared to the sublinear rate
in Theorem 9.

Global convergence of SGD: the strongly convex case Let f be �-strongly
convex conform Defition 2(v) (Lectures 1–8).

Theorem 10. [SGD with fixed stepsize: strongly convex case] Let f be �-strongly
convex and satisfying Assumptions (1) and (2). Let SGD with fixed stepsize be applied
to minimize f , where ↵k

= ↵ =
⌘
L and ⌘ 2 (0, 1]. Then SGD converges linearly to a

residual error in the following sense: for all k � 0,

E[f(Xk
)]� f(x

⇤
)�

⌘M

2�


⇣
1�

⌘�

L

⌘k
·


f(x

0
)� f(x

⇤
)�

⌘M

2�

�
. (52)

Remarks:

• Theorem 10 implies that limk!1(E[f(Xk
)]� f(x

⇤
)) 

↵ML
2� =

⌘M
2� . Thus

global convergence of SGD is obtained, in expectation, up to the level ⌘M
2�

(noise level !). This level can be decreased in various ways, as we discuss
shortly.

• The ratio L
� in (52) is a condition number of f (connect to second deriva-

tives). Recall rate of GD!

Proof. (Theorem 10)12 Lemma 5 and L↵
2 � 1 =

⌘
2 � 1 < �

1
2 give

ESk

⇥
f(X

k+1
)
⇤
 f(X

k
)�

↵

2
krf(X

k
)k

2
+

ML↵
2

2
.

12The beginning of this proof is similar to that of Theorem 9.

42

7.3 Global convergence of the SGD algorithm B6.2 Opt Data Sci

Taking expectation E with respect to the past, namely, S0, . . . ,Sk�1 on both
sides of the above, we note that we have a memoryless property so current
iterate only depends on previous sample size,

E = Ek := E(·|S0, . . . ,Sk) = ESk ,

and so,

Ek

⇥
f(X

k+1
)
⇤
�f(x

⇤
)  Ek�1

⇥
f(X

k
)
⇤
�f(x

⇤
)�

↵

2
Ek�1

⇥
krf(X

k
)k

2
⇤
+
ML↵

2

2
.

A consequence of the strong convexity property is that the global minimizer x⇤

is unique and f(X
k
) � f(x

⇤
) 

1
2� krf(X

k
)k

2 (conform the proof of Theorem
3, page 16 of Lectures 1–8); thus 2� Ek�1(f [(X

k
]� f(x

⇤
))  Ek�1(krf(X

k
)k

2
).

We deduce

Ek

⇥
f(X

k+1
)
⇤
� f(x

⇤
)  (1� �↵)

�
Ek�1

⇥
f(X

k
)
⇤
� f(x

⇤
)
�
+

ML↵
2

2
, (53)

or equivalently,

Ek

⇥
f(X

k+1
)
⇤
� f(x

⇤
)�

↵ML

2�
 (1� �↵)

✓
Ek�1

⇥
f(X

k
)
⇤
� f(x

⇤
)�

↵ML

2�

◆
.

(54)
Note that ↵ = ⌘/L  1/L  1/�. Replacing ↵ gives

Ek

⇥
f(X

k+1
)
⇤
� f(x

⇤
)�

M⌘

2�


⇣
1�

⌘�

L

⌘✓
Ek�1

⇥
f(X

k
)
⇤
� f(x

⇤
)�

M⌘

2�

◆
,

The claim now follows by induction.

Decreasing the SGD “noise floor”: technique 1 Though not always desir-
able (due to the need for small ‘generalization error’/prediction on unseen
data set), the SGD “floor” (noise level) of ⌘M

2� can be removed so that
limk!1 E[f(Xk

)] = f(x
⇤
).

Technique 1: Dynamically reduce ↵
k
=

⌘k

L
Note that ⌘k ! 0 makes the

residual ⌘kM
2� ! 0 but it also means that

�
1�

⌘k

L

�
! 1, so the price is that we

lose linear convergence!

Theorem 11. [Dynamic stepsize stochastic gradient descent (DS-SGD)] Let f be �-
strongly convex and satisfying Assumptions (1) and (2). In the SGD algorithm, let

↵
k
=

2

2L+ k�
, for all k � 0. Then SGD satisfies, for all k � 0,

0  E[f(Xk
)]� f(x

⇤
) 

⌫

2
L
� + k

(55)

where ⌫ := 2
L
� ⇥max

n
M
� , f(x

0
)� f(x

⇤
)

o
.

Thus limk!1 E[f(Xk
)] = f(x

⇤
). But rate is O

�
1
k

�
- sublinear !

43

7.3 Global convergence of the SGD algorithm B6.2 Opt Data Sci

Proof. (Theorem 11) (Similar to the proof of Theorem 10) Note that all argu-
ments in the proof of Theorem 10 continue to hold with ↵ replaced by ↵

k, until
and including (54). Thus, using ↵

k
 1/L  1/�, for all k � 0, we have

Ek

⇥
f(X

k+1
)
⇤
�f(x

⇤
)�

↵
k
ML

2�

�
1� �↵

k
�✓

Ek�1

⇥
f(X

k
)
⇤
� f(x

⇤
)�

↵
k
ML

2�

◆
.

We are now going to prove the desired conclusion (55) by induction. Clearly
at k = 0, (55) holds. Assume (55) holds at k > 0, and substitute (55) into the
above displayed equation. We obtain

Ek

⇥
f(X

k+1
)
⇤
� f(x

⇤
)�

↵
k
ML

2�

�
1� �↵

k
�

⌫

2
L
� + k

�
↵
k
ML

2�

!
.

Using the expression of ↵k in the above and simplifying the expressions pro-
vides (55) with k replaced by (k + 1).

Decreasing the SGD “noise floor”: technique 2 In this approach, increase
mini-batch sizes from |Sk| = 1 to |Sk| = p � 1.

In SGD, use G
k
=

1
p

P
j2Sk

rfj(X
k
), where j 2 Sk i.i.d. ⇠ U({1, . . . ,m}).

Then we have,

VAR(G
k
|Sk) =

X

j2Sk

1

p2
ESk

⇥
krfj(X

k
)�rf(X

k
)k

2
⇤

+2

X

j<i

1

p2
ESk

⇥
rfj(X

k
)�rf(X

k
)
⇤T ESk

⇥
rfi(X

k
)�rf(X

k
)
⇤

=
1

p2

X

j2Sk

VAR(rfj(X
k
)) + 0 

M

p
,

where we have used |Sk| = p and the independence of i and j indices in Sk in
the first equality as well as the lack of bias ESk

⇥
rfj(X

k
)
⇤
= rf(X

k
). We also

have ESk

⇥
G

k
⇤
= rf(X

k
) - unbiased batch gradient.

Then, as in Theorem 10, we deduce, under the same assumptions,

E[f(Xk
)]� f(x

⇤
)�

⌘M

2�p


⇣
1�

⌘�

L

⌘k
·


f(x

0
)� f(x

⇤
)�

⌘M

2�p

�
. (56)

Thus the noise level is decreased by batch size p, without impacting the con-
vergence factor. The noise floor is not necessarily removed.
(Compare and contrast Techniques 1 and 2.)

Decreasing the SGD “noise floor”: technique 3 This approach adds acceler-
ation to SGD.

44

7.4 Stochastic variance reduction methods B6.2 Opt Data Sci

Technique 3: Acceleration for gradient variance reduction is used to reduce
VAR(G

k
|Sk). This yields E[f(X

k
)] ! f(x

⇤
) with linear convergence rate, with

a much smaller cost per iteration than mini-batching (see the ‘Katyusha’ pa-
per). Other techniques (earlier than Katyusha): variance reduction (SVRG),
SAG (Schmidt, Le Roux, Bach’15: restores linear rate for SGD), SAGA (Defazio
et al’14). Some of these techniques discussed later and some in Part C (Theories
of Deep Learning).

Conclusions:

• Each of the three approaches for improving SGD have merit and are often
all used at once. In particular, once SGD appears to stagnate one both
reduces the stepsize and increases the batch-size; though this is stopped
once validation error begins to increase.

• For the general case, when f may not be (known to be) strongly con-
vex, we can improve on Theorem 9 by using Technique 1 and Technique
2 above (Technique 3 using acceleration is difficult in general, it needs
convexity). Regarding decreasing stepsize (Technique 1), let ↵k

= ⌘k/L

where ⌘k 2 (0, 1]. Similarly to the proof of Theorem 9, we obtain

kX

i=0

↵
i Ei�1

⇥
krf(X

i
)k

2
⇤
 2(f(x

0
)� flow) +ML

kX

i=0

(↵
i
)
2
.

And so to reduce the noise term, assume that
P1

i=0 ↵
i
= 1 and

P1
i=0(↵

i
)
2
<

1 in SGD. Various choices of ↵k are thus possible.

Global convergence of SGD: additional comments

• Compare the obtained bounds with GD results: convergence in expecta-
tion/with positive probability.

• Rates comparison with GD

• Ill-conditioning present, just like in any first-order method. See Part C
Continuous Optimization.

7.4 Stochastic variance reduction methods

Reducing the variance in SGD by increasing batch size (again) Recall Tech-
nique 2 above, namely (56): when f is L-smooth and �-strongly convex, SGD
with fixed stepsize converges - in expectation - linearly up to the level ⌘M

2�

(noise level !), where M related to bound on variance of kG
k
k
2. Instead of

Assumption (2), assume now that for all k � 0,

VAR(G
k
|Sk) := ESk [kG

k
�rf(X

k
)k

2
] 

M

⇠k
(57)

45

7.4 Stochastic variance reduction methods B6.2 Opt Data Sci

where ⇠ > 1.

Theorem 12. Let f in (43) be �-strongly convex and satisfying Assumption 1 and
(57). Let SGD with fixed stepsize be applied to minimize f , where ↵k

= ↵ =
⌘
L where

⌘ 2 (0, 1]. Then SGD satisfies the linear rate:

E[f(Xk
)]� f(x

⇤
)  ⌫vr⇢

k
, for all k � 0, (58)

where ⌫vr := max

n
↵LM

� , f(x
0
)� f(x

⇤
)

o
and ⇢ := max{1� ↵�/2, 1/⇠} < 1.

Thus limk!1 E[f(Xk
)] = f(x

⇤
) linearly.

Proof. (Theorem 12) We use similar techniques to earlier SGD results (see proof
of Theorem 10). Namely, the following holds, which we borrow from the proof
of Theorem 10 (see equation (53)) and in which we replace M by M/⇠

k:

Ek

⇥
f(X

k+1
)
⇤
� f(x

⇤
)  (1� �↵)

�
Ek�1

⇥
f(X

k
)
⇤
� f(x

⇤
)
�
+

ML↵
2

2⇠k
, k � 0.

(59)
We prove (58) by induction on k. For k = 0 clearly (58) holds due to definition
of ⌫vr. Assume (58) holds for k. Replacing (58) into the above decrease we
obtain:

Ek

⇥
f(X

k+1
)
⇤
� f(x

⇤
)  (1� �↵) ⌫vr⇢

k
+

ML↵2

2⇠k

 ⌫vr⇢
k
h
1� �↵+

ML↵2

2⌫vr

1
(⇢⇠)k

i

 ⌫vr⇢
k
h
1� �↵+

ML↵2

2⌫vr

i
as ⇢ � 1/⇠

 ⌫vr⇢
k
⇥
1� �↵+

�↵
2

⇤
due to def ⌫vr

= ⌫vr⇢
k
⇥
1�

�↵
2

⇤
= ⌫vr⇢

k+1

Reducing the variance in SGD by increasing batch size: to achieve (58), let
|Sk| = p > 1�! |Sk| = p

k (p to power k). Disadvantage: potentially expensive.

Reducing the variance by gradient aggregation Assume |Sk| = 1 (for sim-
plicity). SVRG (Johnson and Zhang’13):

rf(x
k
) ⇡ g

k
= rfSk(x

k
)�rfSk(x̄

k
) +rf(x̄

k
)

for some x̄
k close to x

k. Requires calculation of full gradient from time to time
! (Too) Expensive !

Some intuition: Assume we want to estimate E(X) for some random variable X(=

G
k
). Let Z = X � Y + E(Y); then E(Z) = E(X) and VAR(Z) = var(X) +

var(Y) � 2cov(X,Y). Thus measuring Z instead of X could give an estimate of
mean with lower variance if X and Y are positively correlated.

If x
k and x̄

k are close, likely that rfSk(x
k
) and rfSk(x̄

k
) are positively

correlated.

46

7.4 Stochastic variance reduction methods B6.2 Opt Data Sci

Stochastic variance-reduced gradient (SVRG)

Algorithm 3 (SVRG). Given x
0
2 Rn, for k = 0, 1, 2, . . . repeat:

calculate rf(x
k
) and let x̄k,0

:= x
k.

for j 2 {0, . . . , p� 1}, do:

– select Sk,j i.i.d. ⇠ U({1, . . . ,m}) with replacement, |Sk,j | = 1.
– g

k,j
:= rfSk,j (x̄

k,j
)�rfSk,j (x

k
) +rf(x

k
)

– x̄
k,j+1

= x̄
k,j

� ↵
k,j

g
k,j

New iterate: xk+1
2 {x̄

k,j
: j 2 {0, . . . , p� 1}}, chosen uniformly at random.

The following convergence result holds.

Theorem 13. Let fj for each j 2 {1, . . . ,m} be convex and satisfy Assumption 1.
Let f in (43) be �-strongly convex with minimizer x

⇤. Apply the SVRG algorithm
with constant stepsize ↵ and p such that

0 < ↵ <
1

4L
and p >

1

�↵(1� 4L↵)
. (60)

Then
E[f(xk

)]� f(x
⇤
)  ⇢

k
(f(x

0
)� f(x

⇤
)), k � 0, (61)

where ⇢ :=
1

�↵(1� 2L↵)p
+

2L

1� 2L↵
< 1.

Thus limk!1 E[f(Xk
)] = f(x

⇤
) linearly.

Before we prove Theorem 13, we need a useful lemma that concerns the
smoothness properties of fj and f .

Lemma 6. Let fi for each i 2 {1, . . . ,m} be convex and satisfy Assumption 1. Let f
in (43) be �-strongly convex with minimizer x⇤. Then, for all x 2 Rn,

krfi(x)�rfi(x
⇤
)k  2L[fi(x)� fi(x

⇤
)�rfi(x

⇤
)
T
(x� x

⇤
)]. (62)

Furthermore, if S = {j} is chosen uniformly at random from {1, . . . ,m} (with |S| =

1), then for all x 2 Rn,

ES [krfj(x)�rfj(x
⇤
)k

2
]  2L[f(x)� f(x

⇤
)]. (63)

Proof. (Lemma 6) To show (62)13, define h(x) = fi(x)� fi(x
⇤
)�rfi(x

⇤
)
T
(x�

x
⇤
), x 2 Rn. Since fi is a convex function, and x

⇤ is fixed, h is also a convex
function, since h is the sum of a convex function fi�fi(x

⇤
) and a linear function

in x, namely (�rfi(x
⇤
))

T
(x�x

⇤
); recall that any linear function is also convex

13Note that (62) is true for any points x and x⇤ and we do not use that x⇤ is the minimizer of f
(but not necessarily fi).

47

7.4 Stochastic variance reduction methods B6.2 Opt Data Sci

and the sum of convex functions is also a convex function. Since h is a convex
function and rh(x

⇤
) = rfi(x

⇤
) � rf(x

⇤
) = 0, it follows that x⇤ is a global

minimizer of h and so h(x) � h(x
⇤
) for all x 2 Rn. In particular,

h

✓
x�

1

L
rh(x)

◆
� h(x

⇤
) = 0, x 2 Rn

. (64)

Note now that rh(x) = rfi(x)�rf(x
⇤
) and so h is also L-smooth. It follows

that h satisfies the ‘Foundational Inequality of Steepest Descent’ (Lemma 3,
Lectures 1–8) namely, for all x 2 Rn,

h

✓
x�

1

L
rh(x)

◆
 h(x)�

1

2L
krh(x)k

2
.

This and (64) imply that h(x) �
1
2Lkrh(x)k

2, which together with the defini-
tion of h and rh, provides (62).

Let us now prove (63). [Recall the derivation (47); similar derivation here
for the first two equalities.]

ES [krfj(x)�rfj(x
⇤
)k

2
] =

Pm
i=1 E(krfi(x)�rfi(x

⇤
)k

2
|S = i)P(S = i)

=
1
m

Pm
i=1 krfi(x)�rfi(x

⇤
)k

2


2L
m

Pm
i=1[fi(x)� fi(x

⇤
)�rfi(x

⇤
)
T
(x� x

⇤
)]

= 2L[f(x)� f(x
⇤
)�rf(x

⇤
)
T
(x� x

⇤
)],

where in the first inequality we used (62) for each fi, and in the last equality
we used the definition of f in (43) and its gradient rf . Now (63) follows by
using that rf(x

⇤
) = 0 as x⇤ is the minimizer of f .

Proof. (Theorem 13) Recall the simple identity: ka + bk
2
 2(kak

2
+ kbk

2
) for

any a and b in Rn. Recall the construction of the SVRG algorithm and Gk,j =

rfSk,j (X̄
k,j

) � rfSk,j (X
k
) + rf(X

k
). Adding and subtracting rfSk,j (x

⇤
) to

Gk,j and using the simple inequality, we obtain

ESk,j [kGk,jk
2
]

 2E[krfSk,j (X̄
k,j

)�rfSk,j (x
⇤
)k

2
] + 2E[krfSk,j (x

⇤
)�rfSk,j (X

k
) +rf(X

k
)k

2
]

 2E[krfSk,j (X̄
k,j

)�rfSk,j (x
⇤
)k

2
] + 2E[krfSk,j (X

k
)�rfSk,j (x

⇤
)� (rf(X

k
)�rf(x

⇤
))k

2
].

where in the last equality we used that rf(x
⇤
) = 0 in the second term; note that

E above is with respect to Sk,j . A standard property is that E[kY � E[Y]k
2
] =

E[kY k
2
]� kE[Y]k

2
 E[kY k

2
]. Using this, and that we have unbiased gradient

estimates, ESk,j [rfSk,j (X
k
)�rfSk,j (x

⇤
)] = rf(X

k
)�rf(x

⇤
), we deduce

ESk,j [kGk,jk
2
]  2E[krfSk,j (X̄

k,j
)�rfSk,j (x

⇤
)k

2
]+2E[krfSk,j (X

k
)�rfSk,j (x

⇤
)k

2
].

Apply (63) twice – to both terms in the last inequality, and deduce

ESk,j [kGk,jk
2
]  4L[f(X̄

k,j
)� f(x

⇤
) + f(X

k
)� f(x

⇤
)]. (65)

48

7.4 Stochastic variance reduction methods B6.2 Opt Data Sci

This will help us evaluate the distance to the solution, using the definition of
the inner iterates and ESk,j [Gk,j] = rf(X̄

k,j
),

ESk,j [kX̄
k,j+1

� x
⇤
k
2
]

= kX̄
k,j

� x
⇤
k
2
� 2↵(X̄

k,j
� x

⇤
)
T ESk,j [Gk,j] + ↵

2 ESk,j [kGk,jk
2
]

= kX̄
k,j

� x
⇤
k
2
� 2↵(X̄

k,j
� x

⇤
)
T
rf(X̄

k,j
) + ↵

2 ESk,j [kGk,jk
2
]

which further becomes, given the convexity of f , (x � x
⇤
)
T
rf(x) � f(x) �

f(x
⇤
), that

ESk,j [kX̄
k,j+1

� x
⇤
k
2
]

 kX̄
k,j

� x
⇤
k
2
� 2↵[f(X̄

k,j
)� f(x

⇤
)] + ↵

2 ESk,j [kGk,jk
2
]

 kX̄
k,j

� x
⇤
k
2
� 2↵[f(X̄

k,j
)� f(x

⇤
)] + ↵

2
4L[f(X̄

k,j
)� f(x

⇤
) + f(X

k
)� f(x

⇤
)],

where in the last inequality, we applied (65). And so we conclude for now that

ESk,j [kX̄
k,j+1

�x
⇤
k
2
]  kX̄

k,j
�x

⇤
k
2
�2↵(1�2L↵)[f(X̄

k,j
)�f(x

⇤
)]+4L↵

2
[f(X

k
)�f(x

⇤
)].

Taking total expectations (with respect to all iterates - inner and outer) and, we
deduce,

2↵(1�2L↵)E[f(X̄k,j
)�f(x

⇤
)]  E[kX̄k,j

�x
⇤
k
2
�kX̄

k,j+1
�x

⇤
k
2
]+4L↵

2 E[f(Xk
)�f(x

⇤
)].

Summing this over j in {0, . . . , p � 1}, and noting that 1
p

Pp�1
j=0 E[f(X̄k,j

)] =

E[f(Xk+1
)], we obtain

2↵(1� 2L↵)pE[f(Xk+1
)� f(x

⇤
)]

 E[kX̄k,0
� x

⇤
k
2
� kX̄

k,p
� x

⇤
k
2
] + 4L↵

2
pE[f(Xk

)� f(x
⇤
)]

 E[kXk
� x

⇤
k
2
] + 4L↵

2
pE[f(Xk

)� f(x
⇤
)]



⇣
2
� + 4L↵

2
p

⌘
E[f(Xk

)� f(x
⇤
)]

where we used X̄
k,0

= X
k in the second inequality, and f(x) � f(x

⇤
) �

�
2 kx � x

⇤
k
2 in the last inequality (this property is a consequence of Proposi-

tion 2(iii)(Lectures 1–8) with x = x
⇤ and rf(x

⇤
) = 0). The required conclusion

now follows.

Many variants of SVRG algorithms. Prominently, SAGA is an SVRG vari-
ant that does not require the calculation of full gradient.

49

REFERENCES B6.2 Opt Data Sci

References

[1] A. Beck. First Order Methods in Optimization. MOS-SIAM Series on Opti-
mization, 2017.

[2] S.J. Wright. Optimization Algorithms for Data Analysis.
http://www.optimization-online.org/DB FILE/2016/12/5748.pdf

[3] S.J. Wright. Coordinate descent algorithms. Mathematical Programming,
151:3–34, 2015. https://arxiv.org/abs/1502.04759

[4] D.P. Woodruff. Sketching as a Tool for Numerical Linear Algebra”
https://arxiv.org/abs/1411.4357

[5] L. Bottou, F.E. Curtis, and J. Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 59(1): 65-98, 2017.

[6] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradi-
ent methods. The Journal of Machine Learning Research, 18(1): 8194-8244,
2017.

[7] J. Wright and Y. Ma. High-dimensional data analysis with low-dimensional
models. CUP, 2021.

[8] A.S. Nemirovskii and D.B. Yudin. Complexity of problems and efficiency
of optimization methods. “Nauka” Moskow, 1979, (Russian).

[9] N. Shor. Minimization methods for Non-Differentiable Functions.
(Springer-Verlag, Berlin, 1985)

[10] B. Polyak. Introduction to Optimization. (Optimization Software Inc.,
Publications Division, New York, 1987)

[11] Y. Nesterov. A Method of Solving a Convex Programming Problem with
Convergence Rate O(1/k

2
). Soviet Math. Dokl., Vol 27 (1983), No 2.

[12] Y. Nesterov. Smooth Minimization of Non-Smooth Functions. Math. Pro-
gram., Ser. A 103, 127-152 (2005).

50

